APPENDIX A: AIR QUALITY AND GREENHOUSE GAS EMISSIONS DATA

.....

Air Quality and Greenhouse Gas Appendix

1. Air Quality

Ambient air quality standards (AAQS) have been adopted at State and federal levels for criteria air pollutants. In addition, both the State and federal government regulate the release of toxic air contaminants (TACs). The City of San Francisco is in the San Francisco Bay Area Air Basin (SFBAAB) and is subject to the rules and regulations imposed by the Bay Area Air Quality Management District (BAAQMD), as well as the California AAQS adopted by the California Air Resources Board (CARB) and national AAQS adopted by the United States Environmental Protection Agency (EPA). Federal, State, regional, and local laws, regulations, plans, or guidelines that are potentially applicable to the proposed project are summarized below. The discussion also identifies the natural factors in the air basin that affect air pollution.

1.1 REGULATORY FRAMEWORK

1.1.1 Ambient Air Quality Standards

The Clean Air Act (CAA) was passed in 1963 by the US Congress and has been amended several times. The 1970 Clean Air Act amendments strengthened previous legislation and laid the foundation for the regulatory scheme of the 1970s and 1980s. In 1977, Congress again added several provisions, including nonattainment requirements for areas not meeting National AAQS and the Prevention of Significant Deterioration program. The 1990 amendments represent the latest in a series of federal efforts to regulate the protection of air quality in the United States. The CAA allows states to adopt more stringent standards or to include other pollution species. The California Clean Air Act (CCAA), signed into law in 1988, requires all areas of the state to achieve and maintain the California AAQS by the earliest practical date. The California AAQS tend to be more restrictive than the National AAQS, based on even greater health and welfare concerns.

These National AAQS and California AAQS are the levels of air quality considered to provide a margin of safety in the protection of the public health and welfare. They are designed to protect "sensitive receptors" most susceptible to further respiratory distress, such as asthmatics, the elderly, very young children, people already weakened by other disease or illness, and persons engaged in strenuous work or exercise. Healthy adults can tolerate occasional exposure to air pollutant concentrations considerably above these minimum standards before adverse effects are observed.

Both California and the federal government have established health-based AAQS for seven air pollutants. As shown in Table 1, these pollutants include ozone (O_3) , nitrogen dioxide (NO_2) , carbon monoxide (CO), sulfur dioxide (SO_2) , coarse inhalable particulate matter (PM_{10}) , fine inhalable particulate matter $(PM_{2.5})$, and lead (Pb). In addition, the state has set standards for sulfates, hydrogen sulfide, vinyl chloride, and visibility-reducing particles. These standards are designed to protect the health and welfare of the populace with a reasonable margin of safety.

Table 1	Ambient Air Qua	lity Standards	s for Criteria P	ollutants	
Pollutant	Averaging Time	California Standard ¹	Federal Primary Standard ²	Major Pollutant Sources	
Ozone (O ₃) ³	1 hour	0.09 ppm	*	Motor vehicles, paints, coatings, and solvents.	
	8 hours	0.070 ppm	0.070 ppm		
Carbon Monoxide	1 hour	20 ppm	35 ppm	Internal combustion engines, primarily gasoline-powered	
(CO)	8 hours	9.0 ppm	9 ppm	motor vehicles.	
Nitrogen Dioxide (NO ₂)	Annual Arithmetic Mean	0.030 ppm	0.053 ppm	Motor vehicles, petroleum-refining operations, industrial sources, aircraft, ships, and railroads.	
	1 hour	0.18 ppm	0.100 ppm		
Sulfur Dioxide (SO ₂)	Annual Arithmetic Mean	*	0.030 ppm	Fuel combustion, chemical plants, sulfur recovery plants, and metal processing.	
	1 hour	0.25 ppm	0.075 ppm		
	24 hours	0.04 ppm	0.14 ppm		
Respirable Coarse Particulate Matter (PM ₁₀)	Annual Arithmetic Mean	20 µg/m3	*	Dust and fume-producing construction, industrial, and agricultural operations, combustion, atmospheric photochemical reactions, and natural activities (e.g., w	
	24 hours	50 µg/m3	150 µg/m3	raised dust and ocean sprays).	
Respirable Fine Particulate Matter	Annual Arithmetic Mean	12 µg/m3	12 µg/m3	Dust and fume-producing construction, industrial, and agricultural operations, combustion, atmospheric	
(PM _{2.5}) ⁴	24 hours	*	35 µg/m3	photochemical reactions, and natural activities (e.g., wind- raised dust and ocean sprays).	
Lead (Pb)	30-Day Average	1.5 µg/m3	*	Present source: lead smelters, battery manufacturing &	
	Calendar Quarter	*	1.5 µg/m3	recycling facilities. Past source: combustion of leaded gasoline.	
	Rolling 3-Month Average	*	0.15 µg/m3		
Sulfates (SO ₄) ⁵	24 hours	25 µg/m3	*	Industrial processes.	
Visibility Reducing Particles	8 hours	ExCo =0.23/km visibility of 10≥ miles	No Federal Standard	Visibility-reducing particles consist of suspended particulate matter, which is a complex mixture of tiny particles that consists of dry solid fragments, solid cores with liquid coatings, and small droplets of liquid. These particles vary greatly in shape, size and chemical composition, and can be made up of many different materials such as metals, soot, soil, dust, and salt.	
Hydrogen Sulfide	1 hour	0.03 ppm	No Federal Standard	Hydrogen sulfide (H ₂ S) is a colorless gas with the odor of rotten eggs. It is formed during bacterial decomposition of sulfur-containing organic substances. Also, it can be present in sewer gas and some natural gas and can be emitted as the result of geothermal energy exploitation.	

_ . . . _ -. -...

Pollutant	Averaging Time	California Standard ¹	Federal Primary Standard ²	Major Pollutant Sources
Vinyl Chloride	24 hours	0.01 ppm	No Federal Standard	Vinyl chloride (chloroethene), a chlorinated hydrocarbon, is a colorless gas with a mild, sweet odor. Most vinyl chloride is used to make polyvinyl chloride (PVC) plastic and vinyl products. Vinyl chloride has been detected near landfills, sewage plants, and hazardous waste sites, due to microbial breakdown of chlorinated solvents.

Table 1 Ambient Air Quality Standards for Criteria Pollutants

Source: California Air Resources Board (CARB). 2016, October 1. Ambient Air Quality Standards. http://www.arb.ca.gov/research/aaqs/aaqs2.pdf. Notes: ppm: parts per million; µg/m³: micrograms per cubic meter

* Standard has not been established for this pollutant/duration by this entity.

1 California standards for O₃, CO (except 8-hour Lake Tahoe), SO₂ (1 and 24 hour), NO₂, and particulate matter (PM₁₀, PM_{2.5}, and visibility reducing particles), are values that are not to be exceeded. All others are not to be equaled or exceeded. California ambient air quality standards are listed in the Table of Standards in Section 70200 of Title 17 of the California Code of Regulations.

2 National standards (other than O₃, PM, and those based on annual arithmetic mean) are not to be exceeded more than once a year. The O₃ standard is attained when the fourth highest 8-hour concentration measured at each site in a year, averaged over three years, is equal to or less than the standard. For PM₁₀, the 24-hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 µg/m³ is equal to or less than one. For PM₂₅, the 24-hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standard.

3 On October 1, 2015, the national 8-hour ozone primary and secondary standards were lowered from 0.075 to 0.070 ppm.

4 On December 14, 2012, the national annual PM_{2.5} primary standard was lowered from 15 μg/m³ to 12.0 μg/m³. The existing national 24-hour PM_{2.5} standards (primary and secondary) were retained at 35 μg/m³, as was the annual secondary standard of 15 μg/m³. The existing 24-hour PM₁₀ standards (primary and secondary) of 150 μg/m³ also were retained. The form of the annual primary and secondary standards is the annual mean, averaged over 3 years.

5 On June 2, 2010, a new 1-hour SO₂ standard was established and the existing 24-hour and annual primary standards were revoked. The 1-hour national standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the 1-hour national standard to the California standard the units can be converted to ppm. In this case, the national standard of 75 ppb is identical to 0.075 ppm.

California has also adopted a host of other regulations that reduce criteria pollutant emissions, including:

- AB 1493: Pavley Fuel Efficiency Standards
- Title 20 California Code of Regulations (CCR): Appliance Energy Efficiency Standards
- Title 24, Part 6, CCR: Building and Energy Efficiency Standards
- Title 24, Part 11, CCR: Green Building Standards Code

1.1.2 Air Pollutants of Concern

A substance in the air that can cause harm to humans and the environment is known as an air pollutant. Pollutants can be in the form of solid particles, liquid droplets, or gases. In addition, they may be natural or man-made.

1.1.2.1 CRITERIA AIR POLLUTANTS

The air pollutants emitted into the ambient air by stationary and mobile sources are regulated by federal and state law. Air pollutants are categorized as primary or secondary pollutants. Primary air pollutants are those that are emitted directly from sources. Carbon monoxide (CO), volatile organic compounds (VOC), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), coarse inhalable particulate matter (PM₁₀), fine inhalable particulate matter (PM_{2.5}), and lead (Pb) are primary air pollutants. Of these, CO, SO₂, NO₂, PM₁₀, and PM_{2.5} are "criteria air pollutants," which means that ambient air quality standards (AAQS) have been established for them. VOC and oxides of nitrogen (NO_x) are air pollutant precursors that form secondary criteria pollutants through chemical and photochemical reactions in the atmosphere. Ozone (O₃) and NO₂ are the principal secondary pollutants. A description of each of the primary and secondary criteria air pollutants and their known health effects is presented below.

Carbon Monoxide (CO) is a colorless, odorless gas produced by incomplete combustion of carbon substances, such as gasoline or diesel fuel. CO is a primary criteria air pollutant. CO concentrations tend to be the highest during winter mornings with little to no wind, when surface-based inversions trap the pollutant at ground levels. The highest ambient CO concentrations are generally found near traffic-congested corridors and intersections. When inhaled at high concentrations, CO combines with hemoglobin in the blood and reduces its oxygen-carrying capacity. This results in reduced oxygen reaching the brain, heart, and other body tissues. This condition is especially critical for people with cardiovascular diseases, chronic lung disease, or anemia, as well as for fetuses. Even healthy people exposed to high CO concentrations can experience headaches, dizziness, fatigue, unconsciousness, and even death.¹

Volatile Organic Compounds (VOC) are compounds composed primarily of hydrogen and carbon atoms. Internal combustion associated with motor vehicle usage is the major source of ROGs. Other sources of ROGs include evaporative emissions from paints and solvents, the application of asphalt paving, and the use of household consumer products such as aerosols. Adverse effects on human health are not caused directly by ROGs, but rather by reactions of ROGs to form secondary pollutants such as O₃. There are no AAQS established for ROGs. However, because they contribute to the formation of O₃, the Air District has established a significance threshold for this pollutant.

Nitrogen Oxides (NO_x) are a by-product of fuel combustion and contribute to the formation of O_3 , PM_{10} , and $PM_{2.5}$. The two major components of NO_x are nitric oxide (NO) and NO_2 . The principal component of NO_x produced by combustion is NO, but NO reacts with oxygen to form NO_2 , creating the mixture of NO and NO_2 commonly called NO_x . NO_2 absorbs blue light; the result is a brownish-red cast to the atmosphere and reduced visibility. NO is a colorless, odorless gas formed from atmospheric nitrogen and oxygen when combustion takes place under high temperature and/or high pressure.² NO_2 acts as an acute irritant and in equal concentrations is more injurious than NO. At atmospheric concentrations, however, NO_2 is only potentially irritating. There is some indication of a relationship between NO_2 and chronic pulmonary fibrosis. Some increase in bronchitis in children (2 and 3 years old) has also been observed at concentrations below 0.3 parts per million (ppm). ³

Sulfur Dioxide (SO₂) is a colorless, pungent, irritating gas formed by the combustion of sulfurous fossil fuels. It enters the atmosphere as a result of burning high-sulfur-content fuel oils and coal and from chemical processes at chemical plants and refineries. Gasoline and natural gas have very low sulfur content and do not release significant quantities of SO₂. When SO₂ forms sulfates (SO₄) in the atmosphere, together these pollutants are referred to as sulfur oxides (SO_x). Thus, SO₂ is both a primary and secondary criteria air pollutant. At sufficiently high concentrations, SO₂ may irritate the upper respiratory tract. At lower concentrations and when combined with particulates, SO₂ may do greater harm by injuring lung tissue.⁴

Suspended Particulate Matter (PM₁₀ and PM_{2.5}) consists of finely divided solids or liquids such as soot, dust, aerosols, fumes, and mists. In the San Francisco Bay Area Air Basin (SFBAAB or Air Basin), most particulate matter is caused by combustion, factories, construction, grading, demolition, agricultural activities, and motor vehicles. Two forms of fine particulates are now recognized and regulated. Inhalable coarse

¹ Bay Area Air Quality Management District, 2017, Revised California Environmental Quality Act Air Quality Guidelines.

² Bay Area Air Quality Management District, 2017, Revised California Environmental Quality Act Air Quality Guidelines.

³ Bay Area Air Quality Management District, 2017, Revised California Environmental Quality Act Air Quality Guidelines.

⁴ Bay Area Air Quality Management District, 2017, Revised California Environmental Quality Act Air Quality Guidelines.

particles, or PM_{10} , include the particulate matter with an aerodynamic diameter of 10 microns (i.e., 10 millionths of a meter or 0.0004 inch) or less. Inhalable fine particles, or $PM_{2.5}$, have an aerodynamic diameter of 2.5 microns or less (i.e., 2.5 millionths of a meter or 0.0001 inch). Diesel particulate matter (DPM) is also classified a carcinogen.

Extended exposure to particulate matter can increase the risk of chronic respiratory disease. PM_{10} bypasses the body's natural filtration system more easily than larger particles and can lodge deep in the lungs. The EPA scientific review concluded that $PM_{2.5}$ penetrates even more deeply into the lungs, and this is more likely to contribute to health effects—at concentrations well below current PM_{10} standards. These health effects include premature death in people with heart or lung disease, nonfatal heart attacks, irregular heartbeat, aggravated asthma, decreased lung function, and increased respiratory symptoms (e.g., irritation of the airways, coughing, or difficulty breathing). Motor vehicles are currently responsible for about half of particulates in the SFBAAB. Wood burning in fireplaces and stoves is another large source of fine particulates. ⁵

Ozone (O₃) is commonly referred to as "smog" and is a gas that is formed when ROGs and NO_x, both byproducts of internal combustion engine exhaust, undergo photochemical reactions in the presence of sunlight. O₃ is a secondary criteria air pollutant. O₃ concentrations are generally highest during the summer months when direct sunlight, light winds, and warm temperatures create favorable conditions to the formation of this pollutant. O₃ poses a health threat to those who already suffer from respiratory diseases as well as to healthy people. O₃ levels usually build up during the day and peak in the afternoon hours. Shortterm exposure can irritate the eyes and cause constriction of the airways. Besides causing shortness of breath, it can aggravate existing respiratory diseases such as asthma, bronchitis, and emphysema. Chronic exposure to high ozone levels can permanently damage lung tissue. O₃ can also damage plants and trees and materials such as rubber and fabrics.⁶

Lead (Pb) is a metal found naturally in the environment as well as in manufactured products. The major sources of lead emissions have historically been mobile and industrial sources. As a result of the phasing out of leaded gasoline, metal processing is currently the primary source of lead emissions. The highest levels of lead in air are generally found near lead smelters. Other stationary sources are waste incinerators, utilities, and lead-acid battery manufacturers. Because emissions of lead are found only in projects that are permitted by the Air District, lead is not an air quality of concern for the proposed project.

1.1.2.2 TOXIC AIR CONTAMINANTS

The public's exposure to air pollutants classified as toxic air contaminants (TACs) is a significant environmental health issue in California. In 1983, the California Legislature enacted a program to identify the health effects of TACs and to reduce exposure to these contaminants to protect the public health. The California Health and Safety Code defines a TAC as "an air pollutant which may cause or contribute to an increase in mortality or in serious illness, or which may pose a present or potential hazard to human health." A substance that is listed as a hazardous air pollutant (HAP) pursuant to Section 112(b) of the federal Clean Air Act (42 United States Code §7412[b]) is a toxic air contaminant. Under state law, the California Environmental Protection Agency (Cal/EPA), acting through CARB, is authorized to identify a substance as

⁵ Bay Area Air Quality Management District, 2017, Revised California Environmental Quality Act Air Quality Guidelines.

⁶ Bay Area Air Quality Management District, 2017. Revised California Environmental Quality Act Air Quality Guidelines.

a TAC if it determines that the substance is an air pollutant that may cause or contribute to an increase in mortality or to an increase in serious illness, or may pose a present or potential hazard to human health.

California regulates TACs primarily through Assembly Bill (AB) 1807 (Tanner Air Toxics Act) and AB 2588 (Air Toxics "Hot Spot" Information and Assessment Act of 1987). The Tanner Air Toxics Act sets forth a formal procedure for CARB to designate substances as TACs. Once a TAC is identified, CARB adopts an "airborne toxics control measure" for sources that emit designated TACs. If there is a safe threshold for a substance (i.e., a point below which there is no toxic effect), the control measure must reduce exposure to below that threshold. If there is no safe threshold, the measure must incorporate toxics best available control technology to minimize emissions. To date, CARB has established formal control measures for 11 TACs, all of which are identified as having no safe threshold.

Air toxics from stationary sources are also regulated in California under the Air Toxics "Hot Spot" Information and Assessment Act of 1987. Under AB 2588, toxic air contaminant emissions from individual facilities are quantified and prioritized by the air quality management district or air pollution control district. High priority facilities are required to perform a health risk assessment and, if specific thresholds are exceeded, are required to communicate the results to the public in the form of notices and public meetings.

By the last update to the TAC list in December 1999, CARB had designated 244 compounds as TACs.⁷ Additionally, CARB has implemented control measures for a number of compounds that pose high risks and show potential for effective control. The majority of the estimated health risks from TACs can be attributed to relatively few compounds, the most important being particulate matter from diesel-fueled engines.

Diesel Particulate Matter

In 1998, CARB identified particulate emissions from diesel-fueled engines (diesel PM) as a TAC. Previously, the individual chemical compounds in diesel exhaust were considered TACs. Almost all diesel exhaust particle mass is 10 microns or less in diameter. Because of their extremely small size, these particles can be inhaled and eventually trapped in the bronchial and alveolar regions of the lung.

CARB has promulgated the following specific rules to limit TAC emissions:

- 13 CCR Chapter 10, Section 2485, Airborne Toxic Control Measure to Limit Diesel-Fueled Commercial Motor Vehicle Idling
- 13 CCR Chapter 10, Section 2480, Airborne Toxic Control Measure to Limit School Bus Idling and Idling at Schools
- 13 CCR Section 2477 and Article 8, Airborne Toxic Control Measure for In-Use Diesel-Fueled Transport Refrigeration Units (TRU) and TRU Generator Sets and Facilities Where TRUs Operate

Community Risk

In addition, to reduce exposure to TACs, CARB developed and approved the *Air Quality and Land Use Handbook: A Community Health Perspective*⁸ to provide guidance regarding the siting of sensitive land uses in the

⁷ California Air Resources Board (CARB). 1999. California Air Resources Board (CARB). Final Staff Report: Update to the Toxic Air Contaminant List. https://ww3.arb.ca.gov/toxics/id/finalstaffreport.htm.

⁸ California Air Resources Board (CARB). 2005, April. Air Quality and Land Use Handbook: A Community Health Perspective. https://www.arb.ca.gov/ch/handbook.pdf.

vicinity of freeways, distribution centers, rail yards, ports, refineries, chrome-plating facilities, dry cleaners, and gasoline-dispensing facilities. This guidance document was developed to assess compatibility and associated health risks when placing sensitive receptors near existing pollution sources. CARB's recommendations on the siting of new sensitive land uses were based on a compilation of recent studies that evaluated data on the adverse health effects from proximity to air pollution sources. The key observation in these studies is that proximity to air pollution sources substantially increases exposure and the potential for adverse health effects. There are three carcinogenic toxic air contaminants that constitute the majority of the known health risks from motor vehicle traffic, DPM from trucks, and benzene and 1,3-butadiene from passenger vehicles. CARB recommendations are based on data that show that localized air pollution exposures can be reduced by as much as 80 percent by following CARB minimum distance separations.

1.1.3 Bay Area Air Quality Management District

The Air District is the agency responsible for assuring that the National and California AAQS are attained and maintained in the Air Basin. Air quality conditions in the Air Basin have improved significantly since the Air District was created in 1955. The Air District prepares air quality management plans (AQMP) to attain ambient air quality standards in the Air Basin. The Air District prepares ozone attainment plans for the National O₃ standard and clean air plans for the California O₃ standard. These air quality management plans are prepared in coordination with Association of Bay Area Governments (ABAG) and the Metropolitan Transportation Commission (MTC). The Air District adopted the 2017 Clean Air Plan, Spare the Air, Cool the Climate (2017 Clean Air Plan) on April 19, 2017, making it the most recent adopted comprehensive plan. The 2017 Clean Air Plan incorporates significant new scientific data, primarily in the form of updated emissions inventories, ambient measurements, new meteorological episodes, and new air quality modeling tools.

1.1.3.1 BAY AREA AIR QUALITY MANAGEMENT DISTRICT 2017 CLEAN AIR PLAN

2017 Spare the Air, Cool the Climate: A Blueprint for Clean Air and Climate Protection in the Bay Area

The 2017 Clean Air Plan serves as an update to the adopted Bay Area 2010 Clean Air Plan and continues in providing the framework for SFBAAB to achieve attainment of the California and National AAQS. The 2017 Clean Air Plan updates the Bay Area's ozone plan, which is based on the "all feasible measures" approach to meet the requirements of the California Clean Air Act. Additionally, it sets a goal of reducing health risk impacts to local communities by 20 percent by 2020. Furthermore, the 2017 Clean Air Plan also lays the groundwork for reducing GHG emissions in the Bay Area to meet the state's 2030 GHG reduction target and 2050 GHG reduction goal. It also includes a vision for the Bay Area in a post-carbon year 2050 that encompasses the following 9:

- Construct buildings that are energy efficient and powered by renewable energy.
- Walk, bicycle, and use public transit for the majority of trips and use electric-powered autonomous public transit fleets.

⁹ Bay Area Air Quality Management District. 2017, April 19. Final 2017 Clean Air Plan, Spare the Air, Cool the Climate: A Blueprint for Clean Air and Climate Protection in the Bay Area. http://www.baaqmd.gov/plans-and-climate/air-quality-plans/plans-underdevelopment.

- Incubate and produce clean energy technologies.
- Live a low-carbon lifestyle by purchasing low-carbon foods and goods in addition to recycling and putting organic waste to productive use.

A comprehensive multipollutant control strategy has been developed to be implemented in the next three to five years to address public health and climate change and to set a pathway to achieve the 2050 vision. The control strategy includes 85 control measures to reduce emissions of ozone, particulate matter, TACs, and GHG from a full range of emission sources. These control measures cover the following sectors: 1) stationary (industrial) sources; 2) transportation; 3) energy; 4) agriculture; 5) natural and working lands; 6) waste management; 7) water; and 8) super-GHG pollutants. Overall, the proposed control strategy is based on the following key priorities:

- Reduce emissions of criteria air pollutants and toxic air contaminants from all key sources.
- Reduce emissions of "super-GHGs" such as methane, black carbon, and fluorinated gases.
- Decrease demand for fossil fuels (gasoline, diesel, and natural gas).
- Increase efficiency of the energy and transportation systems.
- Reduce demand for vehicle travel, and high-carbon goods and services.
- Decarbonize the energy system.
- Make the electricity supply carbon-free.
- Electrify the transportation and building sectors.

