The Future of Mobility

Tenfold Productivity Increase in Transport

Prof. Stefan Heck Stanford University

August 3, 2015

Our transport system today is extremely inefficient

An American road reaches peak throughput only 5% of the time...

...and even then, it is only 10% covered with cars

US Transit - 5% of trips, 77% on-time vs 90%+ OECD, frequencies of 20-60 min in most cities Starved infrastructure: 2.4% of GDP on transport infrastructure (vs. 5% Europe, 9% China, 5%+ US before 1960) and <25% on transit

Where we live significantly shapes our transport needs

Impact of urban form and transport infrastructure on CO₂ emissions: Atlanta vs Barcelona

ATLANTA Atlanta's built-up area Population: 5.25 million

Urban area: 4,280 km²

Carbon emissions: 7.5 tonnes CO₂ per hectare per annum from public and

private transport

BARCELONA

Barcelona's built-up area

Population: 5.33 million Urban area: 162 km²

Carbon emissions: 0.7 tonnes CO2 per hectare per annum from public and

private transport

Source: Bertaud and Richardson, 2004

Consumer preferences have shifted and planners haven't

adjusted

Frequency, travel times, and local density matter to transit success

Routes, stops, and headway for success

1969 20K riders 15 min headway

2000 1.2M riders

Stations 1 mile apart

Today
9.3M riders
2 min 5 sec headway

Routes, stops, and headway

1987 137K system 15 min headway

1920 60 min headway

2000

Stations 0.6 miles apart

Today 30K riders (119K system) 15 min

We have put jobs near freeways, not transit, creating a last mile problem

Jobs near transit are more important than homes in getting people to use transit

Transit commute mode share, depending on proximity to regional rail (including ferry)

Source: SPUR

The Future is Multi-Modal Transp

E-bikes beat cars under 10 mile range

Annual costs, USD 5 miles example

Car owner -\$7,194

E-bike owner - \$875 \$2,387 Uber (backup, 40 days weekdays + 55 days of weekend use) TOTAL: \$3,263 total

Sharing is "in the money" for low mileage customers

ACES: from 67-120 cents/mile today to 9 cents/mile and universal

Monday Morning for a City

- Planning integrated convenience: merge road and transit departments, get rid of linear forecasts (VMT, 8x capacity), factor in learning curves, plan from user convenience view and integrated commute routes across jurisdictions
- 2. Land Use share: allow growth near existing transit (height limits, multi-use with ground level retail, integrate sharing systems)
- Transit frequent: vehicle headway/frequency to 5 minutes, integrate 2 wheelers, electrify, get rid of geo coverage as a metric
- 4. Parking turnover: charge for parking and if possible congestion, parking any legal spot for shared cars (monthly rate bundled into hourly cost)
- 5. Data public: make all data public for intermodal mobility as a service to emerge, mandate integrated payment option via mobile phone any app can access
- 6. New models experiment:
 - muni finance for shared fleets: cars, ebikes, escooters
 - permit new business models but require insurance
 - pilot shared autonomy