1.1.3.2 BAAQMD'S COMMUNITY AIR RISK EVALUATION PROGRAM (CARE)

The BAAQMD's Community Air Risk Evaluation (CARE) program was initiated in 2004 to evaluate and reduce health risks associated with exposure to outdoor TACs in the Bay Area. Based on findings of the latest report, DPM was found to account for approximately 85 percent of the cancer risk from airborne toxics. Carcinogenic compounds from gasoline-powered cars and light duty trucks were also identified as significant contributors: 1,3-butadiene contributed 4 percent of the cancer risk-weighted emissions, and benzene contributed 3 percent. Collectively, five compounds—DPM, 1,3-butadiene, benzene, formaldehyde, and acetaldehyde—were found to be responsible for more than 90 percent of the cancer risk attributed to emissions. All of these compounds are associated with emissions from internal combustion engines. The most important sources of cancer risk–weighted emissions were combustion-related sources of DPM, including on-road mobile sources (31 percent), construction equipment (29 percent), and ships and harbor craft (13 percent). A 75 percent reduction in DPM was predicted between 2005 and 2015 when the inventory accounted for CARB's diesel regulations. Overall, cancer risk from TACs dropped by more than 50 percent between 2005 and 2015, when emissions inputs accounted for State diesel regulations and other reductions.¹⁰

Modeled cancer risks from TAC in 2005 were highest near sources of DPM: near core urban areas, along major roadways and freeways, and near maritime shipping terminals. The highest modeled risks were found east of San Francisco, near West Oakland, and the Maritime Port of Oakland. BAAQMD has identified seven impacted communities in the Bay Area:

• Western Contra Costa County and the cities of Richmond and San Pablo

¹⁰ Bay Area Air Quality Management District. 2014. Improving Air Quality & Health in Bay Area Communities, Community Air Risk Program (CARE) Retrospective and Path Forward (2004–2013), April.

- Western Alameda County along the Interstate 880 (I-880) corridor and the cities of Berkeley, Alameda, Oakland, and Hayward
- San Jose
- Eastern side of San Francisco
- Concord
- Vallejo
- Pittsburgh and Antioch

The project site is not within a CARE-program impacted community.

1.1.3.3 AB 617 COMMUNITY ACTION PLANS

In July of 2017, Governor Brown signed Assembly Bill 617 to develop a new community focused program to more effectively reduce exposure to air pollution and preserve public health in environmental justice communities. The bill directs CARB and all local air districts to take measures to protect communities disproportionally impacted by air pollution through monitoring and implementing air pollution control strategies.

On September 27, 2018, CARB approved BAAQMD's recommended communities for monitoring and emission reduction planning. The state approved communities for year 1 of the program, as well as communities that would move forward over the next five years. Bay Area recommendations included all the Community Air Risk Evaluation (CARE) areas, as well as areas with large sources of air pollution (refineries, seaports, airports, etc.), areas identified via statewide screening tools as having pollution and/or health burden vulnerability, and areas with low life expectancy.¹¹

- Year 1 Communities:
 - West Oakland. The West Oakland community was selected for BAAQMD's first Community Action Plan. In 2017, cancer risk in from sources in West Oakland (local sources) was 204 in a million. The primary sources of air pollution in West Oakland include heavy truck and cars, port and rail sources, large industries, and to a lesser extent other sources such as residential sources (i.e., woodburning). The majority (over 90 percent) of cancer risk is from diesel PM_{2.5}.¹²
 - Richmond: Richmond was selected for a community monitoring plan in year 1 of the AB 617 program. The Richmond area is in western Contra Costa County and includes most of the City of Richmond and portions of El Cerrito. It also includes communities just north and east of Richmond, such as San Pablo and several unincorporated communities, including North Richmond. The primary goals of the Richmond monitoring effort are to leverage historic and current monitoring studies, to better characterize the area's mix of sources, and to more fully understand the associated air quality and pollution impact. ¹³

¹¹ BAAQMD. 2019, April 16. San Francisco Bay Area Community Health Protection Program.

https://www.baaqmd.gov/~/media/files/ab617-community-health/2019_0325_ab617onepager-pdf.pdf?la=en

¹² BAAQMD. 2019, October 2. West Oakland Community Action Plan.. https://www.baaqmd.gov/community-health/community-health-protection-program/west-oakland-community-action-plan

¹³ BAAQMD. 2019, April 16. San Francisco Bay Area Community Health Protection Program.

https://www.baaqmd.gov/~/media/files/ab617-community-health/2019_0325_ab617onepager-pdf.pdf?la=en

- Year 2-5 Communities:
 - East Oakland/San Leandro, Eastern San Francisco, the Pittsburg-Bay Point area, San Jose, Tri-Valley, and Vallejo are slated for action in years 2-5 of the AB 617 program.¹⁴

1.1.3.4 REGULATION 7, ODOROUS SUBSTANCES

Sources of objectionable odors may occur within the City. BAAQMD's Regulation 7, Odorous Substances, places general limitations on odorous substances and specific emission limitations on certain odorous compounds. Odors are also regulated under BAAQMD Regulation 1, Rule 1-301, Public Nuisance, which states that "no person shall discharge from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance or annoyance to any considerable number of persons or the public; or which endangers the comfort, repose, health or safety of any such persons or the public, or which causes, or has a natural tendency to cause, injury or damage to business or property." Under BAAQMD's Rule 1-301, a facility that receives three or more violation notices within a 30-day period can be declared a public nuisance.

1.1.3.5 OTHER BAAQMD REGULATIONS

In addition to the plans and programs described above, BAAQMD administers a number of specific regulations on various sources of pollutant emissions that would apply to individual development projects:

- BAAQMD, Regulation 2, Rule 2, New Source Review
- BAAQMD, Regulation 2, Rule 5, New Source Review of Toxic Air Contaminants
- BAAQMD Regulation 6, Rule 1, General Requirements
- BAAQMD Regulation 6, Rule 2, Commercial Cooking Equipment
- BAAQMD Regulation 8, Rule 3, Architectural Coatings
- BAAQMD Regulation 8, Rule 4, General Solvent and Surface Coatings Operations
- BAAQMD Regulation 8, Rule 7, Gasoline Dispensing Facilities
- BAAQMD Regulation 11, Rule 2, Asbestos, Demolition, Renovation and Manufacturing)
- BAAQMD Regulation 11, Rule 18, Reduction of Risk from Air Toxic Emissions at Existing Facilities

1.1.4 Plan Bay Area

Plan Bay Area is the Bay Area's Regional Transportation Plan/Sustainable Community Strategy. The 2050 blueprint to Plan Bay Area was adopted jointly by the ABAG and MTC in October 2021¹⁵. The Plan Bay Area 2050 serves as a 30-year plan with 35 new strategies to provide a more equitable and resilient future for residents in the Bay Area. This regional plan aims for more affordable and accessible transportation, which will significantly decrease greenhouse gas emissions to meet the state mandate of a 19% reduction in percapita emissions by 2035.

¹⁴ BAAQMD. 2019, April 16. San Francisco Bay Area Community Health Protection Program.

https://www.baaqmd.gov/~/media/files/ab617-community-health/2019_0325_ab617onepager-pdf.pdf?la=en

¹⁵ Metropolitan Transportation Commission and Association of Bay Area Governments. 2021, October. Plan Bay Area 2050 Plan. https://www.planbayarea.org/finalplan2050

1.1.5 Santa Clara Valley Transportation Authority

The Santa Clara Valley Transportation Authority (VTA) is the congestion management agency for Santa Clara County. VTA is tasked with developing a comprehensive transportation improvement program among local jurisdictions that will reduce traffic congestion and improve land use decision-making and air quality. VTA's latest congestion management program (CMP) is the 2017 Congestion Management Program Document. VTA's countywide transportation model must be consistent with the regional transportation model developed by the MTC with ABAG data. The countywide transportation model is used to help evaluate cumulative transportation impacts of local land use decisions on the CMP system. In addition, VTA's updated CMP includes multi-modal performance standards and trip reduction and transportation demand management strategies consistent with the goal of reducing regional vehicle miles traveled in accordance with Senate Bill 375. The 2017 CMP also includes a discussion of Senate Bill 743 implementation and relationship to the CMP auto level of service standard. Elements discussed in the 2017 CMP for Santa Clara County, include the following:

- Transportation Analysis Standards Element:
 - Monitor and submit report on the level of service on CMP roadway network intersections using CMP software and procedures
 - Monitor performance of CMP rural highways and freeways.
- Multimodal Performance Measures Element:
 - Collect available transportation performance measurement data for use in land use analysis, deficiency plans and the CIP.
- Transportation Model and Database Element:
 - Certify that the CMP model us consistent with the regional model.
 - Certify that member agency models are consistent with the CMP model.
- Land Use Impact Analysis Element:
 - Prepare a Transportation Impact Analysis (TIA) for projects that generate 100 or more peak hour trips and submit to the CMP according to TIA Guidelines schedule.
 - Submit relevant conditions of approval to VTA for projects generating TIAs.
 - Prepare quarterly report on VTA comments and local agency adopted conditions for VTA Board, Congestion Management Program and Planning Committee, Policy Advisory Committee, Technical Advisory Committee, Citizens Advisory Committee, and Bicycle and Pedestrian Advisory Committee.
 - Prepare and submit land use monitoring data to the CMP on all land use projects approved from July 1 to June 30 of the previous year.
- Capital Improvement Program Element:
 - Develop a list of projects intended to maintain or improve the level of service on the designated system and to maintain transit performance standards.

- Monitoring and Conformance Element:
 - Outline the requirements and procedures established for conducting annual traffic LOS and land use monitoring efforts. Support the Traffic Level of Service and Community Form and Impact Analysis Elements.
- Multimodal Improvement Plan Element:
 - Prepare deficiency plans for facilities that violate CMP traffic LOS standards or that are projected to violate LOS standards using the adopted deficiency plan requirements.
 - Submit Deficiency Plan Implementation Status Report as part of annual monitoring.

1.1.6 City of Cupertino's Municipal Code

Cupertino's Municipal Code (CMC) Chapter 17.04, Standard Environmental Protection Requirements, identifies standard environmental protection requirements that all construction projects in the City must meet, including but not limited to the environmental mitigation measures identified in any environmental documents required as part of a General Plan update.¹⁶ CMC Section 17.04.040, Standard Environmental Protection Technical Report Submittal Requirements, describes air quality technical requirements as follows:

- Control Diesel Particulate Matter from Non-Residential Projects During Operation. Applicants for new non-residential land uses within the city that either have the potential to generate 100 or more diesel truck trips per day or have 40 or more trucks with operating diesel-powered Transport Refrigeration Units (TRUs), or are within 1,000 feet of a sensitive land use (e.g., residential, schools, hospitals, nursing homes), as measured from the property line of the project to the property line of the nearest sensitive use, shall:
 - Prepare and submit an operational Health Risk Assessment (HRA) for approval by the City prior to approval of the project.
 - The HRA shall be prepared in accordance with policies and procedures of the State Office of Environmental Health Hazard Assessment (OEHHA) and the Bay Area Air Quality Management District (BAAQMD).
 - If the HRA shows that the incremental cancer risk exceeds ten in one million (10E-06), PM_{2.5} concentrations exceed 0.3 micrograms per cubic meter (µg/m³), or the appropriate noncancer hazard index exceeds 1.0, the project applicant shall be required to identify and demonstrate that Best Available Control Technologies for Toxics (T-BACTs) are capable of reducing potential cancer and noncancer risks to an acceptable level, including appropriate enforcement mechanisms.
 - T-BACTs identified in the HRA shall be indicated in the appropriate applicable construction document prior to approval of the project. T-BACTs may include the following measures from BAAQMD's *Planning Healthy Places Guidebook* but are not limited to:
 - i. Restricting nonessential idling on-site to no more than two minutes.
 - ii. Providing electric charging capable truck trailer spaces to accommodate Zero Emissions (ZE) Trucks.

¹⁶ City of Cupertino, Municipal Code. Local legislation current through Ordinance 22-2238, passed February 1, 2022. https://codelibrary.amlegal.com/codes/cupertino/latest/cupertino_ca/0-0-0-78624.

- iii. Providing electric charging capable warehousing docks to accommodate ZE Transport Refrigeration Units (TRUs).
- iv. Requiring use of Near Zero Emissions (NZE) or ZE equipment (e.g., yard trucks and forklifts) and/or vehicles.
- v. Restricting offsite truck travel through the creation of truck routes.
- Manage Indoor Air Pollution.
 - Applicants for residential and other sensitive land use projects (e.g., hospitals, nursing homes, day care centers) in areas identified on the Bay Area Air Quality Management District's (BAAQMD) "Conduct Further Study" on the Planning Healthy Places Map shall:
 - i. Prepare and submit an operational Health Risk Assessment (HRA) to the City prior to approval of the project.
 - ii. The HRA shall be prepared in accordance with policies and procedures of the State Office of Environmental Health Hazard Assessment (OEHHA) and BAAQMD. The latest OEHHA guidelines shall be used for the analysis, including age sensitivity factors, breathing rates, and body weights appropriate for children ages 0 to 16 years.
 - iii. If the HRA shows that the incremental cancer risk exceeds ten in one million (10E-06), $PM_{2.5}$ concentrations exceed 0.3 micrograms per cubic meter ($\mu g/m^3$), or the appropriate noncancer hazard index exceeds 1.0, the project applicant shall identify and demonstrate measures that are capable of reducing potential cancer and non-cancer risks to an acceptable level (i.e., below ten in one million or a hazard index of 1.0), including appropriate enforcement mechanisms.
 - iv. Measures to reduce risk may include, but are not limited to:
 - Air intakes located away from high volume roadways and/or truck loading zones.
 - Heating, ventilation, and air conditioning systems of the buildings provided with appropriately sized Minimum Efficiency Reporting Value (MERV) filters.
 - Applicants for residential and/or other sensitive land use projects (e.g., hospitals, nursing homes, day care centers) must state in the applicable construction document where the site is located on the Bay Area Air Quality Management District (BAAQMD) Planning Healthy Places Map, as subsequently revised, supplemented, or replaced. If the site is located in an area identified as "Implement Best Practices," the project applicant shall implement, and include in applicable construction documents, the following best practices identified in the BAAQMD *Planning Healthy Places Guidebook*:
 - i. Install air filters rated at a MERV 13 or higher.
 - ii. Locate operable windows, balconies, and building air intakes as far away from any emission source as is feasible.

- iii. Incorporate solid barriers or dense rows of trees in a minimum planter width of 5 feet per row of trees between the residential and/or sensitive land use, and the emissions source into site design.
- iv. Do not locate residential and/or sensitive land use on the ground floor units of buildings near non-elevated sources (e.g., ground level heavily traveled roadways and freeways).
- The project applicant shall include the applicable measures identified in subsections (a) and (b) above in the applicable construction documents prior to approval of the project. Specifically, the air intake design and MERV filter requirements shall be included on all applicable construction documents submitted to the City and verified by the City's Planning Division.

ENVIRONMENTAL SETTING

1.1.7 San Francisco Bay Area Air Basin

The BAAQMD is the regional air quality agency for the SFBAAB, which comprises all of Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, and Santa Clara counties; the southern portion of Sonoma County; and the southwestern portion of Solano County. Air quality in this area is determined by such natural factors as topography, meteorology, and climate, in addition to the presence of existing air pollution sources and ambient conditions.¹⁷

1.1.7.1 METEOROLOGY

The SFBAAB is characterized by complex terrain, consisting of coastal mountain ranges, inland valleys, and bays, which distort normal wind flow patterns. The Coast Range splits, resulting in a western coast gap, Golden Gate, and an eastern coast gap, Carquinez Strait, which allow air to flow in and out of the SFBAAB and the Central Valley.

The climate is dominated by the strength and location of a semi-permanent, subtropical high-pressure cell. During the summer, the Pacific high-pressure cell is centered over the northeastern Pacific Ocean, resulting in stable meteorological conditions and a steady northwesterly wind flow. Upwelling of cold ocean water from below the surface because of the northwesterly flow produces a band of cold water off the California coast.

The cool and moisture-laden air approaching the coast from the Pacific Ocean is further cooled by the presence of the cold water band, resulting in condensation and the presence of fog and stratus clouds along the Northern California coast. In the winter, the Pacific high-pressure cell weakens and shifts southward, resulting in wind flow offshore, the absence of upwelling, and the occurrence of storms. Weak inversions coupled with moderate winds result in a low air pollution potential.

1.1.7.2 WIND PATTERNS

During the summer, winds flowing from the northwest are drawn inland through the Golden Gate and over the lower portions of the San Francisco Peninsula. Immediately south of Mount Tamalpais, the northwesterly

¹⁷ This section describing the air basin is from Bay Area Air Quality Management District, 2017, May, Appendix C: Sample Air Quality Setting, in *California Environmental Quality Act Air Quality Guidelines*.

winds accelerate considerably and come more directly from the west as they stream through the Golden Gate. This channeling of wind through the Golden Gate produces a jet that sweeps eastward and splits off to the northwest toward Richmond and to the southwest toward San Jose when it meets the East Bay hills.

Wind speeds may be strong locally in areas where air is channeled through a narrow opening, such as the Carquinez Strait, the Golden Gate, or the San Bruno gap. For example, the average wind speed at San Francisco International Airport in July is about 17 knots (from 3:00 p.m. to 4:00 p.m.), compared with only 7 knots at San Jose and less than 6 knots at the Farallon Islands.

The air flowing in from the coast to the Central Valley, called the sea breeze, begins developing at or near ground level along the coast in late morning or early afternoon. As the day progresses, the sea breeze layer deepens and increases in velocity while spreading inland. The depth of the sea breeze depends in large part upon the height and strength of the inversion. If the inversion is low and strong, and hence stable, the flow of the sea breeze will be inhibited and stagnant conditions are likely to result.

In the winter, the SFBAAB frequently experiences stormy conditions with moderate to strong winds, as well as periods of stagnation with very light winds. Winter stagnation episodes are characterized by nighttime drainage flows in coastal valleys. Drainage is a reversal of the usual daytime air-flow patterns; air moves from the Central Valley toward the coast and back down toward the Bay from the smaller valleys within the SFBAAB.

1.1.7.3 TEMPERATURE

Summertime temperatures in the SFBAAB are determined in large part by the effect of differential heating between land and water surfaces. Because land tends to heat up and cool off more quickly than water, a large-scale gradient (differential) in temperature is often created between the coast and the Central Valley, and small-scale local gradients are often produced along the shorelines of the ocean and bays. The temperature gradient near the ocean is also exaggerated, especially in summer, because of the upwelling of cold water from the ocean bottom along the coast. On summer afternoons the temperatures at the coast can be 35 degrees Fahrenheit (°F) cooler than temperatures 15 to 20 miles inland. At night this contrast usually decreases to less than 10°F.

In the winter, the relationship of minimum and maximum temperatures is reversed. During the daytime the temperature contrast between the coast and inland areas is small, whereas at night the variation in temperature is large. The lowest average temperature is reported at 41.2°F in January, and the highest average temperature is 79°F in August.¹⁸

1.1.7.4 PRECIPITATION

The SFBAAB is characterized by moderately wet winters and dry summers. Winter rains (November through March) account for about 75 percent of the average annual rainfall. The amount of annual precipitation can vary greatly from one part of the SFBAAB to another, even within short distances. In general, total annual rainfall can reach 40 inches in the mountains, but it is often less than 16 inches in sheltered valleys.

¹⁶ USA.Com 2021, July 22 (accessed). Monthly Average Temperature and Precipitation Summary. http://www.usa.com/cupertinoca-weather.htm

During rainy periods, ventilation (rapid horizontal movement of air and injection of cleaner air) and vertical mixing (an upward and downward movement of air) are usually high, and thus pollution levels tend to be low (i.e. air pollutants are dispersed more readily into the atmosphere rather than accumulate under stagnant conditions). However, during the winter, frequent dry periods do occur, when mixing and ventilation are low and pollutant levels build up. Rainfall historically averages 21.96 inches per year in the project area.¹⁹

1.1.7.5 WIND CIRCULATION

Low wind speed contributes to the buildup of air pollution because it allows more pollutants to be emitted into the air mass per unit of time. Light winds occur most frequently during periods of low sun (fall and winter, and early morning) and at night. These are also periods when air pollutant emissions from some sources are at their peak, namely, commuter traffic (early morning) and wood-burning appliances (nighttime). The problem can be compounded in valleys, when weak flows carry the pollutants up-valley during the day, and cold air drainage flows move the air mass down-valley at night. Such restricted movement of trapped air provides little opportunity for ventilation and leads to buildup of pollutants to potentially unhealthful levels.

1.1.7.6 INVERSIONS

An inversion is a layer of warmer air over a layer of cooler air. Inversions affect air quality conditions significantly because they influence the mixing depth, i.e. the vertical depth in the atmosphere available for diluting air contaminants near the ground. There are two types of inversions that occur regularly in the SFBAAB. Elevation inversions are more common in the summer and fall, and radiation inversions are more common during the winter. The highest air pollutant concentrations in the SFBAAB generally occur during inversions.

1.1.8 Existing Ambient Air Quality

1.1.8.1 ATTAINMENT STATUS OF THE SFBAAB

Areas that meet AAQS are classified attainment areas, and areas that do not meet these standards are classified nonattainment areas. Severity classifications for O_3 range from marginal, moderate, and serious to severe and extreme. The attainment status for the air basin is shown in Table 2. The air basin is currently designated a nonattainment area for California and National O_3 , California and National PM_{2.5}, and California PM₁₀ AAQS.

¹⁷ USA.Com 2021, July 22 (accessed). Monthly Average Temperature and Precipitation Summary. http://www.usa.com/cupertinoca-weather.htm

Pollutant	State	Federal ¹
Ozone – 1-hour	Nonattainment	Classification revoked (2005
Ozone – 8-hour	Nonattainment (serious)	Nonattainment
PM ₁₀	Nonattainment	Unclassified/Attainment
PM _{2.5}	Nonattainment	Unclassified/Attainment
СО	Attainment	Attainment
NO ₂	Attainment	Unclassified
SO ₂	Attainment	Attainment
Lead	Attainment	Attainment
Sulfates	Attainment	Unclassified/Attainment
All others	Unclassified/Attainment	Unclassified/Attainment

 Table 2
 Attainment Status of Criteria Pollutants in the San Francisco Bay Area Air Basin

1.1.8.2 EXISTING AMBIENT AIR QUALITY

Existing levels of ambient air quality and historical trends and projections in the vicinity of the project site are best documented by measurements made by the BAAQMD. The BAAQMD monitoring station closest to the project site is the San Jose – Jackson Street Monitoring Station, which monitors O₃, NO₂, PM₁₀ and PM_{2.5}. Data from this station is summarized in Table 3. The data show occasional violations of the State and federal O₃ standards, as well as state PM₁₀ and state and federal PM_{2.5} standards. The State and federal CO and NO₂ standards have not been exceeded in the last five years in the vicinity of the project site.

			per of Days Threshold aximum Levels during		
Pollutant/Standard	2016	2017	2018	2019	2020
Ozone (O ₃)					
State 1-Hour \ge 0.09 ppm	0	3	0	1	1
State & Federal 8-hour ≥ 0.07 ppm	0	4	0	2	2
Maximum 1-Hour Conc. (ppm)	0.087	0.121	0.078	0.095	0.106
Maximum 8-Hour Conc. (ppm)	0.066	0.098	0.061	0.081	0.085
Nitrogen Dioxide (NO₂)		•		•	
State 1-Hour \geq 0.18 (ppm)	0	0	0	0	0
Maximum 1-Hour Conc. (ppb)	0.0511	0.0675	0.0861	0.0598	0.0519
Coarse Particulates (PM10)					
State 24-Hour > 50 µg/m ³	0	6	4	4	10
Federal 24-Hour > 150 µg/m ³	0	0	0	0	0
Maximum 24-Hour Conc. (µg/m3)	40.0	69.8	121.8	77.1	137.1
Fine Particulates (PM _{2.5})		•		•	·
Federal 24-Hour > 35 µg/m ³	0	6	15	0	12
Maximum 24-Hour Conc. (µg/m ³)	22.6	49.7	133.9	27.6	120.5

Table 3 Ambient Air Quality Monitoring S	Summary
--	---------

Source: California Air Resources Board, 2021, Air Pollution Data Monitoring Cards (2016, 2017, 2018, 2019, and 2020), Accessed September 21, 2021 https://www.arb.ca.gov/adam/topfour/topfour1.php. Data from the San Jose Jackson Street Monitoring Station for 0₃, NO₂, PM₁₀, and PM_{2.5}. Notes: ppm: parts per million; ppb: parts per billion; µg/m3: or micrograms per cubic meter

1.1.8.3 EXISTING EMISSIONS

The project site is currently developed with a two-story 141,000 square foot office with associated surface parking and landscape, which currently generates criteria air pollutants emissions from energy use, transportation, and area sources.

1.1.9 Sensitive Receptors

Some land uses are considered more sensitive to air pollution than others due to the types of population groups or activities involved. Sensitive population groups include children, the elderly, the acutely ill, and the chronically ill, especially those with cardiorespiratory diseases. Residential areas are also considered sensitive receptors to air pollution because residents (including children and the elderly) tend to be at home for extended periods of time, resulting in sustained exposure to any pollutants present. Other sensitive receptors include retirement facilities, hospitals, and schools. Recreational land uses are considered moderately sensitive to air pollution. Although exposure periods are generally short, exercise places a high demand on respiratory functions, which can be impaired by air pollution. In addition, noticeable air pollution can detract from the enjoyment of recreation. Industrial, commercial, retail, and office areas are considered the least sensitive to air pollution. Exposure periods are relatively short and intermittent, since the majority of the workers tend to stay indoors most of the time. In addition, the working population is generally the healthiest segment of the population. The nearest sensitive receptors to the project site are the Sunflower Learning Center and TLC Preschool to the southeast, Cupertino High School and residential neighborhoods to the south, Fremont Union High School District Adult School, The Residence Inn Hotel, Kaiser Permanent hospital, residential neighborhoods, Main Street Park to the west of the project site, and Jenny Strang Park and residential neighborhoods to the northeast of the project site.

1.2 METHODOLOGY

The BAAQMD "CEQA Air Quality Guidelines" were prepared to assist in the evaluation of air quality impacts of projects and plans proposed in the Bay Area. The guidelines provide recommended procedures for evaluating potential air impacts during the environmental review process, consistent with CEQA requirements, and include recommended thresholds of significance, mitigation measures, and background air quality information. They also include recommended assessment methodologies for air toxics, odors, and greenhouse gas emissions. In June 2010, the BAAQMD's Board of Directors adopted CEQA thresholds of significance and an update of the CEQA Guidelines. In May 2011, the updated BAAQMD CEQA Air Quality Guidelines were amended to include a risk and hazards threshold for new receptors and modified procedures for assessing impacts related to risk and hazard impacts; however, this later amendment regarding risk and hazards was the subject of the December 17, 2015 Supreme Court decision (*California Building Industry Association v BAAQMD*), which clarified that CEQA does not require an evaluation of impacts of the environment on a project.²⁰

²⁰ On March 5, 2012, the Alameda County Superior Court issued a judgment finding that the BAAQMD had failed to comply with CEQA when it adopted the thresholds of significance in the BAAQMD CEQA Air Quality Guidelines. The court did not determine whether the thresholds of significance were valid on their merits, but found that the adoption of the thresholds was a project under CEQA. The court issued a writ of mandate ordering the BAAQMD to set aside the thresholds and cease dissemination of them until the BAAQMD complied with CEQA. Following the court's order, the BAAQMD released revised CEQA Air Quality Guidelines in May of 2012 that include guidance on calculating air pollution emissions, obtaining information

1.2.1 Criteria Air Pollutant Emissions

The proposed project qualifies as a project-level project under BAAQMD's criteria. For project-level analyses, BAAQMD has adopted screening criteria and significance criteria that would be applicable to the proposed project. If a project exceeds the screening level, it would be required to conduct a full analysis using BAAQMD's significance criteria.²¹

Regional Significance Criteria

BAAQMD's criteria for regional significance for projects that exceed the screening thresholds are shown in Table 4. Criteria for both construction and operational phases of the project are shown.

	Construction Phase	Operational Phase		
Pollutant	Average Daily Emissions (Ibs/day)	Average Daily Emissions (Ibs/day)	Maximum Annual Emissions (Tons/year)	
ROG	54	54	10	
NO _x	54	54	10	
PM ₁₀	82 (Exhaust)	82	15	
PM _{2.5}	54 (Exhaust)	54	10	
PM ₁₀ and PM _{2.5} Fugitive Dust	Best Management Practices	None	None	

Table 4 BAAQMD Regional (Mass Emissions) Criteria Air Pollutant Significance Thresholds

BAAQMD is the primary agency responsible for ensuring the health and welfare of sensitive individuals exposed to elevated concentrations of air pollutants in the Air Basin and has established thresholds that would be protective of these individuals. To achieve the health-based standards established by the EPA, BAAQMD prepares the Clean Air Plan that details regional programs to attain the AAQS. Mass emissions in Table 4.3-7 are not correlated with concentrations of air pollutants but contribute to the cumulative air quality impacts in the Air Basin. The thresholds are based on the trigger levels for the federal New Source Review (NSR) Program. The NSR Program was created to ensure projects are consistent with attainment of health-based federal AAQS. Regional emissions from a single project do not single-handedly trigger a regional health impact, and it is speculative to identify how many more individuals in the air basin would be affected by the health effects listed above. Projects that do not exceed the BAAQMD regional significance thresholds in Table 4 would not violate any air quality standards or contribute substantially to an existing or projected air quality violation.

regarding the health impacts of air pollutants, and identifying potential mitigation measures, and which set aside the significance thresholds. The Alameda County Superior Court, in ordering BAAQMD to set aside the thresholds, did not address the merits of the science or evidence supporting the thresholds, and in light of the subsequent case history discussed below, the science and reasoning contained in the BAAQMD 2011 CEQA Air Quality Guidelines provide the latest state-of-the-art guidance available. On August 13, 2013, the First District Court of Appeal ordered the trial court to reverse the judgment and upheld the BAAQMD's CEQA Guidelines. (*California Building Industry Association versus BAAQMD, Case No. A135335 and A136212 (Court of Appeal, First District, August 13, 2013)*.)

²¹ Bay Area Air Quality Management District. 2017, May. California Environmental Quality Act Air Quality Guidelines.

If projects exceed the emissions in Table 4 emissions would cumulatively contribute to the nonattainment status and would contribute in elevating health effects associated to these criteria air pollutants. Known health effects related to ozone include worsening of bronchitis, asthma, and emphysema and a decrease in lung function. Health effects associated with particulate matter include premature death of people with heart or lung disease, nonfatal heart attacks, irregular heartbeat, decreased lung function, and increased respiratory symptoms. Reducing emissions would further contribute to reducing possible health effects related to criteria air pollutants. However, for projects that exceed the emissions in Table 4 it is speculative to determine how exceeding the regional thresholds would affect the number of days the region is in nonattainment since mass emissions are not correlated with concentrations of emissions or how many additional individuals in the air basin would be affected by the health effects cited above.

BAAQMD has not provided methodology to assess the specific correlation between mass emissions generated and the effect on health in order to address the issue raised in *Sierra Club v. County of Fresno* (Friant Ranch, L.P.) (2018) 6 Cal.5th 502, Case No. S21978. Ozone concentrations are dependent upon a variety of complex factors, including the presence of sunlight and precursor pollutants, natural topography, nearby structures that cause building downwash, atmospheric stability, and wind patterns. Because of the complexities of predicting ground-level ozone concentrations in relation to the National AAQS and California AAQS, it is not possible to link health risks to the magnitude of emissions exceeding the significance thresholds. However, if a project in the Bay Area exceeds the regional significance thresholds, the project could contribute to an increase in health effects in the basin until such time the attainment standard are met in the Air Basin.

Local CO Hotspots

Congested intersections have the potential to create elevated concentrations of CO, referred to as CO hotspots. The significance criteria for CO hotspots are based on the California AAQS for CO, which is 9.0 ppm (8-hour average) and 20.0 ppm (1-hour average). However, with the turnover of older vehicles, introduction of cleaner fuels, and implementation of control technology, the SFBAAB is in attainment of the California and National AAQS, and CO concentrations in the SFBAAB have steadily declined. Because CO concentrations have improved, BAAQMD does not require a CO hotspot analysis if the following criteria are met:

- Project is consistent with an applicable congestion management program established by the County Congestion Management Agency for designated roads or highways, the regional transportation plan, and local congestion management agency plans.
- The project would not increase traffic volumes at affected intersections to more than 44,000 vehicles per hour.
- The project traffic would not increase traffic volumes at affected intersection to more than 24,000 vehicles per hour where vertical and/or horizontal mixing is substantially limited (e.g. tunnel, parking garage, bridge underpass, natural or urban street canyon, below-grade roadway).²²

²² Bay Area Air Quality Management District. 2017, May. California Environmental Quality Act Air Quality Guidelines, Appendix D: Threshold of Significance Justification.

Odors

BAAQMD's thresholds for odors are qualitative based on BAAQMD's Regulation 7, Odorous Substances. This rule places general limitations on odorous substances and specific emission limitations on certain odorous compounds. In addition, odors are also regulated under BAAQMD Regulation 1, Rule 1-301, Public Nuisance, which states that no person shall discharge from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance or annoyance to any considerable number of persons or the public; or which endangers the comfort, repose, health or safety of any such persons or the public, or which causes, or has a natural tendency to cause, injury or damage to business or property. Under BAAQMD's Rule 1-301, a facility that receives three or more violation notices within a 30-day period can be declared a public nuisance. BAAQMD has established odor screening thresholds for land uses that have the potential to generate substantial odor complaints, including wastewater treatment plants, landfills or transfer stations, composting facilities, confined animal facilities, food manufacturing, and chemical plants.²³

1.2.2 Toxic Air Contaminants

The BAAQMD's significance thresholds for local community risk and hazard impacts apply to the siting of a new source. Local community risk and hazard impacts are associated with TACs and PM_{2.5} because emissions of these pollutants can have significant health impacts at the local level. The purpose of this environmental evaluation is to identify the significant effects of the proposed project on the environment, not the significant effects of the environment on the proposed project (*California Building Industry Association v. Bay Area Air Quality Management District [2015] 62 Cal.4th 369 [Case No. S213478]*). CEQA does not require an environmental evaluation to analyze the environmental effects of attracting development and people to an area. However, the environmental evaluation must analyze the impacts of environmental hazards on future users when the proposed project exacerbates an existing environmental hazard or condition or if there is an exception to this exemption identified in the Public Resources Code. Schools, residential, commercial, and office uses do not use substantial quantities of TACs and typically do not exacerbate existing hazards, so these thresholds are typically applied to new industrial projects.

For assessing community risk and hazards, sources within a 1,000-foot radius are considered. Sources are defined as freeways, high volume roadways (with volume of 10,000 vehicles or more per day or 1,000 trucks per day), and permitted sources.^{24,25}

The proposed project would generate TACs and PM_{2.5} during construction activities that could elevate concentrations of air pollutants at the surrounding residential receptors. The BAAQMD has adopted screening tables for air toxics evaluation during construction.²⁶ Construction-related TAC and PM_{2.5} impacts should be addressed on a case-by-case basis, taking into consideration the specific construction-related characteristics of each project and proximity to off-site receptors, as applicable.²⁷

²³ Bay Area Air Quality Management District. 2017, May. California Environmental Quality Act Air Quality Guidelines.

²⁴ Bay Area Air Quality Management District. 2017, May. California Environmental Quality Act Air Quality Guidelines, Appendix D: Threshold of Significance Justification.

²⁵ Bay Area Air Quality Management District. 2012. Recommended Methods for Screening and Modeling Local Risks and Hazards.

²⁶ Bay Area Air Quality Management District. 2010. Screening Tables for Air Toxics Evaluations during Construction.

²⁷ Bay Area Air Quality Management District. 2017, May. California Environmental Quality Act Air Quality Guidelines, Appendix D: Threshold of Significance Justification.

The project threshold identified below is applied to the proposed project's construction phase emissions:

Community Risk and Hazards – Project

Project-level construction emissions of TACs or $PM_{2.5}$ from the proposed project to individual sensitive receptors within 1,000 feet of the project site that exceed any of the thresholds listed below are considered a potentially significant community health risk:

- Non-compliance with a qualified Community Risk Reduction Plan;
- An excess cancer risk level of more than 10 in one million, or a non-cancer (i.e. chronic or acute) hazard index greater than 1.0 would be a significant cumulatively considerable contribution;
- An incremental increase of greater than 0.3 micrograms per cubic meter (μg/m³) annual average PM_{2.5} from a single source would be a significant, cumulatively considerable contribution.²⁸

Community Risk and Hazards – Cumulative

Cumulative sources represent the combined total risk values of each of the individual sources within the 1,000-foot evaluation zone.

A project would have a cumulative considerable impact if the aggregate total of all past, present, and foreseeable future sources within a 1,000-foot radius from the fence line of a source or location of a receptor, plus the contribution from the project, exceeds the following:

- Non-compliance with a qualified Community Risk Reduction Plan; or
- An excess cancer risk levels of more than 100 in one million or a chronic non-cancer hazard index (from all local sources) greater than 10.0; or
- 0.8 µg/m³ annual average PM_{2.5}.²⁹

Current BAAQMD guidance recommends the determination of cancer risks using the Office of Environmental Health Hazard Assessment's (OEHHA) methodology, which was originally adopted in 2003.^{30,31} In February 2015, OEHHA adopted new health risk assessment guidance which includes several efforts to be more protective of children's health. These updated procedures include the use of age sensitivity factors to account for the higher sensitivity of infants and young children to cancer causing chemicals, and age-specific breathing rates.³² However, BAAQMD has not formally adopted the new OEHHA methodology into their CEQA guidance. To be conservative, the cancer risks associated with project implementation and significance conclusions were determined using the new 2015 OEHHA guidance for risk assessments.

²⁸ Bay Area Air Quality Management District. 2017, May. California Environmental Quality Act Air Quality Guidelines, Appendix D: Threshold of Significance Justification.

²⁹ Ibid.

³⁰ Bay Area Air Quality Management District. 2012, Recommended Methods for Screening and Modeling Local Risks and Hazards.

³¹ Office of Environmental Health Hazard Assessment. 2003. Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments.

³² Office of Environmental Health Hazard Assessment. 2015. Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments.

2. Greenhouse Gas Emissions

Scientists have concluded that human activities are contributing to global climate change by adding large amounts of heat-trapping gases, known as GHG, to the atmosphere. Climate change is the variation of Earth's climate over time, whether due to natural variability or as a result of human activities. The primary source of these GHG is fossil fuel use. The Intergovernmental Panel on Climate Change (IPCC) has identified four major GHG—water vapor,³³ carbon (CO₂), methane (CH₄), and ozone (O₃)—that are the likely cause of an increase in global average temperatures observed within the 20th and 21st centuries. Other GHG identified by the IPCC that contribute to global warming to a lesser extent include nitrous oxide (N₂O), sulfur hexafluoride (SF₆), hydrofluorocarbons, perfluorocarbons, and chlorofluorocarbons.^{34, 35} The major GHG are briefly described below.

- **Carbon dioxide (CO₂)** enters the atmosphere through the burning of fossil fuels (oil, natural gas, and coal), solid waste, trees and wood products, and respiration, and also as a result of other chemical reactions (e.g. manufacture of cement). Carbon dioxide is removed from the atmosphere (sequestered) when it is absorbed by plants as part of the biological carbon cycle.
- Methane (CH₄) is emitted during the production and transport of coal, natural gas, and oil. Methane emissions also result from livestock and other agricultural practices and from the decay of organic waste in municipal landfills and water treatment facilities.
- Nitrous oxide (N₂O) is emitted during agricultural and industrial activities as well as during combustion of fossil fuels and solid waste.
- Fluorinated gases are synthetic, strong GHGs that are emitted from a variety of industrial processes. Fluorinated gases are sometimes used as substitutes for ozone-depleting substances. These gases are typically emitted in smaller quantities, but because they are potent GHGs, they are sometimes referred to as high global-warming-potential (GWP) gases.
 - Chlorofluorocarbons (CFCs) are GHGs covered under the 1987 Montreal Protocol and used for refrigeration, air conditioning, packaging, insulation, solvents, or aerosol propellants. Since they are not destroyed in the lower atmosphere (troposphere, stratosphere), CFCs drift into the upper atmosphere where, given suitable conditions, they break down ozone. These gases are also ozone-depleting gases and are therefore being replaced by other compounds that are GHGs covered under the Kyoto Protocol.

³³ Water vapor (H₂O) is the strongest GHG and the most variable in its phases (vapor, cloud droplets, ice crystals). However, water vapor is not considered a pollutant, but part of the feedback loop rather than a primary cause of change.

³⁴ Black carbon contributes to climate change both directly, by absorbing sunlight, and indirectly, by depositing on snow (making it melt faster) and by interacting with clouds and affecting cloud formation. Black carbon is the most strongly light-absorbing component of particulate matter (PM) emitted from burning fuels such as coal, diesel, and biomass. Reducing black carbon emissions globally can have immediate economic, climate, and public health benefits. California has been an international leader in reducing emissions of black carbon, with close to 95 percent control expected by 2020 due to existing programs that target reducing PM from diesel engines and burning activities (California Air Resources Board (CARB). 2017, March 14. Final Proposed Short-Lived Climate Pollutant Reduction Strategy. https://www.arb.ca.gov/cc/shortlived/shortlived.htm). However, state and national GHG inventories do not yet include black carbon due to ongoing work resolving the precise global warming potential of black carbon. Guidance for CEQA documents does not yet include black carbon.

³⁵ Intergovernmental Panel on Climate Change (IPCC). 2001. Third Assessment Report: Climate Change 2001. New York: Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/03/WGI_TAR_full_report.pdf.

- **Perfluorocarbons (PFCs)** are a group of human-made chemicals composed of carbon and fluorine only. These chemicals (predominantly perfluoromethane [CF4] and perfluoroethane [C₂F₆]) were introduced as alternatives, along with HFCs, to the ozone-depleting substances. In addition, PFCs are emitted as by-products of industrial processes and are used in manufacturing. PFCs do not harm the stratospheric ozone layer, but they have a high global warming potential.
- Sulfur Hexafluoride (SF_6) is a colorless gas soluble in alcohol and ether, slightly soluble in water. SF₆ is a strong GHG used primarily in electrical transmission and distribution systems as an insulator.
- *Hydrochlorofluorocarbons (HCFCs)* contain hydrogen, fluorine, chlorine, and carbon atoms. Although ozone-depleting substances, they are less potent at destroying stratospheric ozone than CFCs. They have been introduced as temporary replacements for CFCs and are also GHGs.
- *Hydrofluorocarbons (HFCs)* contain only hydrogen, fluorine, and carbon atoms. They were introduced as alternatives to ozone-depleting substances to serve many industrial, commercial, and personal needs. HFCs are emitted as by-products of industrial processes and are also used in manufacturing. They do not significantly deplete the stratospheric ozone layer, but they are strong GHGs.^{36,37}

GHGs are dependent on the lifetime or persistence of the gas molecule in the atmosphere. Some GHGs have stronger greenhouse effects than others. These are referred to as high GWP gases. The GWP of GHG emissions are shown in Table 5. The GWP is used to convert GHGs to CO_2 -equivalence (CO_2e) to show the relative potential that different GHGs have to retain infrared radiation in the atmosphere and contribute to the greenhouse effect. For example, under IPCC's Fourth Assessment Report (AR5) GWP values for CH₄, a project that generates 10 MT of CH₄ would be equivalent to 250 MT of CO_2 .^{38,39}

³⁶ Intergovernmental Panel on Climate Change (IPCC). 2001. Third Assessment Report: Climate Change 2001. New York: Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/03/WGI_TAR_full_report.pdf.

³⁷ US Environmental Protection Agency (USEPA). 2019. Overview of Greenhouse Gases. http://www3.epa.gov/climatechange/ghgemissions/gases.html.

³⁸ CO₂-equivalence is used to show the relative potential that different GHGs have to retain infrared radiation in the atmosphere and contribute to the greenhouse effect. The global warming potential of a GHG is also dependent on the lifetime, or persistence, of the gas molecule in the atmosphere.

³⁹ Intergovernmental Panel on Climate Change (IPCC). 2013. Fifth Assessment Report: Climate Change 2013. New York: Cambridge University Press.

Table 5 Grig Emissions and Their Relative Global Warming Potential Compared to C	Table 5	GHG Emissions and Their Relative Global Warming Potential Compared to CO
--	---------	--

GHGs	Carbon Dioxide (CO ₂)	Methane ¹ (CH ₄)	Nitrous Oxide (N ₂ O)
Second Assessment			
Atmospheric Lifetime (Years)	50 to 200	12 (±3)	120
Global Warming Potential Relative to CO2 ²	1	21	310
Fourth Assessment			
Atmospheric Lifetime (Years)	50 to 200	12	114
Global Warming Potential Relative to CO ₂ ²	1	25	298
Fifth Assessment ³			
Atmospheric Lifetime (Years)	50 to 200	12	121
Global Warming Potential Relative to CO ₂ ²	1	28	265

Source: Intergovernmental Panel on Climate Change (IPCC). 1995. Second Assessment Report: Climate Change 1995

https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_sar_wg_l_full_report.pdf; Intergovernmental Panel on Climate Change (IPCC). 2007. Fourth Assessment Report: Climate Change 2007. New York: Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_full_report.pdf; Intergovernmental Panel on Climate Change (IPCC). 2013. Fifth Assessment Report: Climate Change 2013. New York: Cambridge University Press.

Notes:

¹ The methane GWP includes direct effects and indirect effects due to the production of tropospheric ozone and stratospheric water vapor. The indirect effect due to the production of CO₂ is not included.

² Based on 100-year time horizon of the GWP of the air pollutant compared to CO₂.

³ The GWP values in the IPCC's Fifth Assessment Report (2013)⁴⁰ reflect new information on atmospheric lifetimes of GHGs and an improved calculation of the radiative forcing of CO₂.

2.1 CALIFORNIA'S GREENHOUSE GAS SOURCES AND RELATIVE CONTRIBUTION

In 2019, the statewide GHG emissions inventory was updated for 2000 to 2017 emissions using the GWPs in IPCC's AR4.⁴¹ Based on these GWPs, California produced 424.10 MMTCO₂e GHG emissions in 2017. The California Air Resources Board (CARB) categorizes GHG generation into the following seven sectors.⁴²

- **Transportation.** Consists of direct tailpipe emissions from on-road vehicle and direct emissions from off-road transportation mobile sources, intrastate aviation, rail, and watercraft. Emissions are generated from the combustion of fuels in on- and off-road vehicles in addition to aviation, rail, and ships.
- Electric. Includes emissions from instate power generation (including the portion of cogeneration emissions attributed to electricity generation) and emissions from imported electricity.
- Industrial. Includes emissions primarily driven by fuel combustion from sources that include refineries, oil and gas extraction, cement plants, and the portion of cogeneration emissions attribute to thermal energy output.
- **Commercial and Residential.** Accounts for emissions generated from combustion of natural gas and other fuels for household and commercial business use, such as space heating, cooking, and hot water or steam generation. Emissions associated with electricity usage are accounted for in the Electric Sector.
- **Recycling and Waste.** Consists of emissions generated at landfills and from commercial-scale composting.

⁴⁰ Intergovernmental Panel on Climate Change (IPCC). 2013. Fifth Assessment Report: Climate Change 2013. New York: Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf.

⁴¹ Methodology for determining the statewide GHG inventory is not the same as the methodology used to determine statewide GHG emissions under Assembly Bill 32 (2006).

⁴² California Air Resources Board (CARB). 2019, August 26. California Greenhouse Emissions for 2000 to 2017: Trends of Emissions and Other Indicators. https://www.arb.ca.gov/cc/inventory/data/data.htm.

- Agriculture. Primarily includes methane (CH₄) and nitrous oxide (N₂O) emissions generated from enteric fermentation and manure management from livestock. Also accounts for emissions associated with crop production (fertilizer use, soil preparation and disturbance, and crop residue burning) and fuel combustion associated with stationary agricultural activities (e.g., water pumping, cooling or heating buildings).
- High Global Warming Potential Gases. Associated with substitutes for ozone-depleting substances, emissions from electricity transmission and distribution system, and gases emitted in the semiconductor manufacturing process. Substitutes for ozone-depleting substances are used in refrigeration and air conditioning equipment, solvent cleaning, foam production, fire retardants, and aerosols.

California's transportation sector was the single largest generator of GHG emissions, producing 40.1 percent of the state's total emissions. Industrial sector emissions made up 21.1 percent, and electric power generation made up 14.7 percent of the state's emissions inventory. Other major sectors of GHG emissions include commercial and residential (9.7 percent), agriculture and forestry (7.6 percent), high GWP (4.7 percent), and recycling and waste (2.1 percent).⁴³

California's GHG emissions have followed a declining trend since 2007. In 2017, emissions from routine GHG-emitting activities statewide were 424 MMTCO₂e, 5 MMTCO₂e lower than 2016 levels. This represents an overall decrease of 14 percent since peak levels in 2004 and 7 MMTCO₂e below the 1990 level and the state's 2020 GHG target. During the 2000 to 2017 period, per capita GHG emissions in California have continued to drop from a peak in 2001 of 14.0 MTCO₂e per capita to 10.7 MTCO₂e per capita in 2017, a 24 percent decrease. Overall trends in the inventory also demonstrate that the carbon intensity of California's economy (the amount of carbon pollution per million dollars of gross domestic product) has declined 41 percent since the 2001 peak, while the state's gross domestic product has grown 52 percent during the same period. For the first time since California started to track GHG emissions, California uses more electricity from zero-GHG sources (hydro, solar, wind, and nuclear energy).⁴⁴

2.2 HUMAN INFLUENCE ON CLIMATE CHANGE

For approximately 1,000 years before the Industrial Revolution, the amount of GHGs in the atmosphere remained relatively constant. During the 20th century, however, scientists observed a rapid change in the climate and the quantity of climate change pollutants in the Earth's atmosphere that is attributable to human activities. The amount of CO₂ in the atmosphere has increased by more than 35 percent since preindustrial times and has increased at an average rate of 1.4 parts per million per year since 1960, mainly due to combustion of fossil fuels and deforestation.⁴⁵ These recent changes in the quantity and concentration of climate change pollutants far exceed the extremes of the ice ages, and the global mean temperature is warming at a rate that cannot be explained by natural causes alone. Human activities are directly altering the chemical composition of the atmosphere through the buildup of climate change pollutants.⁴⁶ In the past, gradual changes in the earth's temperature changed the distribution of species, availability of water, etc.

⁴³ California Air Resources Board (CARB). 2019, August 26. 2019 Edition California Greenhouse Gas Inventory for 2000-2017: By Category as Defined in the 2008 Scoping Plan. https://www.arb.ca.gov/cc/inventory/data/data.htm.

⁴⁴ California Air Resources Board (CARB). 2019, August 26. 2019 Edition California Greenhouse Gas Inventory for 2000-2017: By Category as Defined in the 2008 Scoping Plan. https://www.arb.ca.gov/cc/inventory/data/data.htm.

⁴⁵ Intergovernmental Panel on Climate Change (IPCC). 2007. Fourth Assessment Report: Climate Change 2007. New York: Cambridge University Press.

⁴⁶ California Climate Action Team (CAT). 2006, March. Climate Action Team Report to Governor Schwarzenegger and the Legislature.

However, human activities are accelerating this process so that environmental impacts associated with climate change no longer occur in a geologic time frame but within a human lifetime.⁴⁷

Like the variability in the projections of the expected increase in global surface temperatures, the environmental consequences of gradual changes in the Earth's temperature are hard to predict. Projections of climate change depend heavily upon future human activity. Therefore, climate models are based on different emission scenarios that account for historical trends in emissions and on observations of the climate record that assess the human influence of the trend and projections for extreme weather events. Climate-change scenarios are affected by varying degrees of uncertainty. For example, there are varying degrees of certainty on the magnitude of the trends for:

- Warmer and fewer cold days and nights over most land areas.
- Warmer and more frequent hot days and nights over most land areas.
- An increase in frequency of warm spells/heat waves over most land areas.
- An increase in frequency of heavy precipitation events (or proportion of total rainfall from heavy falls) over most areas.
- Larger areas affected by drought.
- Intense tropical cyclone activity increases.
- Increased incidence of extreme high sea level (excluding tsunamis).

2.3 POTENTIAL CLIMATE CHANGE IMPACTS FOR CALIFORNIA

Observed changes over the last several decades across the western United States reveal clear signs of climate change. Statewide, average temperatures increased by about 1.7°F from 1895 to 2011, and warming has been greatest in the Sierra Nevada.⁴⁸ The years from 2014 through 2016 have shown unprecedented temperatures with 2014 being the warmest.⁴⁹ By 2050, California is projected to warm by approximately 2.7°F above 2000 averages, a threefold increase in the rate of warming over the last century. By 2100, average temperatures could increase by 4.1 to 8.6°F, depending on emissions levels.⁵⁰

In California and western North America, observations of the climate have shown: 1) a trend toward warmer winter and spring temperatures; 2) a smaller fraction of precipitation falling as snow; 3) a decrease in the amount of spring snow accumulation in the lower and middle elevation mountain zones; 4) advanced shift in the timing of snowmelt of 5 to 30 days earlier in the spring; and 5) a similar shift (5 to 30 days earlier) in the timing of spring flower blooms.⁵¹ Overall, California has become drier over time, with five of the eight years of severe to extreme drought occurring between 2007 and 2016, with unprecedented dry years occurring in 2014 and 2015. ⁵² Statewide precipitation has become increasingly variable from year to year, with the driest

⁴⁷ Intergovernmental Panel on Climate Change (IPCC). 2007. Fourth Assessment Report: Climate Change 2007. New York: Cambridge University Press.

⁴⁸ California Climate Change Center (CCCC). 2012, July. Our Changing Climate 2012: Vulnerability and Adaptation to the Increasing Risks from Climate Change in California.

⁴⁹ Office of Environmental Health Hazards Assessment (OEHHA). 2018, May. Indicators of Climate Change in California. https://oehha.ca.gov/media/downloads/climate-change/report/2018caindicatorsreportmay2018.pdf.

⁵⁰ California Climate Change Center (CCCC). 2012, July. Our Changing Climate 2012: Vulnerability and Adaptation to the Increasing Risks from Climate Change in California.

⁵¹ California Climate Action Team (CAT). 2006, March. Climate Action Team Report to Governor Schwarzenegger and the Legislature.

⁵² Office of Environmental Health Hazards Assessment (OEHHA). 2018, May. Indicators of Climate Change in California. https://oehha.ca.gov/media/downloads/climate-change/report/2018caindicatorsreportmay2018.pdf.

consecutive four years occurring from 2012 to 2015.⁵³ According to the California Climate Action Team—a committee of state agency secretaries and the heads of agencies, boards, and departments, led by the Secretary of the California Environmental Protection Agency—even if actions could be taken to immediately curtail climate change emissions, the potency of emissions that have already built up, their long atmospheric lifetimes (see Table 5), and the inertia of the Earth's climate system could produce as much as 0.6°C (1.1°F) of additional warming. Consequently, some impacts from climate change are now considered unavoidable. Global climate change risks to California are shown in Table 6 and include impacts to public health, water resources, agriculture, coastal sea level, forest and biological resources, and energy.

Impact Category	Potential Risk
Public Health Impacts	Heat waves will be more frequent, hotter, and longer Fewer extremely cold nights Poor air quality made worse Higher temperatures increase ground-level ozone levels
Water Resources Impacts	Decreasing Sierra Nevada snow pack Challenges in securing adequate water supply Potential reduction in hydropower Loss of winter recreation
Agricultural Impacts	Increasing temperature Increasing threats from pests and pathogens Expanded ranges of agricultural weeds Declining productivity Irregular blooms and harvests
Coastal Sea Level Impacts	Accelerated sea level rise Increasing coastal floods Shrinking beaches Worsened impacts on infrastructure
Forest and Biological Resource Impacts	Increased risk and severity of wildfires Lengthening of the wildfire season Movement of forest areas Conversion of forest to grassland Declining forest productivity Increasing threats from pest and pathogens Shifting vegetation and species distribution Altered timing of migration and mating habits Loss of sensitive or slow-moving species
Energy Demand Impacts	Potential reduction in hydropower Increased energy demand

 Table 6
 Summary of GHG Emissions Risks to California

Sources: California Energy Commission (CEC). 2006. Our Changing Climate: Assessing the Risks to California. 2006 Biennial Report. CEC-500-2006-077. California Climate Change Center; California Energy Commission (CEC). 2009, May. The Future Is Now: An Update on Climate Change Science, Impacts, and Response Options for California. CEC-500-2008-0077; California Climate Change Center (CCCC). 2012, July. Our Changing Climate 2012: Vulnerability and Adaptation to the Increasing Risks from Climate Change in California; and California Natural Resources Agency (CNRA). 2014, July. Safeguarding California: Reducing Climate Risk: An Update to the 2009 California Climate Adaptation Strategy.

https://resources.ca.gov/CNRALegacyFiles/docs/climate/Final_Safeguarding_CA_Plan_July_31_2014.pdf.

⁵³ Office of Environmental Health Hazards Assessment (OEHHA). 2018, May. Indicators of Climate Change in California. https://oehha.ca.gov/media/downloads/climate-change/report/2018caindicatorsreportmay2018.pdf.

2.1 REGULATORY FRAMEWORK

2.1.1 Federal Regulations

The US Environmental Protection Agency (EPA) announced on December 7, 2009, that GHG emissions threaten the public health and welfare of the American people and that GHG emissions from on-road vehicles contribute to that threat. The EPA's final findings respond to the 2007 US Supreme Court decision that GHG emissions fit within the Clean Air Act definition of air pollutants. The findings did not themselves impose any emission reduction requirements but allowed the EPA to finalize the GHG standards proposed in 2009 for new light-duty vehicles as part of the joint rulemaking with the Department of Transportation.⁵⁴

To regulate GHGs from passenger vehicles, EPA was required to issue an endangerment finding. The finding identifies emissions of six key GHGs—CO₂, CH₄, N₂O, hydrofluorocarbons, perfluorocarbons, and SF₆— that have been the subject of scrutiny and intense analysis for decades by scientists in the United States and around the world. The first three are applicable to the proposed project's GHG emissions inventory because they constitute the majority of GHG emissions; they are the GHG emissions that should be evaluated as part of a project's GHG emissions inventory.

2.1.1.1 US MANDATORY REPORTING RULE FOR GREENHOUSE GASES (2009)

In response to the endangerment finding, the EPA issued the Mandatory Reporting of GHG Rule that requires substantial emitters of GHG emissions (large stationary sources, etc.) to report GHG emissions data. Facilities that emit 25,000 MTCO₂e or more per year are required to submit an annual report.

2.1.1.2 UPDATE TO CORPORATE AVERAGE FUEL ECONOMY STANDARDS (2021 TO 2026)

The federal government issued new Corporate Average Fuel Economy (CAFE) standards in 2012 for model years 2017 to 2025, which required a fleet average of 54.5 miles per gallon in 2025. However, on March 30, 2020, the EPA finalized an updated CAFE and GHG emissions standards for passenger cars and light trucks and established new standards, covering model years 2021 through 2026, known as the Safer Affordable Fuel Efficient (SAFE) Vehicles Final Rule for Model Years 2021-2026. Under SAFE, the fuel economy standards will increase 1.5 percent per year compared to the 5 percent per year under the CAFE standards established in 2012. However, consortium of automakers and California have agreed on a voluntary framework to reduce emissions that can serve as an alternative path forward for clean vehicle standards nationwide. Automakers who agreed to the framework are Ford, Honda, BMW of North America, and Volkswagen Group of America. The framework supports continued annual reductions of vehicle greenhouse gas emissions through the 2026 model year, encourages innovation to accelerate the transition to electric vehicles, and provides industry the certainty needed to make investments and create jobs. This commitment means that the auto companies party to the voluntary agreement will only sell cars in the United States that meet the CAFE standards established in 2021 for model years 2017 to 2025.⁵⁵

⁵⁴ US Environmental Protection Agency (USEPA). 2009, December. EPA: Greenhouse Gases Threaten Public Health and the Environment. Science overwhelmingly shows greenhouse gas concentrations at unprecedented levels due to human activity. https://archive.epa.gov/epapages/newsroom_archive/newsreleases/08d11a451131bca585257685005bf252.html.

⁵⁵ California Air Resources Board (CARB). 2019, September 5 (accessed). California and major automakers reach groundbreaking framework agreement on clean emission standards. https://ww2.arb.ca.gov/news/california-and-major-automakers-reachgroundbreaking-framework-agreement-clean-emission.

2.1.1.3 EPA REGULATION OF STATIONARY SOURCES UNDER THE CLEAN AIR ACT (ONGOING)

Pursuant to its authority under the Clean Air Act, the EPA has been developing regulations for new, large stationary sources of emissions such as power plants and refineries. Under former President Obama's 2013 Climate Action Plan, the EPA was directed to develop regulations for existing stationary sources as well. On June 19, 2019, the EPA issued the final Affordable Clean Energy (ACE) rule which became effective on August 19, 2019. The ACE rule was crafted under the direction of President Trump's Energy Independence Executive Order. It officially rescinds the Clean Power Plan rule issued during the Obama Administration and sets emissions guidelines for states in developing plans to limit CO₂ emissions from coal-fired power plants.

2.1.2 State Regulations

Current State of California guidance and goals for reductions in GHG emissions are generally embodied in Executive Orders S-03-05 and B-30-15, Assembly Bill (AB) 32, Senate Bill (SB) 32, and SB 375.

2.1.2.1 EXECUTIVE ORDER S-03-05

Executive Order S-03-05, signed June 1, 2005. Executive Order S-03-05 set the following GHG reduction targets for the State:

- 2000 levels by 2010
- 1990 levels by 2020
- 80 percent below 1990 levels by 2050

2.1.2.2 ASSEMBLY BILL 32, THE GLOBAL WARMING SOLUTIONS ACT

State of California guidance and targets for reductions in GHG emissions are generally embodied in the Global Warming Solutions Act, adopted with passage of AB 32. AB 32 was passed by the California state legislature on August 31, 2006, to place the state on a course toward reducing its contribution of GHG emissions. AB 32 follows the 2020 emissions reduction goal established in Executive Order S-03-05.

CARB 2008 Scoping Plan

The first Scoping Plan was adopted by CARB on December 11, 2008. The 2008 Scoping Plan identified that GHG emissions in California are anticipated to be 596 MMTCO₂e in 2020. In December 2007, CARB approved a 2020 emissions limit of 427 MMTCO₂e (471 million tons) for the state (CARB 2008). To effectively implement the emissions cap, AB 32 directed CARB to establish a mandatory reporting system to track and monitor GHG emissions levels for large stationary sources that generate more than 25,000 MTCO₂e per year, prepare a plan demonstrating how the 2020 deadline can be met, and develop appropriate regulations and programs to implement the plan by 2012.

First Update to the Scoping Plan

CARB completed a five-year update to the 2008 Scoping Plan, as required by AB 32. The First Update to the Scoping Plan, adopted May 22, 2014, highlights California's progress toward meeting the near-term 2020 GHG emission reduction goals defined in the 2008 Scoping Plan. As part of the update, CARB recalculated

the 1990 GHG emission levels with the updated AR4 GWPs, and the 427 MMTCO₂e 1990 emissions level and 2020 GHG emissions limit, established in response to AB 32, are slightly higher at 431 MMTCO₂e. ⁵⁶

As identified in the Update to the Scoping Plan, California is on track to meet the goals of AB 32. The update also addresses the state's longer-term GHG goals in a post-2020 element. The post-2020 element provides a high-level view of a long-term strategy for meeting the 2050 GHG goal, including a recommendation for the state to adopt a midterm target. According to the Update to the Scoping Plan, local government reduction targets should chart a reduction trajectory that is consistent with or exceeds the trajectory created by statewide goals.⁵⁷ CARB identified that reducing emissions to 80 percent below 1990 levels will require a fundamental shift to efficient, clean energy in every sector of the economy. Progressing toward California's 2050 climate targets will require significant acceleration of GHG reduction rates. Emissions from 2020 to 2050 will have to decline several times faster than the rate needed to reach the 2020 emissions limit. ⁵⁸

2.1.2.3 EXECUTIVE ORDER B-30-15

Executive Order B-30-15, signed April 29, 2015, sets a goal of reducing GHG emissions in the state to 40 percent below 1990 levels by year 2030. Executive Order B-30-15 also directs CARB to update the Scoping Plan to quantify the 2030 GHG reduction goal for the state and requires state agencies to implement measures to meet the interim 2030 goal as well as the long-term goal for 2050 in Executive Order S-03-05. It also requires the Natural Resources Agency to conduct triennial updates of the California adaption strategy, Safeguarding California, in order to ensure climate change is accounted for in state planning and investment decisions.

2.1.2.4 SENATE BILL 32 AND ASSEMBLY BILL 197

In September 2016, Governor Brown signed Senate Bill 32 and Assembly Bill 197, making the Executive Order goal for year 2030 into a statewide, mandated legislative target. AB 197 established a joint legislative committee on climate change policies and requires the CARB to prioritize direction emissions reductions rather than the market-based cap-and-trade program for large stationary, mobile, and other sources.

2017 Climate Change Scoping Plan Update

Executive Order B-30-15 and SB 32 required CARB to prepare another update to the Scoping Plan to address the 2030 target for the state. On December 24, 2017, CARB approved the 2017 Climate Change Scoping Plan Update, which outlines potential regulations and programs, including strategies consistent with

⁵⁶ California Air Resources Board (CARB). 2014, May 15. First Update to the Climate Change Scoping Plan: Building on the Framework, Pursuant to AB 32, The California Global Warming Solutions Act of 2006. http://www.arb.ca.gov/cc/scopingplan/document/updatedscopingplan2013.htm.

⁵⁷ California Air Resources Board (CARB). 2014, May 15. First Update to the Climate Change Scoping Plan: Building on the Framework, Pursuant to AB 32, The California Global Warming Solutions Act of 2006. http://www.arb.ca.gov/cc/scopingplan/scopingplan.htm.

 ⁵⁸ California Air Resources Board (CARB). 2014, May 15. First Update to the Climate Change Scoping Plan: Building on the Framework, Pursuant to AB 32, The California Global Warming Solutions Act of 2006. http://www.arb.ca.gov/cc/scopingplan/document/updatedscopingplan2013.htm.

AB 197 requirements, to achieve the 2030 target. The 2017 Scoping Plan establishes a new emissions limit of 260 MMTCO₂e for the year 2030, which corresponds to a 40 percent decrease in 1990 levels by 2030.5^{9}

California's climate strategy will require contributions from all sectors of the economy, including enhanced focus on zero- and near-zero emission vehicle technologies; continued investment in renewables such as solar roofs, wind, and other types of distributed generation; greater use of low carbon fuels; integrated land conservation and development strategies; coordinated efforts to reduce emissions of short-lived climate pollutants (methane, black carbon, and fluorinated gases); and an increased focus on integrated land use planning to support livable, transit-connected communities and conserve agricultural and other lands. Requirements for GHG reductions at stationary sources complement local air pollution control efforts by the local air districts to tighten emissions limits for criteria air pollutants and toxic air contaminants on a broad spectrum of industrial sources. Major elements of the 2017 Scoping Plan framework include:

- Implementing and/or increasing the standards of the Mobile Source Strategy, which include increasing zero-emission (ZE) buses and trucks.
- Low Carbon Fuel Standard (LCFS), with an increased stringency (18 percent by 2030).
- Implementation of SB 350, which expands the Renewables Portfolio Standard (RPS) to 50 percent RPS and doubles energy efficiency savings by 2030.
- California Sustainable Freight Action Plan, which improves freight system efficiency by 25 percent by 2030 and utilizes near-zero emissions technology and deployment of ZE trucks.
- Implementing the proposed Short-Lived Climate Pollutant Strategy, which focuses on reducing methane and hydrofluorocarbon emissions by 40 percent and anthropogenic black carbon emissions by 50 percent by year 2030.
- Post-2020 Cap-and-Trade Program that includes declining caps.
- Continued implementation of SB 375.
- Development of a Natural and Working Lands Action Plan to secure California's land base as a net carbon sink.

In addition to these statewide strategies, the 2017 Climate Change Scoping Plan also identified local governments as essential partners in achieving the state's long-term GHG reduction goals and recommended local actions to reduce GHG emissions—for example, statewide targets of no more than 6 MTCO₂e or less per capita by 2030 and 2 MTCO₂e or less per capita by 2050. CARB recommends that local governments evaluate and adopt quantitative, locally appropriate goals that align with the statewide per capita targets and sustainable development objectives and develop plans to achieve the local goals. The statewide per capita goals (i.e., 40 percent and 80 percent, respectively) to the state's 1990 emissions limit established under AB 32. For CEQA projects, CARB states that lead agencies have discretion to develop evidenced-based numeric thresholds (mass emissions, per capita, or per service population) consistent with the Scoping Plan and the state's long-term GHG goals. To the degree a project relies on GHG mitigation measures, CARB recommends that lead agencies prioritize on-site design features that reduce emissions, especially from vehicle miles traveled (VMT), and direct investments in GHG reductions within the project's region that contribute potential air quality, health, and economic co-benefits. Where further project design or regional investments

⁵⁹ California Air Resources Board (CARB). 2017, November. California's 2017 Climate Change Scoping Plan: The Strategy for Achieving California's 2030 Greenhouse Gas Target. https://www.arb.ca.gov/cc/scopingplan/scoping_plan_2017.pdf.

are infeasible or not proven to be effective, CARB recommends mitigating potential GHG impacts through purchasing and retiring carbon credits.

The Scoping Plan scenario is set against what is called the "business as usual" yardstick—that is, what would the GHG emissions look like if the state did nothing at all beyond the policies that are already required and in place to achieve the 2020 limit, as shown in Table 7. It includes the existing renewables requirements, advanced clean cars, the "10 percent" LCFS, and the SB 375 program for more vibrant communities, among others. However, it does not include a range of new policies or measures that have been developed or put into statute over the past two years. Also shown in the table, the known commitments are expected to result in emissions that are 60 MMTCO₂e above the target in 2030. If the estimated GHG reductions from the known commitments are not realized due to delays in implementation or technology deployment, the post-2020 Cap-and-Trade Program would deliver the additional GHG reductions in the sectors it covers to ensure the 2030 target is achieved.

Modeling Scenario	2030 GHG Emissions MMTCO ₂ e	
Reference Scenario (Business-as-Usual)	389	
With Known Commitments	320	
2030 GHG Target	260	
Gap to 2030 Target with Known Commitments	60	
Source: California Air Resources Board. 2017, November. California's 2017 Climate Target. https://www.arb.ca.gov/cc/scopingplan/2030sp_pp_final.pdf.	Change Scoping Plan: The Strategy for Achieving California's 2030 Greenhouse Gas	

Table 7 2017 Climate Change Scoping Plan Emissions Redu	Reductions Gap
---	----------------

Table 8 provides estimated GHG emissions by sector compared to 1990 levels, and the range of GHG emissions for each sector estimated for 2030.

Table 8	2017 Seconing Dian Emissions Changes by Sector to Achieve the 2020 Terret
Table o	2017 Scoping Plan Emissions Changes by Sector to Achieve the 2030 Target

Scoping Plan Sector	1990 MMTCO₂e	2030 Proposed Plan Ranges MMTCO ₂ e	% Change from 1990
Agricultural	26	24-25	-8% to -4%
Residential and Commercial	44	38-40	-14% to -9%
Electric Power	108	30-53	-72% to -51%
High GWP	3	8-11	267% to 367%
Industrial	98	83-90	-15% to -8%
Recycling and Waste	7	8-9	14% to 29%
Transportation (including TCU)	152	103-111	-32% to -27%
Net Sink ^a	-7	TBD	TBD
Sub Total	431	294-339	-32% to -21%
Cap-and-Trade Program	NA	24-79	NA
Total	431	260	-40%

Source: California Air Resources Board. 2017, November. California's 2017 Climate Change Scoping Plan: The Strategy for Achieving California's 2030 Greenhouse Gas Target. https://www.arb.ca.gov/cc/scopingplan/2030sp_pp_final.pdf.

Notes: TCU = Transportation, Communications, and Utilities; TBD: To Be Determined.

^a Work is underway through 2017 to estimate the range of potential sequestration benefits from the natural and working lands sector.

2.1.2.5 SENATE BILL 375 – SUSTAINABLE COMMUNITIES STRATEGY

In 2008, SB 375, the Sustainable Communities and Climate Protection Act, was adopted to connect the GHG emissions reductions targets established in the 2008 Scoping Plan for the transportation sector to local land use decisions that affect travel behavior. Its intent is to reduce GHG emissions from light-duty trucks and automobiles (excludes emissions associated with goods movement) by aligning regional long-range transportation plans, investments, and housing allocations to local land use planning to reduce VMT and vehicle trips. Specifically, SB 375 required CARB to establish GHG emissions reduction targets for each of the 18 metropolitan planning organizations (MPOs). The Metropolitan Transportation Commission (MTC) is the MPO for the nine-county San Francisco Bay Area region. MTC's targets are a 7 percent per capita reduction in GHG emissions from 2005 by 2020, and 15 percent per capita reduction from 2005 levels by 2035.⁶⁰

2017 Update to the SB 375 Targets

CARB is required to update the targets for the MPOs every eight years. In June 2017, CARB released updated targets and technical methodology and recently released another update in February 2018. The updated targets consider the need to further reduce VMT, as identified in the 2017 Scoping Plan Update, while balancing the need for additional and more flexible revenue sources to incentivize positive planning and action toward sustainable communities. Like the 2010 targets, the updated SB 375 targets are in units of percent per capita reduction in GHG emissions from automobiles and light trucks relative to 2005. This excludes reductions anticipated from implementation of state technology and fuels strategies and any potential future state strategies such as statewide road user pricing. The proposed targets call for greater per capita GHG emission reductions from SB 375 than are currently in place, which for 2035, translate into proposed targets that either match or exceed the emission reduction levels in the MPOs' currently adopted sustainable communities strategies (SCS). As proposed, CARB staff's proposed targets would result in an additional reduction of over 8 MMTCO2e in 2035 compared to the current targets. For the next round of SCS updates, CARB's updated targets for the SCAG region are an 8 percent per capita GHG reduction in 2020 from 2005 levels (unchanged from the 2010 target) and a 19 percent per capita GHG reduction in 2035 from 2005 levels (compared to the 2010 target of 13 percent).⁶¹ CARB adopted the updated targets and methodology on March 22, 2018. All SCSs adopted after October 1, 2018, are subject to these new targets.

2.1.2.6 OTHER APPLICABLE MEASURES

Transportation

Assembly Bill 1493

California vehicle GHG emission standards were enacted under AB 1493 (Pavley I). Pavley I is a clean-car standard that reduces GHG emissions from new passenger vehicles (light-duty auto to medium-duty vehicles) from 2009 through 2016 and is anticipated to reduce GHG emissions from new passenger vehicles by 30 percent in 2016. California implements the Pavley I standards through a waiver granted to California by

⁶⁰ California Air Resources Board. 2010. Staff Report, Proposed Regional Greenhouse Gas Emission Reduction Targets for Automobiles and Light Trucks Pursuant to Senate Bill 375, August.

⁶¹ California Air Resources Board (CARB). 2018, February. Proposed Update to the SB 375 Greenhouse Gas Emission Reduction Targets. https://www.arb.ca.gov/cc/inventory/data/data.htm.

the EPA. In 2012, the EPA issued a Final Rulemaking that sets even more stringent fuel economy and GHG emissions standards for model years 2017 through 2025 light-duty vehicles (see also the discussion on the update to the Corporate Average Fuel Economy standards under *Federal Laws*, above). In January 2012, CARB approved the Advanced Clean Cars program (formerly known as Pavley II) for model years 2017 through 2025. The program combines the control of smog, soot, and global warming gases with requirements for greater numbers of ZE vehicles into a single package of standards. Under California's Advanced Clean Car program, by 2025 new automobiles will emit 34 percent less global warming gases and 75 percent less smog-forming emissions.

Executive Order S-1-07

On January 18, 2007, the state set a new LCFS for transportation fuels sold in the state. Executive Order S-01-07 sets a declining standard for GHG emissions measured in CO_{2e} gram per unit of fuel energy sold in California. The LCFS requires a reduction of 2.5 percent in the carbon intensity of California's transportation fuels by 2015 and a reduction of at least 10 percent by 2020. The standard applies to refiners, blenders, producers, and importers of transportation fuels, and would use market-based mechanisms to allow these providers to choose how they reduce emissions during the "fuel cycle" using the most economically feasible methods.

Executive Order B-16-2012

On March 23, 2012, the state identified that CARB, the California Energy Commission (CEC), the Public Utilities Commission, and other relevant agencies worked with the Plug-in Electric Vehicle Collaborative and the California Fuel Cell Partnership to establish benchmarks to accommodate ZE vehicles in major metropolitan areas, including infrastructure to support them (e.g., electric vehicle charging stations). The executive order also directed the number of ZE vehicles in California's state vehicle fleet to increase through the normal course of fleet replacement so that at least 10 percent of fleet purchases of light-duty vehicles are ZE by 2015 and at least 25 percent by 2020. The executive order also establishes a target for the transportation sector of reducing GHG emissions 80 percent below 1990 levels.

Renewables Portfolio Standard

Senate Bills 1078, 107, X1-2, and Executive Order S-14-08

A major component of California's Renewable Energy Program is the renewables portfolio standard established under Senate Bills 1078 (Sher) and 107 (Simitian). Under the RPS, certain retail sellers of electricity were required to increase the amount of renewable energy each year by at least 1 percent in order to reach at least 20 percent by December 30, 2010. Executive Order S-14-08, signed in November 2008, expanded the state's renewable energy standard to 33 percent renewable power by 2020. This standard was adopted by the legislature in 2011 (SB X1-2). Renewable sources of electricity include wind, small hydropower, solar, geothermal, biomass, and biogas. The increase in renewable sources for electricity production will decrease indirect GHG emissions from development projects because electricity production from renewable sources is generally considered carbon neutral.

Senate Bill 350

Senate Bill 350 (de Leon), was signed into law September 2015. SB 350 establishes tiered increases to the RPS of 40 percent by 2024, 45 percent by 2027, and 50 percent by 2030. SB 350 also set a new goal to double the energy efficiency savings in electricity and natural gas through energy efficiency and conservation measures.

Senate Bill 100

On September 10, 2018, Governor Brown signed SB 100. Under SB 100, the RPS for public-owned facilities and retail sellers consist of 44 percent renewable energy by 2024, 52 percent by 2027, and 60 percent by 2030. Additionally, SB 100 also established a new RPS requirement of 50 percent by 2026. Furthermore, the bill establishes an overall state policy that eligible renewable energy resources and zero-carbon resources supply 100 percent of all retail sales of electricity to California end-use customers and 100 percent of electricity procured to serve all state agencies by December 31, 2045. Under the bill, the state cannot increase carbon emissions elsewhere in the western grid or allow resource shuffling to achieve the 100 percent carbon-free electricity target.

Executive Order B-55-18

Executive Order B-55-18, signed September 10, 2018, sets a goal "to achieve carbon neutrality as soon as possible, and no later than 2045, and achieve and maintain net negative emissions thereafter." Executive Order B-55-18 directs CARB to work with relevant state agencies to ensure future Scoping Plans identify and recommend measures to achieve the carbon neutrality goal. The goal of carbon neutrality by 2045 is in addition to other statewide goals, meaning not only should emissions be reduced to 80 percent below 1990 levels by 2050, but that, by no later than 2045, the remaining emissions be offset by equivalent net removals of CO₂e from the atmosphere, including through sequestration in forests, soils, and other natural landscapes.

Energy Efficiency

California Building Standards Code – Building Energy Efficiency Standards

Energy conservation standards for new residential and non-residential buildings were adopted by the California Energy Resources Conservation and Development Commission (now the CEC) in June 1977 and most recently revised in 2019 (Title 24, Part 6, of the California Code of Regulations [CCR]). Title 24 requires the design of building shells and building components to conserve energy. The standards are updated periodically to allow for consideration and possible incorporation of new energy efficiency technologies and methods. The 2019 Building Energy Efficiency Standards, which were adopted on May 9, 2018, went into effect on January 1, 2020.

The 2019 standards move towards cutting energy use in new homes by more than 50 percent and will require installation of solar photovoltaic systems for single-family homes and multi-family buildings of 3 stories and less. Four key areas the 2019 standards will focus on include 1) smart residential photovoltaic systems; 2) updated thermal envelope standards (preventing heat transfer from the interior to exterior and vice versa); 3) residential and nonresidential ventilation requirements; 4) and nonresidential lighting requirements.⁶² Under

⁶² California Energy Commission (CEC). 2018. News Release: Energy Commission Adopts Standards Requiring Solar Systems for New Homes, First in Nation. http://www.energy.ca.gov/releases/2018_releases/2018-05-09_building_standards_adopted_nr.html.

the 2019 standards, nonresidential buildings and multi-family residential buildings of four stories or more will be 30 percent more energy efficient compared to the 2016 standards while single-family homes will be 7 percent more energy efficient.⁶³ When accounting for the electricity generated by the solar photovoltaic system, single-family homes would use 53 percent less energy compared to homes built to the 2016 standards.⁶⁴

Furthermore, on August 11, 2021, the CEC adopted the 2022 Building Energy Efficiency Standards, which were subsequently approved by the California Building Standards Commission in December 2021. The 2022 standards become effective and replace the existing 2019 standards on January 1, 2023. The 2022 standards would require mixed-fuel single-family homes to be electric-ready to accommodate replacement of gas appliances with electric appliances. In addition, the new standards also include prescriptive photovoltaic system and battery requirements for high-rise, multifamily buildings (i.e., more than three stories) and noncommercial buildings such as hotels, offices, medical offices, restaurants, retail stores, schools, warehouses, theaters, and convention centers.⁶⁵

California Green Building Standards Code – CALGreen

On July 17, 2008, the California Building Standards Commission adopted the nation's first green building standards. The California Green Building Standards Code (24 CCR, Part 11, known as "CALGreen") was adopted as part of the California Building Standards Code. CALGreen established planning and design standards for sustainable site development, energy efficiency (in excess of the California Energy Code requirements), water conservation, material conservation, and internal air contaminants.⁶⁶ The mandatory provisions of CALGreen became effective January 1, 2011. The CEC adopted the voluntary standards of the 2019 CALGreen on October 3, 2018. The 2019 CALGreen standards became effective January 1, 2020.

2006 Appliance Energy Efficiency Regulations

The 2006 Appliance Efficiency Regulations (20 CCR §§ 1601–1608) were adopted by the CEC on October 11, 2006 and approved by the California Office of Administrative Law on December 14, 2006. The regulations include standards for both federally regulated appliances and non–federally regulated appliances. Though these regulations are now often viewed as "business as usual," they exceed the standards imposed by all other states, and they reduce GHG emissions by reducing energy demand.

Solid Waste

AB 939

California's Integrated Waste Management Act of 1989 (AB 939, Public Resources Code §§ 40050 et seq.) set a requirement for cities and counties throughout the state to divert 50 percent of all solid waste from landfills by January 1, 2000, through source reduction, recycling, and composting. In 2008, the requirements were modified to reflect a per capita requirement rather than tonnage. To help achieve this, the act requires that

⁶³ California Energy Commission (CEC). 2018. 2019 Building Energy and Efficiency Standards Frequently Asked Questions. http://www.energy.ca.gov/title24/2019standards/documents/2018_Title_24_2019_Building_Standards_FAQ.pdf.

 ⁶⁴ California Energy Commission (CEC). 2018. 2019 Building Energy and Efficiency Standards Frequently Asked Questions. http://www.energy.ca.gov/title24/2019standards/documents/2018_Title_24_2019_Building_Standards_FAQ.pdf.

 ⁶⁵ California Energy Commission (CEC). 2021. Amendments to the Building Energy Efficiency Standards (2022 Energy Code) Draft Environmental Report. CEC-400-2021-077-D.

⁶⁶ The green building standards became mandatory in the 2010 edition of the code.

each city and county prepare and submit a source reduction and recycling element. AB 939 also established the goal for all California counties to provide at least 15 years of ongoing landfill capacity.

AB 341

AB 341 (Chapter 476, Statutes of 2011) increased the statewide goal for waste diversion to 75 percent by 2020 and requires recycling of waste from commercial and multifamily residential land uses. Section 5.208 of CALGreen also requires that at least 65 percent of the nonhazardous construction and demolition waste from nonresidential construction operations be recycled and/or salvaged for reuse.

AB 1327

The California Solid Waste Reuse and Recycling Access Act (AB 1327, Public Resources Code §§ 42900 et seq.) requires areas to be set aside for collecting and loading recyclable materials in development projects. The act required the California Integrated Waste Management Board to develop a model ordinance for adoption by any local agency requiring adequate areas for collection and loading of recyclable materials as part of development projects. Local agencies are required to adopt the model or an ordinance of their own.

AB 1826

In October of 2014, Governor Brown signed AB 1826 requiring businesses to recycle their organic waste on and after April 1, 2016, depending on the amount of waste they generate per week. This law also requires that on and after January 1, 2016, local jurisdictions across the state implement an organic waste recycling program to divert organic waste generated by businesses and multifamily residential dwellings with five or more units. Organic waste means food waste, green waste, landscape and pruning waste, nonhazardous wood waste, and food-soiled paper waste that is mixed with food waste.

Water Efficiency

SBX7-7

The 20x2020 Water Conservation Plan was issued by the Department of Water Resources (DWR) in 2010 pursuant to Senate Bill 7, which was adopted during the 7th Extraordinary Session of 2009–2010 and therefore dubbed "SBX7-7." SBX7-7 mandated urban water conservation and authorized the DWR to prepare a plan implementing urban water conservation requirements (20x2020 Water Conservation Plan). In addition, it required agricultural water providers to prepare agricultural water management plans, measure water deliveries to customers, and implement other efficiency measures. SBX7-7 requires urban water providers to adopt a water conservation target of 20 percent reduction in urban per capita water use by 2020 compared to 2005 baseline use.

AB 1881

The Water Conservation in Landscaping Act of 2006 (AB 1881) requires local agencies to adopt the updated DWR model ordinance or equivalent. AB 1881 also requires the Energy Commission, in consultation with the department, to adopt, by regulation, performance standards and labeling requirements for landscape irrigation equipment, including irrigation controllers, moisture sensors, emission devices, and valves to reduce the wasteful, uneconomic, inefficient, or unnecessary consumption of energy or water.

Short-Lived Climate Pollutant Strategy

Senate Bill 1383

On September 19, 2016, the Governor signed SB 1383 to supplement the GHG reduction strategies in the Scoping Plan to consider short-lived climate pollutants, including black carbon and CH₄. Black carbon is the light-absorbing component of fine particulate matter produced during incomplete combustion of fuels. SB 1383 required the state board, no later than January 1, 2018, to approve and begin implementing a comprehensive strategy to reduce emissions of short-lived climate pollutants to achieve a reduction in methane by 40 percent, hydrofluorocarbon gases by 40 percent, and anthropogenic black carbon by 50 percent below 2013 levels by 2030. The bill also established targets for reducing organic waste in landfills. On March 14, 2017, CARB adopted the Short-Lived Climate Pollutant Reduction Strategy, which identifies the state's approach to reducing anthropogenic and biogenic sources of short-lived climate pollutants. Anthropogenic sources of black carbon include on- and off-road transportation, residential wood burning, fuel combustion (charbroiling), and industrial processes. According to CARB, ambient levels of black carbon in California are 90 percent lower than in the early 1960s, despite the tripling of diesel fuel use.⁶⁷ In-use on-road rules are expected to reduce black carbon emissions from on-road sources by 80 percent between 2000 and 2020.

2.1.3 Regional Regulations

Plan Bay Area, Strategy for a Sustainable Region

Plan Bay Area 2050 is the Bay Area's RTP/SCS and was adopted jointly by ABAG and MTC on October 2021.⁶⁸ The Plan Bay Area 2050 serves as a 30-year plan with 35 new strategies to provide a more equitable and resilient future for residents in the Bay Area. This regional plan aims for more affordable and accessible transportation, which will significantly decrease greenhouse gas emissions to meet the state mandate of a 19 percent reduction in per-capita emissions by 2035.

As part of the implementing framework for Plan Bay Area, local governments have identified Priority Development Areas (PDAs) to focus growth. PDAs are transit-oriented, infill development opportunity areas in existing communities. Overall, well over two-thirds of all regional growth in the Bay Area by 2050 is allocated in PDAs. Per the Final Plan Bay Area 2050, the projected number of new housing units and new jobs within PDAs would increase to 1,672,000 units and 2,561,000 jobs compared to the adopted Plan Bay Area 2040. In addition, its overall share would be increased to 51 percent and 35 percent.⁶⁹ However, Plan Bay Area 2050 remains on track to meet a 19 percent per capita reduction of GHG emissions by 2035.⁷⁰ The proposed project site is not within a PDA.⁷¹

⁶⁷ California Air Resources Board (CARB). 2017, March 14. Final Proposed Short-Lived Climate Pollutant Reduction Strategy. https://www.arb.ca.gov/cc/shortlived/shortlived.htm.

⁶⁸ Metropolitan Transportation Commission and Association of Bay Area Governments. 2021, October. Plan Bay Area 2050 Plan. https://www.planbayarea.org/finalplan2050

⁶⁹ Metropolitan Transportation Commission (MTC) and Association of Bay Area Governments (ABAG). 2021, October. Plan Bay Area 2050 Plan. https://www.planbayarea.org/sites/default/files/documents/Plan_Bay_Area_2050_October_2021.pdf.

⁷⁰ Metropolitan Transportation Commission (MTC) and Association of Bay Area Governments (ABAG). 2021, October. Plan Bay Area 2050 Plan. https://www.planbayarea.org/sites/default/files/documents/Plan_Bay_Area_2050_October_2021.pdf.

⁷¹ Metropolitan Transportation Commission (MTC) and Association of Bay Area Governments (ABAG). 2022, January 18

Bay Area Clean Air Plan

BAAQMD adopted the 2017 Clean Air Plan, Spare the Air, Cool the Climate on April 19, 2017. The 2017 Clean Air Plan also lays the groundwork for reducing GHG emissions in the Bay Area to meet the state's 2030 GHG reduction target and 2050 GHG reduction goal. It also includes a vision for the Bay Area in a post-carbon year 2050 that encompasses the following:

- Construct buildings that are energy efficient and powered by renewable energy.
- Walk, bicycle, and use public transit for the majority of trips and use electric-powered autonomous public transit fleets.
- Incubate and produce clean energy technologies.
- Live a low-carbon lifestyle by purchasing low-carbon foods and goods in addition to recycling and putting organic waste to productive use.⁷²

A comprehensive multipollutant control strategy has been developed to be implemented in the next 3 to 5 years to address public health and climate change and to set a pathway to achieve the 2050 vision. The control strategy includes 85 control measures to reduce emissions of ozone, particulate matter, toxic air contaminants, and GHG from a full range of emission sources. These control measures cover the following sectors: 1) stationary (industrial) sources; 2) transportation; 3) energy; 4) agriculture; 5) natural and working lands; 6) waste management; 7) water; and 8) super-GHG pollutants. Overall, the proposed control strategy is based on the following key priorities:

- Reduce emissions of criteria air pollutants and toxic air contaminants from all key sources.
- Reduce emissions of "super-GHGs" such as methane, black carbon, and fluorinated gases.
- Decrease demand for fossil fuels (gasoline, diesel, and natural gas).
- Increase efficiency of the energy and transportation systems.
- Reduce demand for vehicle travel, and high-carbon goods and services.
- Decarbonize the energy system.
- Make the electricity supply carbon-free.
- Electrify the transportation and building sectors.

Bay Area Commuter Benefits Program

Under Air District Regulation 14, Model Source Emissions Reduction Measures, Rule 1, Bay Area Commuter Benefits Program, employers with 50 or more full-time employees within the BAAQMD are required to register and offer commuter benefits to employees. In partnership with the BAAQMD and the Metropolitan Transportation Commission (MTC), the rule's purpose is to improve air quality, reduce GHG emissions, and decrease the Bay Area's traffic congestion by encouraging employees to use alternative commute modes, such as transit, vanpool, carpool, bicycling, and walking. The benefits program allows employees to choose from

⁽accessed). Priority Development Areas (Plan Bay Area 2050) ArcGIS.

https://www.arcgis.com/apps/mapviewer/index.html?layers=4df9cb38d77346a289252ced4ffa0ca0.

⁷² Bay Area Air Quality Management District, 2017. Final 2017 Clean Air Plan, Spare the Air, Cool the Climate: A Blueprint for Clean Air and Climate Protection in the Bay Area. http://www.baaqmd.gov/plans-and-climate/air-quality-plans/current-plans, accessed November 21, 2019.

one of four commuter benefit options including a pre-tax benefit, employer-provided subsidy, employer-provided transit, and alternative commute benefit.

2.1.4 Local Regulations

2.1.4.1 CITY OF CUPERTINO CLIMATE ACTION PLAN

The City of Cupertino published the public draft Climate Action Plan (CAP) in December 2014 to achieve the GHG reduction target of AB 32 for target year 2020 and interim year 2035. The CAP serves to support California's statewide climate change efforts through identification of actions that can be taken locally, by residents, businesses, and the City itself, to ensure the State's ambitious reduction goals can be achieved. The strategies outlined in the CAP seek to not only reduce GHG emissions, but also provide energy, water, fuel, and cost savings for the City.⁷³ The goals established by the City's CAP are the following:

- Goal 1 Reduce Energy Use: Increase energy efficiency in existing homes and buildings and increase use
 of renewable energy community-wide.
- Goal 2 Encourage Alternative Transportation: Support transit, carpooling, walking, and bicycling as
 viable transportation modes to decrease the number of single-occupancy vehicle trips within the
 community.
- Goal 3 Conserve Water: Promote the efficient use and conservation of water in buildings and landscapes.
- Goal 4 Reduce Solid Waste: Strengthen waste reduction efforts through recycling and organics collection and reduced consumption of materials that otherwise end up in landfills.
- Goal 5 Expand Green Infrastructure: Enhance the City's existing urban forest on public and private lands.

2.1.4.2 CITY OF CUPERTINO MUNICIPAL CODE

Cupertino's Municipal Code (CMC) Chapter 17.04, Standard Environmental Protection Requirements, identifies standard environmental protection requirements that all construction projects in the City must meet, including but not limited to the environmental mitigation measures identified in any environmental documents required as part of a General Plan update.⁷⁴ CMC Section 17.04.050, Standard Environmental Protection Permit Submittal Requirements, describes greenhouse gas permit requirements as follows:

Reduce Greenhouse Gas Emissions (GHG) and Energy Use. The project applicant shall complete the City of Cupertino Climate Action Plan – Development Project Consistency Checklist, for review and approval by the City Environment and Sustainability Department prior to issuance of the first permit, to demonstrate how the project is consistent with the Cupertino Climate Action Plan, as subsequently revised, supplemented, or replaced, in order to reduce greenhouse gas emissions and conserve energy.

 ⁷³ City of Cupertino, 2015. Climate Action Plan. January, 2015. http://www.cupertino.org/home/showdocument?id=13531
 ⁷⁴ City of Cupertino, Municipal Code. Local legislation current through Ordinance 22-2238, passed February 1, 2022. https://codelibrary.amlegal.com/codes/cupertino/latest/cupertino_ca/0-0-0-78624.

2.2 ENVIRONMENTAL SETTING

2.2.1 Existing Emissions

The project site is currently developed with one two-story office building (141,000 square-foot) with associated surface parking and landscaping. The building operations currently generate greenhouse emissions from transportation, area sources, energy use, water use/wastewater generation, and solid waste disposal.

2.3 METHODOLOGY

The BAAQMD The Draft Justification Report: CEQA Thresholds for Evaluating the Significance of Climate Impacts from Land Use Projects and Plans were prepared to assist in the evaluation of GHG emissions impacts of projects and plans proposed within the Bay Area.

2.3.1 BAAQMD Standards of Significance

Cumulative GHG emissions impacts are based on the state's GHG reduction goals for development projects adopted by BAAQMD in April 2022 *Justification Report: CEQA Thresholds for Evaluating the Significance of Climate Impacts From Land Use Projects and Plans* (Justification Report).⁷⁵ Development of the proposed project would contribute to climate change through direct and indirect emissions of GHG from the construction activities needed to implement the project, which would generate a short-term increase in GHG emissions. BAAQMD identified in their Justification Report that projects that implement the following Best Management Practices (BMPs) would contribute their fair of what will be required to achieve the state's long-term climate goals, as described below:

A. Projects must include, at a minimum, the following project design elements; OR

1. Buildings

a. The project will not include natural gas appliances or natural gas plumbing (in both residential and nonresidential development).

b. The project will not result in any wasteful, inefficient, or unnecessary electrical usage as determined by the analysis required under CEQA Section 21100(b)(3) and Section 15126.2(b) of the State CEQA Guidelines.

2. Transportation

a. Achieve compliance with electric vehicle requirements in the most recently adopted version of CALGreen Tier 2.

b. Achieve a reduction in project-generated vehicle miles traveled (VMT) below the regional average consistent with the current version of the California Climate Change Scoping Plan or meet a locally

⁷⁵ BAAQMD. 2022, April 20. Justification Report: CEQA Thresholds for Evaluating the Significance of Climate Impacts from Land Use Projects and Plans. https://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/ceqa-thresholds-2022/justification-report-pdf.pdf?la=en

adopted Senate Bill 743 VMT target, reflecting the recommendations provided in the Governor's Office of Planning and Research's Technical Advisory on Evaluating Transportation Impacts in CEQA:

B. Projects must be consistent with a local GHG reduction strategy that meets the criteria under State CEQA Guidelines Section 15183.5(b).

BAAQMD does not have thresholds of significance for construction related GHG emissions, which are onetime, short-term emissions and therefore would not significantly contribute to the long-term cumulative GHG emissions impacts of the proposed project. **Assumptions Worksheet**

CalEEMod Inputs - VP1 Apple Office Project, Construction

VP1 Apple Office Project	COCU-21	19191 Vallco Parkway	Santa Clara	4	Urban	2024	Silicon Valley Clean Energy	San Francisco Bay Area Air Basin (SFBAAB)	Bay Area Air Quality Management District (BAAQMD)
Name:	Project Number:	Project Location:	County:	Climate Zone:	Land Use Setting:	Operational Year:	Utility Company:	Air Basin:	Air District:

7.97 7.97 Proiect Site Acreage Disturbed Site Acreage

					Acres	1.73	0.05	1.78	 0.81	2.98	0.50	1.90	2.40
Tons		6,487	3,366		Building Footprint	75,430	2,300	77,730	35,250	129,591	21,706	82,896	104,602
					Total SQFT	280,020	2,300	282,320	213,080	129,591	21,706	82,896	104,602
SQFT		141,024	168,000		Stories/Levels	4	1		6	N/A	N/A	N/A	
Project Components	Demolition	Existing Building	Asphalt Demo	New Construction		4-Story Office building	Commercial/Retail Space	TOTAL COMMERCIAL	Parking Garage	Parking Lot	Hardscape ¹	Landscape	Total Other Non-Asphalt Surfaces

Notes: ¹ Includes Outdoor Commercial Space.

CalEEMod Land Use Inputs

Land Use Type	Land Use Subtype	Unit Amount	Size Metric	Lot Acreage	Lot Acreage Land Use Square Feet
Commercial	General Office building	282.32	1000 sqft	1.78	282,320
Parking (Parking garage)	Enclosed parking with elevator	213.08	1000 sqft	0.81	213,080
Parking (Parking lot)	Parking Lot	129.59	1000 sqft	2.98	129,591
Parking	Other Non-Asphalt Surfaces	104.60	1000 sqft	2.40	104,602
				7.97	729,593

_	
5	
. <u>u</u>	
÷	
-	
z	
∟	
(1)	

Demolition							
Component		Amount to be Demolished (Tons)	Haul Truck Capacity (tons) ¹	Haul Distance (miles) ¹	Total Trip Ends	Trip Ends/ day	Total Days
	Building	6,487	20	20	649	130	S
	Asphalt	3,366	20	20	337	67	S
Total		9,853			986		

Notes: ¹ CalEEMod default used.

Soil Haul ¹						
Construction Activities	Haul Truck Capacity (CY) ¹	Volume (CY) ²	Haul Distance (miles) ¹	Total Trip Ends	Total Days	Trip Ends/Day
Rough Grading (import & export)	16	58,757	20	7346	30	250
		58,757	20			

¹ CalEEMod default used. Notes:

² Combined soil haul import and export volumes into one phase provided by Applicant.

Architectural Coating

	4-Story Office Building ^{1,3}	Parking Garage ^{2,3}	Commercial/Retail Space ^{1,3}
Percent Interior Painted:	45%	%0	1%
Percent Exterior Painted:	%0	5%	%0
	VOC Content (g/L)	VOC Content (g/L)	VOC Content (g/L)
Interior	50	100	50
Exterior	100	157	100

Notes:

¹ CalEEMod defaults used for exterior painting VOC content for office building and commercial/retail space.

² CalEEMod defaults used for interior painting VOC content for parking garage.

³ Information provided by Applicant.

				Paintable Interior	Paintable Exterior
Non-Residential Structures	Land Use Square Feet	CalEEMod Factor ²	CalEEMod Factor ² Total Paintable Surface Area	Area ¹	Area ¹
4-Story Office Building	280,020	2.0	560,040	189,014	0
Commercial Space	2,300	2.0	4,600	35	0
Parking Garage	213,080	2.0	426,160	0	5,327
				189,048	5,327
Parking ³					
Parking Lot (Striping)	129,591	6%	7,775		7,775

Notes: ¹ CalEEMod methodology calculates the paintable interior and exterior areas by multiplying the total paintable surface area by 75 and 25 percent, respectively.

7,775 **7,775**

The program assumes the total surface for painting equals 2.7 times the floor square footage for residential and 2.0 times that for nonresidential square footage defined by the user. ³ Architectural coatings for the parking lot is based on CalEEMod methodology applied to a surface parking lot (i.e., striping), in which 6% of surface area is painted.

Silicon Valley Clean Energy Carbon Intensity Factors

pounds per megawatt hour pound per megawatt hour pound per megawatt hour		5 % Reduction 5 % Reduction	2 per day 55 % Reduction 55 % Reduction
2: ¹ 2.00 1:1 0 1:1 0	es: ¹ CalEEMod default values.	PM10: PM2.5:	Frequency: PM10: PM25:
CO ₂ : ¹ CH ₄ : ¹ N ₂ O: ¹	Notes:	BAAQMD Construction BMPs Replace Ground Cover Replace Ground Cover	Water Exposed Area

:C.2M4	Frequency: PM10:	PM25: Vehicle Speed:
Lover	ırea	

% PM Reduction hdm 15 6

Clean Paved Road

Unpaved Roads

CalEEMod Inputs - VP1 Apple Office Project, Existing Conditions

Name:	VP1 Apple Office Project
Project Number:	COCU-21
Project Location:	19191 Vallco Parkway
County:	Santa Clara
Source Receptor Area (SRA):	21- Capistrano Valley
Climate Zone:	4
Land Use Setting:	Urban
Operational Year:	2021 & 2024
Utility Company:	Silicon Valley Clean Energy
Air Basin:	San Francisco Bay Area Air Basin (SFBAAB)
Air District:	Bay Area Air Quality Management District (BAAQMD)

Proiect Site Acreage 7.97

CalEEMod Land Use Inputs

Land Use Type	Land Use Subtype	Unit Amount	Size Metric	Lot Acreage	Land Use Square Feet
Commercial	General Office Building	141.02	1000sqft	3.24	141,024
Parking	Parking Lot	141.29	1000sqft	3.24	141,292
Parking (Landscape)	Other Non-asphalt surfaces	64.86	1000sqft	1.49	64,857
				7.97	

Trips¹

Source: Fehr & Peers. 2021. Transportation Analysis: VP1 Apple Office Project.

Land Use Type	Average Daily Trips ²	CalEEMod Trip Rate	Saturday Trips	CalEEMod Trip Rate	Sunday Trips	CalEEMod Trip Rate
General Office Building	1,823	12.93	0	0.00	0	0.00
Tring	Appual Vahida Milac Travalad ³	Average Daily Vehicle	VMT por Worker			

15.60

Not	·29	

¹ Assume normal office operations of similar Apple buildings in which offices will be closed on the weekends.

13,039

² Based on trip generation rates presented in Apple Campus 2 (2013) by Fehr & Peers, 2021.

- ³ Annual and total daily VMT calculated based on daily VMT per worker provided by Fehr & Peers, 2021.
- Annual and total daily vivil calculated based on daily vivil per worker provided by Peril & Peers, 2021.

	Trip Type Percentages				
	Primary	Diverted	Passby		
General Office Building	77%	19%	4%		
Adjusted Trip Type Percentages	100%	0%	0%		
		Trip Length			
	H-W or C-W	H-S or C-C	H-O or C-NW		
General Office Building	9.50	7.30	7.30		
Adjusted Trip Lengths	15.60	7.30	7.30		

4,759,300

Water Use and Wastewater Generation

Total Trips

Wastewater is treated by the San José/Santa Clara Water Pollution Control Plant (SJ/SCWPCP), which provides tertiary treated wastewater throughout the County of Santa Clara. Therefore, CalEEMod defaults reflect 100% aerobic treatment.

Land Use	Wastewater Demand ¹	Indoor ²	Outdoor ³	Total
Total Water Use (gal/day)	6,699	7,051	1,954	15,704
Total Water Use (gal/year)	2,445,004	2,573,688	713,265	5,731,957

¹ Assume wastewater flow rate of 95% of indoor water demand for non-residential (Westport).

² Yarne & Assoc, 2014, Water Supply Evaluation (pg 16) (from Appendix H of GPEIR).

³ Assume all irrigation is drip or bubblers; no turf areas for outdoor water calculations.

Solid Waste

				Total Solid Waste
Land Use	Total Solid Waste (lbs/day)	tons/lb	days/year	(tons/yr)
General Office Building	1,222	0.0005	365	223

Source:

Notes

Per Capita Disposal for Employees - CalRecycle, 2020, Jurisdiction Per Capita Disposal Trends, https://www2.calrecycle.ca.gov/LGCentral/AnnualReporting/ReviewReports.

Architectural Coating

Percentage Interior Painted:	100%	
Percent Exterior Painted:	100%	
Rule 1113	VOC Content (g/L)	
Interior Paint VOC content:	100	grams per liter
Exterior Paing VOC content:	100	grams per liter

Non-Residential Structures	Land Use Square Feet	CalEEMod Factor ²	Total Paintable Surface Area	Paintable Interior Area ¹	Paintable Exterior Area ¹
General Office Building	141,024	2.0	282,048	211,536	70,512
			282,048	211,536	70,512
Parking	141,292	6%	8,478	-	8,478
			8,478		8,478

Notes:

CalEEMod methodology calculates the paintable interior and exterior areas by multiplying the total paintable surface area by 75 and 25 percent, respectively. ² The program assumes the total surface for painting equals 2.7 times the floor square footage for residential and 2 times that for nonresidential square footage defined by the user. ³

Architectural coatings for the parking lot is based on CalEEMod methodology applied to a surface parking lot (i.e., striping), in which 6% of surface area is painted.

Electricity (Buildings)

Existing Energy

Existing non-residential modeled using historic energy demand rates in CalEEMod. Modeling is conservative because the net increase in energy use due to the project is likely smaller than reflected due to improved building energy efficiency between the project and existing land uses.

		Nontitle-24 Electricity		Title-24 Natural Gas	Nontitle-24 Natural
	Title-24 Electricity Energy Intensity	Energy Intensity	Lighting Energy Intensity	Energy Intensity	Gas Energy Intensity
Land Use Subtype	(kWhr/size/year)*	(kWhr/size/year)	(KWhr/size/year)	(KBTU/size/year)*	(KBTU/size/year)
General Office Building	8.01	7.84	4.72	19.90	0.06
Other Non-Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.88	0.00	0.00

Silicon Valley Clean Energy Carbon Intensity Factors

CO_2 : ¹	2.00	pounds per megawatt hour
CH_4 : ¹	0	pound per megawatt hour
N_2O : ¹	0	pound per megawatt hour

Notes: ¹ CalEEMod default values.

CalEEMod Inputs - VP1 Apple Office Project, Operations Assumptions

Name:	VP1 Apple Office Project
Project Number:	COCU-21
Project Location:	19191 Vallco Parkway
County:	Santa Clara
Source Receptor Area (SRA):	21- Capistrano Valley
Climate Zone:	4
Land Use Setting:	Urban
Operational Year:	2024
Utility Company:	Silicon Valley Clean Energy
Air Basin:	San Francisco Bay Area Air Basin (SFBAAB)
Air District:	Bay Area Air Quality Management District (BAAQMD)

Proiect Site Acreage

Proposed New Construction						
	Stories/Levels	Total SQFT	Building Footprint	Acres		
4-Story Office building	4	280,020	75,430	1.73		
Commercial/Retail Space	1	2,300	2,300	0.05		
TOTAL COMMERCIAL		282,320	77,730	1.78		
Parking Garage	6	213,080	35,250	0.81		
Parking Lot	N/A	129,591	129,591	2.98		
Hardscape	N/A	21,706	21,706	0.50		
Landscape	N/A	82,896	82,896	1.90		
Total Other Non-Asphalt Surfaces		104,602	104,602	2.40		

7.97

CalEEMod Land Use Inputs

Land Use Type	Land Use Subtype	Unit Amount	Size Metric	Lot Acreage	Land Use Square Feet
Commercial	General Office building	280.02	1000 sqft	1.73	280,020
Retail (Retail space) ¹	Convenience Market	2.30	1000 sqft	0.05	2,300
Parking (Parking garage)	Enclosed parking structure with elevator	213.08	1000 sqft	0.81	213,080
Parking (Parking lot)	Parking Lot	129.59	1000 sqft	2.98	129,591
Parking	Other Non-Asphalt Surfaces	104.60	1000 sqft	2.40	104,602
				7 97	

Notes:

¹ Used Convenice market land use subtype to represent the retail space within the office building.

Trips¹

Source: Fehr & Peers. 2021. Transportation Analysis: VP1 Apple Office Project.

			Net Increase in		Net Increase in Sunday	
Land Use Type	Average Daily Trips	CalEEMod Trip Rate	Saturday Trips ¹	CalEEMod Trip Rate	Trips	CalEEMod Trip Rate
General Office Building	3,621	12.93	0	0.00	0	0.00
Convience Market (Commercial Retail Space)	327	142.17	0	0.00	0	0.00
Total	3,948					
Net	2,125					

Trips	Annual Vehicle Miles Traveled ²	Average Daily Vehicle Miles Traveled	VMT Per Worker
Total Trips	10,049,378	27,533	15.51

Notes:

¹ Assume normal office operations of similar Apple buildings in which offices will be closed on the weekends.

² Annual and total daily VMT calculated based on daily VMT per worker provided by Fehr & Peers, 2021. TDM Program also included in calculation

	Trip Type Percentages				
	Primary Diverted Passby				
General Office Building	77%	19%	4%		
Convience Market (Commercial Retail Space)	24%	15%	61%		
Adjusted Trip Type Percentages	100%	0%	0%		

	Trip Length			
	H-W or C-W	H-S or C-C	H-O or C-NW	
General Office Building	9.50	7.30	7.30	
Convience Market (Commercial Retail Space)	9.50	7.30	7.30	
Adjusted Trip Lengths	15.51	7.30	7.30	

Water Use and Wastewater Generation

Wastewater is treated by the San José/Santa Clara Water Pollution Control Plant (SJ/SCWPCP), which provides tertiary treated wastewater throughout the County of Santa Clara. Therefore, CalEEMod defaults reflect 100% aerobic treatment.

Land Use	Wastewater Demand for General Office Building ¹	Wastewater Demand for Retail Space ¹	Indoor General Office Building ²	Indoor Retail Space ²	Outdoor ³
Water Use (gal/day)	13,301	240	14,001	253	2,229
Water Use (gal/year)	4,854,865	87,600	5,110,365	92,345	813,595
Total General Office Building	9965230				
Total Retail Space	179945				
Total Outdoor	813595				

¹ Assume wastewater flow rate of 95% of indoor water demand for non-residential (Westport).
 ² Yarne & Assoc, 2014, Water Supply Evaluation (pg 16) (from Appendix H of GPEIR) and CalWater WSA, 2018, Vallco Area Specific Plan for commercial office water demand factor.
 ³ Exclude bioretention areas because this will not require irrigation.

Solid Waste

Land Use ¹	Total Solid Waste (lbs/day)	tons/lb	days/year	Total Solid Waste (tons/yr)
General Office Building	2,440	0.0005	365	445

Per Capita Disposal for Employees - CalRecycle, 2020, Jurisdiction Per Capita Disposal Trends, https://www2.calrecycle.ca.gov/LGCentral/AnnualReporting/ReviewReports. Notes:

¹ This calculation includes General Office Building and Commercial Retail Space.

Architectural Coating

* See Architectural Coating for Construction Model **Fireplaces**

Source:

*No fireplaces or grills on project site

Electricity (Buildings)

Modeling is conservative because it is based on the Electricity and Natural Gas Energy Intensity default information from CalEEMod, which complies with 2019 Building Energy Efficiency Standards

Table A-9 shows average energy use rates per dwelling unit or area for major natural gas commercial and residential end uses. Any full or partial reduction in natural gas and uses or appliance types can be estimated by multiplying the percentage of natural gas reduction by the percent of total natural gas consumption for a given gas appliance. That reduction percentage can then be subtracted from an existing total gas consumption rate (e.g. CAIEEMod default energy use intensities). The additional electricity use can be estimated by multiplying the electric energy use rate by the number of dweling units or commercial square footage and adding this tot the CAIEEMod' default call detricity compution rate. The sample, a single family residence that complex with BMP 1 would remove all natural gas use from the CAIEEMod' default ("Title 24" and "Ano-Title 24" natural gas categories) and add 4,650 kMN to the electricity total. In contrast, a residence that keeps natural gas cosing would use Table A-9 to show that it should keep 9% of the CAIEEMod' default totarul gas categories) and add 4,650 kMN to the electricity total. Sacramento Metropolitan Air Quality Management District (SCAQMD). 2020, June 1. Greenhouse Gas Thresholds for Sacramento County. Table A-9, Increases in Electricity Use to Replace Source Natural Gas Greenhouse Gas CEQA Thresholds Update Sacramento County, California. https://www.airquality.org/LandUseTransportation/Documents/SMAQMDGHGThresholds2020-03-

Commercial Energy Use Categories			
	Percent of Annual Energy - Gas ¹	Energy Use Index (KwH/ksf/yr)	Energy Use Index (KwH/sf/yr)
	Fercent of Annual Lifergy - Gas	(KWH/KSI/YI)	(KWH/SI/YI)
Water Heaters	31%	341	0.341
Space Heaters	44%	1037	1.037
Cooking (Oven + Cooktop)	18%	666	0.666
Total	93%	2044	2.044
	Notes:		

This demonstrates that the majority of natural gas use in commercial buildings (93%) is accounted for by these three appliance groups. Due to differences in efficiency between electric and natural gas appliances, the relative amount of energy used for each appliance group may vary if applied to electricity consumption. Based on the Electricity and Natural Gas Energy Intensity default information from CalEEMod, which complies with 2019 Building Energy Efficiency Standards

Additional Electricity Demand from Fuel Switching

				Additional
4-Story Office building	kWhr/size/year	T24E	NT24E	Kwh/size/year
280,020	2.04	1.38	0.67	572,361
				Additional
Commercial/Retail Space	kWhr/size/year	T24E	NT24E	Kwh/size/year
2,300	2.04	1.38	0.67	4,701

CalEEMod Defaults

Land Use Subtype	T24E	NT24E	LightingElect	T24NG	NT24NG
		kWhr/size/year		kBTU/si	ze/year
Commercial/Retail Space	2.46	2.68	5.25	2.34	0.00
Enclosed Parking Garage with Elevator	3.50	0.19	1.75	0.00	0.00
General Office Building	5.45	7.84	3.88	16.14	0.06
Parking Lot	0.00	0.00	0.35	0.00	0.00

Notes:

¹ Photovoltaic (PV) system will be installed and generate 525,000 kWh/year and generate 5% of the total electricity demand.

² Emergency generator will be permitted and under review of BAAQMD.

Silicon Valley Clean Energy Carbon Intensity Factors

CO_2 : ¹	2.00	pounds per megawatt hour
CH_4 : ¹	0	pound per megawatt hour
$N_2O:^1$	0	pound per megawatt hour

Notes: ¹ CalEEMod default values.

Construction Activities and Schedule Assumptions: 22690 Stevens Creek Boulevard Residential Project

Based on the Construction Schedule provided by the project applicant.

CalEEMod

		Construction Schedule			
Construction Activities	Phase Type	Start Date	End Date	CalEEMod Duration (Workday)	
Demolition (Building + Asphalt)	Demolition	5/1/2023	5/26/2023	20	
Building Demolition Debris Haul	Demolition	5/17/2023	5/23/2023	5	
Asphalt Demolition Debris Haul	Demolition	5/17/2023	5/26/2023	8	
Site Preparation	Site Preparation	5/27/2023	6/2/2023	5	
Rough Grading	Grading	6/3/2023	6/30/2023	20	
Rough Grading Soil Haul (import & export)	Grading	6/3/2023	7/15/2023	30	
Fine Grading/Trenching	Grading	7/1/2023	11/3/2023	90	
Building Construction	Construction	11/4/2023	8/23/2024	210	
Parking Structure Construction	Construction	1/28/2024	10/4/2024	180	
Paving	Paving	8/24/2024	9/6/2024	10	
Architectural Coating	Architectural Coating	9/7/2024	10/4/2024	20	
Finishing/Landscaping	Trenching	10/5/2024	11/1/2024	20	

Overlapping Construction Schedule

			CalEEMod Duration
Construction Activities	Start Date	End Date	(Workday)
Demolition	5/1/2023	5/16/2023	12
Demolition, Building Demolition Debris			
Haul, and Asphalt Demolition Debris Haul	5/17/2023	5/23/2023	5
Demolition and Asphalt Demolition Debris			
Haul	5/24/2023	5/26/2023	3
Site Preparation	5/27/2023	6/2/2023	5
Rough Grading and Soil Haul	6/3/2023	6/30/2023	20
Rough Grading Soil Haul and Fine			
Grading/Trenching	7/1/2023	7/15/2023	10
Fine Grading/Trenching	7/16/2023	11/3/2023	80
Building Construction 2023	11/4/2023	12/31/2023	40
Building Construction 2024	1/1/2024	1/27/2024	20
Building Construction 2024 and Parking			
Structure Construction 2024	1/28/2024	8/23/2024	150
Parking Structure Construction 2024 and			
Paving	8/24/2024	9/6/2024	10
Parking Structure Construction 2024 and			
Architectural Coating	9/7/2024	10/4/2024	20
Finishing/Landscaping	10/5/2024	11/1/2024	20

CalEEMod Construction Off-Road Equipment Inputs

*CalEEMod default used for construction equipment

General Construction Hours: 8 hours btwn 7:00 AM to 4:00 PM (with 1 hr break), Mon-Fri

Equipment	model	Construction Equipr # of Equipment	hr/day	hp	load factor*	total trips
ilding Demolition	model	# Of Equipment	iii/uay	пр	Ioau lactor	total trips
Concrete/Industrial Saws		1	8	81	0.73	
		1 3	8	158	0.38	
Excavators		2	8	247	0.38	
Rubber Tired Dozers		Z	0	247	0.4	45
Worker Trips						15
Vendor Trips						
Hauling Trips						
Water Trucks						4
uilding Demolition Debris Haul		1.000 1		,		
	no ac	dditional equipment ne	eded for Demo Hau	1		
Worker Trips						0
Vendor Trips						0
Hauling Trips						649
sphalt Demolition Debris Haul			1.16 0.11			
	no ac	dditional equipment ne	eded for Demo Hau	1		
Worker Trips						0
Vendor Trips						0
Hauling Trips						337
te Preparation						
Rubber Tired Dozers		3	8	247	0.4	
Tractors/Loaders/Backhoes		4	8	97	0.37	
Worker Trips						18
Vendor Trips						
Hauling Trips						
Water Trucks						4
ough Grading		-	1		- 1	
Excavators		1	8	158	0.38	
Graders		1	8	187	0.41	
Rubber Tired Dozers		1	8	247	0.4	
Tractors/Loaders/Backhoes		3	8	97	0.37	
Worker Trips						15
Vendor Trips						
Hauling Trips						
Water Trucks						4
ough Grading Soil Haul (Import & Export)						
	no ac	dditional equipment ne	eded for Demo Hau	I	<u> </u>	
Worker Trips						
Vendor Trips						
Hauling Trips						7346
ne Grading/Utility Trenching		<u>.</u>				
Excavators		1	8	158	0.38	
Graders		1	8	187	0.41	
Rubber Tired Dozers		1	8	247	0.4	
Tractors/Loaders/Backhoes		3	8	97	0.37	
Worker Trips						15
Vendor Trips						
Hauling Trips						4
uilding Construction						
Cranes ¹		1	1	231	0.29	
Forklifts		3	8	89	0.2	
Generator Sets		1	8	84	0.74	
Tractors/Loaders/Backhoes		3	7	97	0.37	
Welders		1	8	46	0.45	
Worker Trips		÷			0.10	138
Vendor Trips						57

Parking S	tructure Construction						
	Cranes ¹		1	1	231	0.29	
	Forklifts		3	8	89	0.2	
	Generator Sets		1	8	84	0.74	
	Tractors/Loaders/Backhoes		3	7	97	0.37	
	Welders		1	8	46	0.45	
	Worker Trips	•	•		•	•	138
	Vendor Trips						57
	Hauling Trips						
Paving							
	Pavers		2	8	130	0.42	
	Paving equipment		2	8	132	0.36	
	Rollers		2	8	80	0.38	
	Worker Trips						15
	Vendor Trips						
	Hauling Trips						
Architect	ural Coating						
	Air Compressors		1	6	78	0.48	
	Worker Trips						28
	Vendor Trips						
	Hauling Trips						
Finishing,	Landscaping						
	Excavator		1	8			
	Worker Trips						3
	Vendor Trips						
	Hauling Trips						

Notes:

¹ Assume that crane will only be used onsite for approximately 6 weeks total. For most conservative results, crane is assumed to operate 1 hour per day, 5 days per week for entire duration of the building and parking garagae construction phases. Averaged hours of use over duration of building construction phase and parking construction phase are rounded to the nearest hour.

Construction Trips Worksheet

Worker Trip Ends Per Vendor Trip Ends Per Haul Truck Trip Ends Total Haul Truck Trip

	Worker Trip Ends Per Vend	lor Trip Ends Per	Haul Truck Trip End	s Total Haul Truck Trip			
Phase Name	Day	Day	Per Day	Ends	Start Date	End Date	Workdays
Demolition (Building & Asphalt)	15	0	0	0	5/1/2023	5/26/2023	20
Building Demolition Debris Haul	0	0	130	649	5/17/2023	5/23/2023	5
Asphalt Demolition Debris Haul	0	0	43	337	5/17/2023	5/26/2023	8
Site Preparation	18	0	0	0	5/27/2023	6/2/2023	5
Rough Grading	15	0	0	0	6/3/2023	6/30/2023	20
Rough Grading Soil Haul (Import & Export)	0	0	245	7346	6/3/2023	7/15/2023	30
Fine Grading/Trenching	15	0	1	4	7/1/2023	11/3/2023	90
Building Construction	138	57	0	0	11/4/2023	8/23/2024	210
Parking Structure Construction	138	57	0	0	1/28/2024	10/4/2024	180
Paving	15	0	0	0	8/24/2024	9/6/2024	10
Architectural Coating	28	0	0	0	9/7/2024	10/4/2024	20
Finishing/Landscaping	3	0	0	0	10/5/2024	11/1/2024	20

Worker Trip Ends Per Vendor Trip Ends Per Haul Truck Trip Ends Total Trip Ends Per Day Day Per Day Day Start Date End Date Workda

	Worker Trip Ends Per Ve	endor Trip Ends Per Ha	aul Truck Trip Ends	Total Trip Ends Per			
Construction Scenarios	Day	Day	Per Day	Day	Start Date	End Date	Workdays
Demolition	15	0	0	0	5/1/2023	5/16/2023	12
Demolition, Building Demolition Debris Haul, and Asphalt Demolition Debris Haul	15	0	173	986	5/17/2023	5/23/2023	5
Demolition and Asphalt Demolition Debris Haul	15	0	43	337	5/24/2023	5/26/2023	3
Site Preparation	18	0	0	0	5/27/2023	6/2/2023	5
Rough Grading and Soil Haul	15	0	245	7346	6/3/2023	6/30/2023	20
Rough Grading Soil Haul and Fine Grading/Trenching	15	0	246	7350	7/1/2023	7/15/2023	10
Fine Grading/Trenching	15	0	1	4	7/16/2023	11/3/2023	80
Building Construction 2023	138	57	0	0	11/4/2023	12/31/2023	40
Building Construction 2024	138	57	0	0	1/1/2024	1/27/2024	20
Building Construction 2024 and Parking Structure Construction 2024	276	114	0	0	1/28/2024	8/23/2024	150
Parking Structure Construction 2024 and Paving	153	57	0	0	8/24/2024	9/6/2024	10
Parking Structure Construction 2024 and Architectural Coating	166	57	0	0	9/7/2024	10/4/2024	20
Finishing/Landscaping	3	Ō	Ō	0	10/5/2024	11/1/2024	20
Maximum Daily Trips	276	114	246	7350			

Pavement Volume to Weight Conversion: VP1 Apple Office Project

		AC Mass (tons)	3,366	3,366
	AC Mass	(Ibs)	6,732,444	
Weight of Crushed	Asphalt	(lbs/cf) ³	89	
	Debris Volume	(cu. ft)	75,740	
Assumed	Thickness	(foot) ²	0.451	
	Total SF of	Area ¹	168,000	168,000
		Component	Asphalt Demo	Total

Notes:

¹ Total square feet to be demolished provided by Applicant.

² Based on average thickness of 5.41 inches as provided for a previous roadway widening project.

³ https://www.delmar.ca.us/DocumentCenter/View/5668/CalRecycle-Conversion-Table

Demo Haul Trip Calculation Source: CalEEMod User's Guide Version 2020.4, Appendix A *Conversion factors*

0.046 ton/SF 1.2641662 tons/cy 20 tons 15.82070459 CY 0.791035229 CY/ton

¹ CalEEMod default

Changes to the CalEEMod Defaults - Fleet Mix Operation 2024 Trips

General Office Building														
Default	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH	
FleetMix (Model Default)	0.572464	0.055653	0.18706	0.115672	0.020329	0.005102	0.007934	0.006404	0.0009	0.00038	0.024412	0.000914	0.002776	100%
Trips	2,260	220	739	457	80	20	31	25	4	2	96	4	11	3,948
Percent	84%			12%	4%									100%
without buses/MH	0.572464	0.055653	0.187060	0.115672	0.020329	0.005102	0.007934	0.006404	0	0	0.024412	0	0	100%
Percent	84%			12%	4%									100%
Adjusted without buses/MH	0.572464	0.055653	0.187060	0.115672	0.022870	0.005740	0.008926	0.007204	0.000000	0.000000	0.027463	0.000000	0.000000	
Percent adjusted	84%			12%	4%									100%
Assumed Mix	97.0%			2.00%	1.00%									100%
adjusted with Assumed	0.658989	0.064065	0.215333	0.020000	0.005112	0.001283	0.001995	0.001610	0.000000	0.000000	0.031614	0.000000	0.000000	100%
Percent Check:	97%			2%	1%									
Trips	2,602	253	850	79	20	5	8	4	0	0	125	0	0	3,948
TTIPS	3,830	203	000	79	39	5	0	6	0	0	120	0	0	3,740
	3,030			19	39									

3,948

Fleet mix for the project is based on the Caltrans Annual Average Daily Traffic near the project site during year 2019. Assumes a mix of approximately 97% passenger vehicles, 2% medium duty trucks, and 1% heavy duty trucks and buses.

					Trips	3,948								
Retail Space														
Default	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH	
FleetMix (Model Default)	0.572464	0.055653	0.18706	0.115672	0.020329	0.005102	0.007934	0.006404	0.0009	0.00038	0.024412	0.000914	0.002776	100%
Trips	2,260	220	739	457	80	20	31	25	4	2	96	4	11	3,948
Percent	84%			12%	4%									100%
without buses/MH	0.572464	0.055653	0.187060	0.115672	0.020329	0.005102	0.007934	0.006404	0	0	0.024412	0	0	100%
Percent	84%			12%	4%									100%
Adjusted without buses/MH	0.572464	0.055653	0.187060	0.115672	0.022870	0.005740	0.008926	0.007204	0.000000	0.000000	0.027463	0.000000	0.000000	
Percent adjusted	84%			12%	4%									100%
Assumed Mix	97.0%			2.00%	1.00%									100%
adjusted with Assumed	0.658989	0.064065	0.215333	0.020000	0.005112	0.001283	0.001995	0.001610	0.000000	0.000000	0.031614	0.000000	0.000000	100%
Percent Check:	97%			2%	1%									
Trips	2,602	253	850	79	20	5	8	6	0	0	125	0	0	3,948
	3,830			79	39									

Fleet mix for the project is based on the Caltrans Annual Average Daily Traffic near the project site during year 2019. Assumes a mix of approximately 97% passenger vehicles, 2% medium duty trucks, and 1% heavy duty trucks and buses.

Changes to the CalEEMod Defaults - Fleet Mix Existing Baseline 2024

Trips 1,823

Default	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH	
FleetMix (Model Default)	0.567742	0.054883	0.190502	0.11688	0.020652	0.004894	0.008289	0.006425	0.000966	0.000407	0.024432	0.00095	0.002978	100%
Trips	1,035	100	347	213	38	9	15	12	2	1	45	2	5	1,823
Percent	84%			12%	5%									100%
without buses/MH	0.567742	0.054883	0.190502	0.116880	0.020652	0.004894	0.008289	0.006425	0	0	0.024432	0	0	99%
Percent	84%			12%	4%									99%
Adjusted without buses/MH	0.567742	0.054883	0.190502	0.116880	0.023371	0.005538	0.009380	0.007271	0.000000	0.000000	0.027649	0.000000	0.000000	
Percent adjusted	84%			12%	5%									100%
Assumed Mix	97.0%			2.00%	1.00%									100%
adjusted with Assumed	0.655002	0.063318	0.219781	0.020000	0.005130	0.001216	0.002059	0.001596	0.000000	0.000000	0.031898	0.000000	0.000000	100%
Percent Check:	97%			2%	1%									
Trips	1,194	115	401	36	9	2	4	3	0	0	58	0	0	1,823
	1,768			36	18									

Fleet mix for the project is based on the Caltrans Annual Average Daily Traffic near the project sile during year 2019. Assumes a mix of approximately 97% passenger vehicles, 2% medium duty trucks, and 1% heavy duty trucks and buses.

Emissions Worksheet

Construction Emissions - DPM Input to Risk Tables

	tons/year	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive	Exhaust PM2.5	PM2.5 To
Total Unmitigated		0.73	4.59	4.95	0.01	0.59	0.17	0.76	PM2.5 0.19	0.16	0.35
Total Onlinitigated		0.73	4.35	4.55	0.01	0.35	0.17	0.70	0.15	0.10	0.35
FIGATED (Onsite)											
	tons/year	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 To
Total Onsite		0.64	3.47	4.07	0.01	0.25	0.16	0.41	0.10	0.15	0.25
Total Offsite		0.09	1.12	0.88	0.01	0.34	0.01	0.35	0.09	0.01	0.10
check											
ONSTRUCTION RISK ASS	SESSMENT - Unmitiga	ited Run							To although		
	tons/year	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 T
2023 Onsite		0.15	1.50	1.35	0.00	0.25	0.07	0.32	0.10	0.06	0.16
2023 Offsite		0.02	0.64	0.24	0.00	0.10	0.01	0.11	0.03	0.00	0.03
2024 Onsite		0.49	1.97	2.72	0.00	0.00	0.09	0.09	0.00	0.09	0.09
2024 Offsite		0.07	0.48	0.65	0.00	0.24	0.00	0.24	0.07	0.00	0.07
ONSTRUCTION REGION	AL EMISSIONS - Unm	itigated Run									
	tons/year	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive	Exhaust PM2.5	PM2.51
Total 2022	, ,	0.17	2.14	1.59	0.01	0.35	0.07	0.42	PM2.5 0.13	0.07	0.20
Total 2023 Total 2024		0.17	2.14	3.37	0.01	0.35	0.07	0.42	0.13	0.07	0.20
Construction Total		0.73	4.59	4.95	0.01	0.59	0.17	0.76	0.19	0.16	0.35
Check											
3.2 Demolition (Buildin Unmitigated Construct											
Ommigated Construct	tion on-site								Fugitius		
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5
Category	tons/yr										
Fugitive Dust						0.00	0.00	0.00	0.00	0.00	0.00
Offroad		0.02	0.21	0.20	0.00		0.01	0.01		0.01	0.01
Total		0.02	0.21	0.20	0.00	0.00	0.01	0.01	0.00	0.01	0.01
Unmitigated Construc	tion Off-Site								Fugitive		
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	PM2.5	Exhaust PM2.5	PM2.5 T
Category Hauling	tons/yr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Vendor		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.3 Building Demolitio	n Debris Haul - 2023										
Unmitigated Construc	tion On-Site								E		
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5
Category	tons/yr										
Fugitive Dust Off-Road		0.00	0.00	0.00	0.00	0.02	0.00 0.00	0.02	0.00	0.00	0.00
Total		0.00	0.00	0.00	0.00	0.02	0.00	0.02	0.00	0.00	0.00
	tion Off-Site								Fugitive		
Unmitigated Construc								PM10 Total	PM2.5	Exhaust PM2.5	PM2.5 1
-		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10				
Category	tons/yr					-		0.01	0.00	0.00	0.00
Category Hauling		0.00	0.04	0.01	0.00	0.01	0.00	0.01	0.00	0.00	
Category		0.00 0.00 0.00				-		0.01 0.00 0.00	0.00 0.00	0.00 0.00 0.00	0.00
Category Hauling Vendor		0.00 0.00	0.04 0.00	0.01 0.00	0.00 0.00	0.01 0.00	0.00 0.00	0.00	0.00	0.00	0.00
Category Hauling Vendor Worker	tons/yr	0.00 0.00 0.00	0.04 0.00 0.00	0.01 0.00 0.00	0.00 0.00 0.00	0.01 0.00 0.00	0.00 0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00
Category Hauling Vendor Worker Total	tons/yr n Debris Haul - 2023	0.00 0.00 0.00	0.04 0.00 0.00	0.01 0.00 0.00	0.00 0.00 0.00	0.01 0.00 0.00	0.00 0.00 0.00	0.00 0.00	0.00 0.00 0.00	0.00 0.00	0.00
Category Hauling Vendor Worker Total 3.4 Asphalt Demolitio r	tons/yr n Debris Haul - 2023	0.00 0.00 0.00	0.04 0.00 0.00	0.01 0.00 0.00	0.00 0.00 0.00	0.01 0.00 0.00	0.00 0.00 0.00	0.00 0.00	0.00 0.00 0.00 Fugitive	0.00 0.00	0.00
Category Hauling Vendor Worker Total 3.4 Asphalt Demolition Unmitigated Construct	tons/yr n Debris Haul - 2023	0.00 0.00 0.00 0.00	0.04 0.00 0.00 0.04	0.01 0.00 0.00 0.01	0.00 0.00 0.00 0.00	0.01 0.00 0.00 0.01 Fugitive PM10	0.00 0.00 0.00 0.00 Exhaust PM10	0.00 0.00 0.01 PM10 Total	0.00 0.00 0.00 Fugitive PM2.5	0.00 0.00 0.00 Exhaust PM2.5	0.00 0.00 0.00 PM2.5 1
Category Hauling Vendor Worker Total 3.4 Asphalt Demolition Unmitigated Construct Category Fugitive Dust	tons/yr n Debris Haul - 2023 tion On-Site	0.00 0.00 0.00 0.00	0.04 0.00 0.00 0.04 NOx	0.01 0.00 0.00 0.01	0.00 0.00 0.00 0.00	0.01 0.00 0.00 0.01	0.00 0.00 0.00 0.00 Exhaust PM10 0.00	0.00 0.00 0.01 PM10 Total 0.05	0.00 0.00 0.00 Fugitive	0.00 0.00 0.00 Exhaust PM2.5 0.00	0.00 0.00 0.00 PM2.5 1 0.01
Category Hauling Vendor Worker Total 3.4 Asphalt Demolition Unmitigated Construct Category Fugitive Dust Off-Road	tons/yr n Debris Haul - 2023 tion On-Site	0.00 0.00 0.00 0.00 ROG	0.04 0.00 0.00 0.04 NOx	0.01 0.00 0.00 0.01 CO	0.00 0.00 0.00 0.00 SO2	0.01 0.00 0.00 0.01 Fugitive PM10 0.05	0.00 0.00 0.00 0.00 Exhaust PM10 0.00 0.00	0.00 0.00 0.01 PM10 Total 0.05 0.00	0.00 0.00 0.00 Fugitive PM2.5 0.01	0.00 0.00 0.00 Exhaust PM2.5 0.00 0.00	0.00 0.00 PM2.5 0.02 0.00
Category Hauling Vendor Worker Total 3.4 Asphalt Demolition Unmitigated Construct Category Fugitive Dust Off-Road Total	tons/yr n Debris Haul - 2023 tion On-Site tons/yr	0.00 0.00 0.00 0.00	0.04 0.00 0.00 0.04 NOx	0.01 0.00 0.00 0.01	0.00 0.00 0.00 0.00	0.01 0.00 0.00 0.01 Fugitive PM10	0.00 0.00 0.00 0.00 Exhaust PM10 0.00	0.00 0.00 0.01 PM10 Total 0.05	0.00 0.00 0.00 Fugitive PM2.5	0.00 0.00 0.00 Exhaust PM2.5 0.00	0.00 0.00 PM2.5 0.02 0.00
Category Hauling Vendor Worker Total 3.4 Asphalt Demolition Unmitigated Construct Category Fugitive Dust Off-Road	tons/yr n Debris Haul - 2023 tion On-Site tons/yr	0.00 0.00 0.00 0.00 ROG 0.00	0.04 0.00 0.00 0.04 NOx	0.01 0.00 0.01 CO 0.00 0.00	0.00 0.00 0.00 0.00 SO2	0.01 0.00 0.00 0.01 Fugitive PM10 0.05	0.00 0.00 0.00 0.00 Exhaust PM10 0.00 0.00	0.00 0.00 0.01 PM10 Total 0.05 0.00 0.05	0.00 0.00 0.00 Fugitive PM2.5 0.01 0.01	0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00	0.00 0.00 PM2.5
Category Hauling Vendor Worker Total 3.4 Asphalt Demolition Unmitigated Construct Category Fugitive Dust Off-Road Total	tons/yr n Debris Haul - 2023 tion On-Site tons/yr	0.00 0.00 0.00 0.00 ROG	0.04 0.00 0.00 0.04 NOx	0.01 0.00 0.00 0.01 CO	0.00 0.00 0.00 0.00 SO2	0.01 0.00 0.00 0.01 Fugitive PM10 0.05	0.00 0.00 0.00 0.00 Exhaust PM10 0.00 0.00	0.00 0.00 0.01 PM10 Total 0.05 0.00	0.00 0.00 0.00 Fugitive PM2.5 0.01	0.00 0.00 0.00 Exhaust PM2.5 0.00 0.00	0.00 0.00 PIM2.5 1 0.01 0.00 0.01
Category Hauling Vendor Worker Total 3.4 Asphalt Demolition Unmitigated Construct Category Fugitive Dust Off-Road Total Unmitigated Construct Category	tons/yr n Debris Haul - 2023 tion On-Site tons/yr	0.00 0.00 0.00 0.00 ROG ROG	0.04 0.00 0.00 0.04 NOx 0.00 0.00 0.00	0.01 0.00 0.01 CO 0.00 0.00 0.00 CO	0.00 0.00 0.00 0.00 SO2 SO2 SO2	0.01 0.00 0.00 0.01 Fugitive PM10 0.05 Fugitive PM10	0.00 0.00 0.00 Exhaust PM10 0.00 0.00 0.00 Exhaust PM10	0.00 0.00 0.01 PM10 Total 0.05 0.00 0.05 PM10 Total	0.00 0.00 0.00 Fugitive PM2.5 0.01 0.01 Fugitive PM2.5	0.00 0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 Exhaust PM2.5	0.00 0.00 0.00 PM2.5 1 0.01 0.00 0.01 PM2.5 1
Category Hauling Vendor Worker Total 3.4 Asphalt Demolition Unmitigated Construct Category Fugitive Dust Off-Road Total Unmitigated Construct Category Hauling	tons/yr n Debris Haul - 2023 tion On-Site tons/yr	0.00 0.00 0.00 0.00 ROG 0.00 ROG 0.00	0.04 0.00 0.04 NOx 0.00 0.00 NOx 0.02	0.01 0.00 0.00 0.01 CO 0.00 0.00 CO 0.01	0.00 0.00 0.00 502 0.00 0.00 502 502 0.00	0.01 0.00 0.00 0.01 Fugitive PM10 0.05 0.05 Fugitive PM10 0.00	0.00 0.00 0.00 Exhaust PM10 0.00 0.00 Exhaust PM10 0.00	0.00 0.00 0.01 PM10 Total 0.05 0.00 0.05 PM10 Total 0.00	0.00 0.00 0.00 Fugitive PM2.5 0.01 Fugitive PM2.5 0.00	0.00 0.00 Exhaust PM2.5 0.00 0.00 Exhaust PM2.5 0.00	0.00 0.00 0.00 PM2.5 1 0.01 0.00 0.01 PM2.5 1
Category Hauling Vendor Worker Total 3.4 Asphalt Demolition Unmitigated Construct Category Fugitive Dust Off-Road Total Unmitigated Construct Category	tons/yr n Debris Haul - 2023 tion On-Site tons/yr	0.00 0.00 0.00 0.00 ROG ROG	0.04 0.00 0.00 0.04 NOx 0.00 0.00 0.00	0.01 0.00 0.01 CO 0.00 0.00 0.00 CO	0.00 0.00 0.00 0.00 SO2 SO2 SO2	0.01 0.00 0.00 0.01 Fugitive PM10 0.05 Fugitive PM10	0.00 0.00 0.00 Exhaust PM10 0.00 0.00 0.00 Exhaust PM10	0.00 0.00 0.01 PM10 Total 0.05 0.00 0.05 PM10 Total	0.00 0.00 0.00 Fugitive PM2.5 0.01 0.01 Fugitive PM2.5	0.00 0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 Exhaust PM2.5	0.00 0.00 0.00 PM2.5 T 0.01 0.00 0.01 PM2.5 T 0.01 0.00 0.00

3.5 Site Preparation - Unmitigated Construct											
Unmitigated Construc	tion On-Site	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5
Category Fugitive Dust	tons/yr					0.02	0.00	0.02	0.01	0.00	0.0
Off-Road		0.01	0.07	0.05	0.00		0.00	0.00		0.00	0.0
Total		0.01	0.07	0.05	0.00	0.02	0.00	0.02	0.01	0.00	0.0
Unmitigated Construc	tion Off-Site								Fueldue		
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5
Category Hauling	tons/yr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Vendor		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Worker		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3.6 Rough Grading - 2											
Unmitigated Construc	tion Un-Site	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive	Exhaust PM2.5	PM2.5
Category	tons/yr								PM2.5		
Fugitive Dust						0.03	0.00	0.03	0.01	0.00	0.0
Off-Road		0.02	0.18	0.15	0.00	0.03	0.01 0.01	0.01 0.04	0.01	0.01	0.0
Total		0.02	0.18	0.15	0.00	0.03	0.01	0.04	0.01	0.01	0.0
Unmitigated Construc	tion Off-Site								Fugitive		
Category	tons/yr	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	PM2.5	Exhaust PM2.5	PM2.5
Hauling	(01.5) yi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Vendor		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Worker Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3.7 Rough Grading So	il Haul - 2022										
Unmitigated Construct											
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5
Category Fugitive Dust	tons/yr					0.00	0.00	0.00	0.00	0.00	0.0
Off-Road		0.00	0.00	0.00	0.00		0.00	0.00		0.00	0.0
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.
Unmitigated Construc	tion Off-Site										
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5
Category	tons/yr	0.04	0.50	0.42	0.00	0.00	0.00	0.00	0.02	0.00	
Hauling Vendor		0.01 0.00	0.50	0.12 0.00	0.00	0.06 0.00	0.00 0.00	0.06	0.02	0.00	0.0
Worker		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Total		0.01	0.50	0.12	0.00	0.06	0.00	0.06	0.02	0.00	0.0
3.8 Fine Grading/Tren											
Unmitigated Construc	tion Un-Site	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive	Exhaust PM2.5	PM2.5
Category	tons/yr								PM2.5		
Fugitive Dust		0.00	0.01	0.00	0.00	0.14	0.00	0.14	0.07	0.00	0.0
Off-Road Total		0.08	0.81 0.81	0.66 0.66	0.00	0.14	0.03	0.03	0.07	0.03	0.0
Unmitigated Construc	tion Off-Site										
ommigated construc	tion on-site	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5
Category	tons/yr										
Hauling		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Vendor Worker		0.00	0.01 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Total		0.00	0.01	0.02	0.00	0.01	0.00	0.01	0.00	0.00	0.0
3.9 Building Construct	tion - 2023										
Unmitigated Construc	tion On-Site								Fugitive		
Catagony	handler	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	PM2.5	Exhaust PM2.5	PM2.5
Category Off-Road	tons/yr	0.03	0.23	0.30	0.00	0.00	0.01	0.01	0.00	0.01	0.0
Total		0.03	0.23	0.30	0.00	0.00	0.01	0.01	0.00	0.01	0.0
	tion Off-Site										
Unmitigated Construc		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5
Unmitigated Construc									F 1¥12.3		
Category	tons/yr										
Category Hauling	tons/yr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Category	tons/yr	0.00 0.00 0.01	0.00 0.05 0.00	0.00 0.02 0.06	0.00 0.00 0.00	0.00 0.01 0.02	0.00 0.00 0.00	0.00 0.01 0.02		0.00 0.00 0.00	0.0 0.0 0.0

3.9 Building Construct	ion - 2024										
Unmitigated Construc	tion On-Site										
		ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive	Exhaust PM2.5	PM2.5 Total
		ROG	NOX	co	302	Fugitive FIVITO	Exhidust Pivito	FIVI10 TOtal	PM2.5	EXHIBUST FIVIZ.5	FIVI2.5 TOtal
Category	tons/yr										
Off-Road		0.10	0.92	1.26	0.00	0.00	0.04	0.04	0.00	0.04	0.04
Total		0.10	0.92	1.26	0.00	0.00	0.04	0.04	0.00	0.04	0.04
Unmitigated Construc	tion Off-Site										
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total
Category	tons/yr								PIVIZ.5		
Hauling	cons/ yr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Vendor		0.01	0.22	0.07	0.00	0.03	0.00	0.03	0.01	0.00	0.01
Worker		0.03	0.02	0.24	0.00	0.09	0.00	0.09	0.02	0.00	0.02
Total		0.03	0.23	0.31	0.00	0.12	0.00	0.12	0.03	0.00	0.03
3.10 Parking Structure	Construction - 2024										
Unmitigated Construc											
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive	Exhaust PM2.5	PM2.5 Total
					302	. OPICIAC LIMITO			PM2.5		
Category	tons/yr										
Off-Road		0.11	0.97	1.34	0.00	0.00	0.05	0.05	0.00	0.04	0.04
Total		0.11	0.97	1.34	0.00	0.00	0.05	0.05	0.00	0.04	0.04
Unmitigated Construc	tion Off-Site										
									Fugitive		
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total
Category	tons/yr								11012.5		
Hauling	cons/ 41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Vendor		0.01	0.23	0.07	0.00	0.03	0.00	0.03	0.01	0.00	0.01
Worker		0.03	0.02	0.26	0.00	0.09	0.00	0.09	0.02	0.00	0.02
Total		0.03	0.25	0.33	0.00	0.12	0.00	0.12	0.03	0.00	0.04
3.11 Paving - 2024											
Unmitigated Construc	tion Un-site								Fugitive		
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	PM2.5	Exhaust PM2.5	PM2.5 Total
Category	tons/yr								11012.5		
Off-Road	cons/ 41	0.00	0.05	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving		0.00					0.00	0.00		0.00	0.00
Total		0.01	0.05	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Unmitigated Construc	tion Off-Site										
									Fugitive		
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	PM2.5	Exhaust PM2.5	PM2.5 Total
Category	tons/yr								11112.5		
Hauling		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Vendor		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.12 Architectural Coa											
Unmitigated Construc	tion On-Site								Fugitive		
		ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	PM2.5	Exhaust PM2.5	PM2.5 Total
Category	tons/yr										
Architectural Coating		0.27				0.00	0.00	0.00	0.00	0.00	0.00
Off Road		0.00	0.01	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.27	0.01	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Unmitigated Construc	tion Off-Site										
		ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive	Exhaust PM2.5	PM2.5 Total
Cotogon	the second s		-						PM2.5		
Category	tons/yr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling Vendor		0.00 0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
Worker		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		0.00	0.00	0.01	0.00	5.00	0.00	0.00	5.00	0.00	0.00

scaping - 2024											
uction On-Site											
	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	
tons/yr											
	0.00	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Unmitigated Construction Off-Site											
	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	
tons/yr											
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	tons/yr uction Off-Site	uction On-Site ROG tons/yr 0.00 0.00 uction Off-Site ROG tons/yr 0.00 0.00 0.00	uction On-Site ROG NOX tons/yr 0.00 0.01 0.00 0.01 uction Off-Site ROG NOX tons/yr 0.00 0.00 0.00 0.00	ROG NOx CO tons/yr 0.00 0.01 0.03 uction Off-Site tons/yr ROG NOx CO uction Off-Site 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ROG NOx CO SO2 tons/yr 0.00 0.01 0.03 0.00 uction Off-Site ROG NOx CO SO2 tons/yr ROG NOx CO SO2 uction Off-Site	NOx CO SO2 Fugitive PM10 tons/yr 0.00 0.01 0.03 0.00 0.00 0.00 0.01 0.03 0.00 0.00 uction Off-Site V V V V tons/yr ROG NOx CO SO2 Fugitive PM10 tons/yr V V CO SO2 Fugitive PM10 tons/yr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	NOx CO SO2 Fugitive PM10 Exhaust PM10 tons/yr 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 uction Off-Site Kong CO SO2 Fugitive PM10 Exhaust PM10 tons/yr CO SO2 Fugitive PM10 Exhaust PM10 tons/yr <	Nor CO SO2 Fugitive PM10 Exhaust PM10 PM10 Total tons/yr 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 uction Off-Site	uction On-Site ROG NOx CO SO2 Fugitive PM10 Exhaust PM10 PM10 Total Fugitive PM2.5 tons/yr 0.00 0.01 0.03 0.00	uction On-Site ROG NOx CO SO2 Fugitive PM10 Exhaust PM10 PM10 Total Fugitive PM2.5 Exhaust PM2.5	

Criteria Air Pollutant Emissions Summary - Construction Unmitigated

Annual emissions divided by total construction duration to obtain average daily emissions. Average construction emissions accounts for the duration of each construction phase and the time each piece of construction equipment is onsite.

Calendar Days								
551								
Unmigated Run - with Best Control Measures for Fugitive Dust								
Exhaust	PM10	Fugitive	Exhaust	PM2.5				
PM10	Total	PM2.5	PM2.5	Total				
0.85	4	0.99	0.80	2				
82	54	BMP	54	NA				
No	No	NA	No	NA				
	PM10 0.85 82	PM10 Total 0.85 4 82 54	PM10 Total PM2.5 0.85 4 0.99 82 54 BMP	PM10 Total PM2.5 PM2.5 0.85 4 0.99 0.80 82 54 BMP 54				

Average Daily Emissions and Emission Rates

Onsite Construction PM10 Exhaust Emissions ¹					Onsite Construc			
					Average Daily	Average Daily		
	Average Daily	Average Daily			Emissions	Emissions	Emission Rate	
Year	Emissions (lbs/day)	Emissions (lbs/hr)	Emission Rate (g/s)		(lbs/day)	(lbs/hr)	(g/s)	
2023	0.77	9.63E-02	1.21E-02		0.71	8.92E-02	1.12E-02	
2024	0.83	1.04E-01	1.31E-02		0.79	9.86E-02	1.24E-02	
Offsite Co	nstruction PM10 Exh	aust Emissions ¹			Offsite Construc	aust Emissions ²		
						Hauling		
		Hauling Emissions			Average Daily	Emissions		
	Average Daily	w/in 1,000ft	Emission Rate	Emission Rate	Emissions	w/in 1,000ft	Emission Rate	Emissio

	Average Daily	W/In 1,000ft	Emission Rate	Emission Rate	Emissions	w/in 1,000π	Emission Rate	Emission	
Year	Emissions (lbs/day)	(Ibs/day) ³	(lbs/hr)	(g/s)	(Ibs/day)	(lbs/day) ³	(lbs/hr)	Rate (g/s)	
2023	5.85E-02	2.09E-03	2.62E-04	3.30E-05	5.58E-02	2.00E-03	2.49E-04	3.14E-05	
2024	3.22E-02	1.15E-03	1.44E-04	1.81E-05	3.05E-02	1.09E-03	1.37E-04	1.72E-05	
Note: Emissions evenly distributed over 52 modeled volume sources.									
						Year	Workdays	Risk Scalar ⁵	
Hauling L	ength (miles)		20	miles		2023	175	0.67	
Haul Leng	th within 1,000 ft of Site (mile) ³	0.72	miles		2024	220	0.84	

hours

Hours per work day (7:00 AM to 4:00 PM, 1-hour of 8 breaks)⁴

¹ DPM emissions taken as PM₁₀ exhaust emissions from CalEEMod average daily emissions.

 $^2\,\mathrm{PM}_{2.5}$ emissions taken as $\mathrm{PM}_{2.5}$ exhaust emissions from CalEEMod average daily emissions.

³ Emissions from CalEEMod offsite average daily emissions, which is based on proportioned haul truck trip distances, are adjusted to evaluate emissions from the 0.72-mile route within 1,000 of the project site.
⁴ Work hours applied in By Hour/Day (HRDOW) variable emissions module in air dispersion model (see App B - Air Dispersion Model Output).

⁵ Risk scalars determined for each year of construction to adjust receptor exposures to the exposure durations for each construction year (see App C - Risk Calculations).

Phase Name	Start Date	End Date	CalEEMod Days	Total Days
Demolition (Building + Asphalt)	5/1/2023	5/26/2023	20	25
Building Demolition Debris Haul	5/17/2023	5/23/2023	5	6
Asphalt Demolition Debris Haul	5/17/2023	5/26/2023	8	9
Site Preparation	5/27/2023	6/2/2023	5	6
Rough Grading	6/3/2023	6/30/2023	20	27
Rough Grading Soil Haul (import &				
export)	6/3/2023	7/15/2023	30	42
Fine Grading/Trenching	7/1/2023	11/3/2023	90	125
Building Construction 2023	11/4/2023	12/31/2023	40	57
Building Construction 2024	1/1/2024	8/23/2024	170	235
Parking Structure Construction	1/28/2024	10/4/2024	180	250
Paving	8/24/2024	9/6/2024	10	13
Architectural Coating	9/7/2024	10/4/2024	20	27
Finishing/Landscaping	10/5/2024	11/1/2024	20	27

	Number of Construction Days Per Year						
2023	5/1/2023	12/31/2023	175				
2024	1/1/2024	11/1/2024	220				
		CONSTRUCTION DAYS	395				

Total Construction Days Per Year								
1/1/2023	12/31/2023	260						
1/1/2024	12/31/2024	262						
	TOTAL DAYS	522						

Criteria Air Pollutant Emissions Summary - Existing Buildout (Year 2024)

Existing Office Building Mitigated Operational

	ROG	NOx				Exhaust PM10	PM10 Total		Exhaust PM2.5	PM2.5 Total
Category t	ons/yr									
Area	1	0					0			0
Energy	0	0					0			0
Mobile	1	1			2		2	1		1
Waste							0			0
Water							0			0
Total	1	1			2		2	1		1
BAAQMD Threshold (T/YR)	10	10	NA	NA	NA	NA	15	NA	NA	10
Exceeds thresholds	No	No					No			No

Criteria Air Pollutant Emissions Summary - Existing Buildout (Year 2024) Annual emissions divided by 365 days/year to obtain average daily emissions.

Proposed Project

lbs/day	ROG	NOx				Exhaust PM10	PM10 Total		Exhaust PM2.5	PM2.5 Total
Area	4	0					0			0
Energy	0	1	1				0			0
Mobile	4	3	45		11		11			3
Waste	0	0					0			0
Water	0	0					0			0
Total	8	4	46	0	11	0	11	3	0	3
BAAQMD Threshold (Daily)	54	54					82			54
Exceeds Threshold	No	No					No			No

Criteria Air Pollutant Emissions Summary - Operations, 2024

Proposed Office Building

Mitigated Operational

	ROG	NOx				Exhaust PM10	PM10 Total		Exhaust PM2.5	PM2.5 Total
Category t	ons/yr									
Area	1	0					0			0
Energy	0	0					0			0
Mobile	2	1			4		4	1		1
Waste							0			0
Water							0			0
Total	3	1			4		4	1		1
BAAQMD Threshold (T/YR)	10	10	NA	NA	NA	NA	15	NA	NA	10
Exceeds thresholds	No	No					No			No

Criteria Air Pollutant Emissions Summary - Operations

Annual emissions divided by 365 days/year to obtain average daily emissions.

Proposed Project										
	ROG	NOx				Exhaust	PM10		Exhaust	PM2.5
lbs/day	RUG	NUX					Total			Total
Area	6	0					0			0
Energy	0	1	1				0			0
Mobile	8	6			20		20			5
Waste	0	0					0			0
Water	0	0					0			0
Total	15	8	87	0	20	0	20	5	0	6
BAAQMD Threshold (Daily)	54	54					82			54
Exceeds Threshold	No	No					No			No

GHG Emissions Inventory

Operation*

	Existing Conditions (2021)		Proposed Project (2024)			Percent
	MTCO ₂ e ^{**}	Percent of Emissions	MTCO ₂ e**	Percent of Emissions	Net Change	Proportion
Area	0	0.0%	0	0.0%	0	0.0%
Energy	154	9.2%	249	7.7%	95	6.1%
Mobile	1,413	84.2%	2,762	85.2%	1,349	86.4%
Solid Waste	112	6.7%	224	6.9%	112	7.1%
Water	0	0.0%	6	0.2%	6	0.4%
Total	1,679	100%	3,241	100%	1,562	100%

*CalEEMod, Version 2020.4

** MTCO₂e=metric tons of carbon dioxide equivalent.

CalEEMod Construction Model

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

VP1 Apple Office Project Santa Clara County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	282.32	1000sqft	1.78	282,320.00	0
Enclosed Parking with Elevator 213	Enclosed Parking with Elevator 213.08 1000sqft 0.81 213,080.00 0	.08 1000sqft 0.81 213,080.00 0	0.81	213,080.00	0
Other Non-Asphalt Surfaces 104	104.60	.60 1000sqft 2.40 104,602.00 0	2.40	104,602.00	0
Parking Lot	129.59	1000sqft	2.98	129,591.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	58
Climate Zone	4			Operational Year	2024
Utility Company	Silicon Valley Clean Energy				
CO2 Intensity (Ib/MWhr)	2	CH4 Intensity (Ib/MWhr)	0	N2O Intensity (Ib/MWhr)	0
1.3 User Entere	1.3 User Entered Comments & Non-Default Data	Default Data			

Project Characteristics -

Land Use - Based on applicant info., see assumptions file.

Construction Phase - See assumptions file

Off-road Equipment -

Off-road Equipment - No additional equipment required for debris haul

Off-road Equipment - Crane is assumed to operate 1 hour per day, 5 days per week for duration of building construction phase, see assumptions file.

Off-road Equipment - No additional equipment required for debris haul

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Off-road Equipment -

Off-road Equipment -

Off-road Equipment - 1 excavator added based on equipment mix of projects of a similar size.

Off-road Equipment - Crane is assumed to operate 1 hour per day, 5 days per week for duration of the parking structure construction phase, see assumptions file. Off-road Equipment -

Off-road Equipment -

Off-road Equipment - No additional equipment required for soil haul

Off-road Equipment -

Trips and VMT - Assume 4 vt/day/water truck, see assumptions file

Demolition -

Grading -

Architectural Coating - VOC content provided by Applicant, see assumptions file

Construction Off-road Equipment Mitigation - BAAQMD Construction BMPs, see assumptions file

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	ConstArea_Nonresidential_Exterior	141,160.00	5,327.00
tblArchitecturalCoating	ConstArea_Nonresidential_Interior	423,480.00	189,048.00
tblArchitecturalCoating	ConstArea_Parking	26,836.00	7,775.00
	EF_Nonresidential_Exterior	150.00	157.00
tblArchitecturalCoating	EF_Nonresidential_Interior	100.00	50.00
tblAreaCoating	Area_Nonresidential_Exterior	141160	38865
tblAreaCoating	Area_Nonresidentia_Interior	423480	116595
tblAreaCoating	Area_Parking	26836	16167
tblConstDustMitigation	CleanPavedRoadPercentReduction	0	6
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblConstructionPhase	NumDays	230.00	210.00
	NumDays	23	÷
tblConstructionPhase	NumDays	20.00	5.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblConstructionPhase	NumDays	20.00	8.00
tblConstructionPhase	NumDays	20.00	30.00
tblConstructionPhase	NumDays	20.00	90.00
tblConstructionPhase	NumDays	20.00	10.00
tblConstructionPhase	NumDays	10.00	5.00
tblGrading	MaterialExported	00.00	58,393.00
tblGrading	MaterialImported	0.00	364.00
tblLandUse	LandUseSquareFeet	104,600.00	104,602.00
tblLandUse	LandUseSquareFeet	129,590.00	129,591.00
tblLandUse	LotAcreage	6.48	1.78
tblLandUse	LotAcreage	4.89	0.81
tblLandUse	LotAcreage	2.97	2.98
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tbiOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tbiOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	UsageHours	7.00	1.00
tblOffRoadEquipment	UsageHours	7.00	1.00
tblSolidWaste	SolidWasteGenerationRate	262.56	72.29
tblTripsAndVMT	HaulingTripNumber	333.00	649.00
tblTripsAndVMT	Hauling TripNumber	974.00	337.00

Page 1 of 1

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

7,346.00	4.00	4.00	4.00	4.00	57.00			138.00	13,815,244.23	8,467,407.75
7,345.00	VendorTripNumber 0.00 4.00	VendorTripNumber 0.00 4.00	VendorTripNumber 0.00 4.00			120.00		278.00	50,177,791.73	30,754,130.42
									IndoorWaterUseRate	OutdoorWaterUseRate
tblTripsAndVMT		tblTripsAndVMT	tblTripsAndVMT	tblTripsAndVMT	tbiTripsAndVMT	tblTripsAndVMT	tblTripsAndVMT	tblTripsAndVMT	tblWater	tblWater

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

SO2 Fugitive Exhaust PM10 Total Fugitive Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 N2O CO2e PM10 PM10 PM2.5 PM2.5 PM2.5 PM2.5 Total Bio- CO2 Total CO2 CH4 N2O CO2e	tons/yr MT/yr	5.6200e- 0.6934 0.0725 0.7659 0.0672 0.3329 0.0000 524.7851 524.7851 0.0769 0.0443 003 0.03 0.3329 0.0000 524.7851 524.7851 0.0769 0.0443	16 7.7300e- 0.2603 0.0954 0.3556 0.0707 0.0901 0.1609 0.0000 695.1266 695.1266 0.0873 0.0325 706.9951 003	16 7.7300e- 0.6934 0.7659 0.2656 0.0901 0.3329 0.0000 695.1266 0.0873 0.0443 706.9951 003 003 0.0000 695.1266 0.0873 0.0443 706.9951
Fugitive Exhaust PM10 PM10	tons/yr	0.6934 0.0725	0.2603 0.0954	0.6934 0.0954
NOx CO SO2		1.5862	2.4492 3.3686 7.7300 003	2.4492 3.3686 7.7300 003
ROG	Year	0.1693	2024 0.5600 2.4	Maximum 0.5600 2.4

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	XON	00	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total PM2.5	Bio- CO2	Bio- CO2 NBio- CO2 Total CO2	Total CO2	CH4	N2O	CO2e
Year					ton;	tons/yr							MT/yr	/yr		
2023	0.1693		1.586	5.6200e- 003	0.3517	0.0725	0.4242	0.1289		0.1962		524.7848	524.7848	0.0769		539.9111
2024	0.5600	2.4492	3.368	7.7300e- 003	0.2410	0.0954	0.3363	0.0660	0.0901	0.1561	0.0000	695.1261	695.1261	0.0873	0.0325	706.9946
Maximum	0.5600	2.4492	3.3686	7.7300e- 003	0.3517	0.0954	0.4242	0.1289	0.0901	0.1962	0.0000	695.1261	695.1261	0.0873	0.0443	706.9946

C O 2e	0.00								
N20	0.00								
CH4	0.00	ter)							
Total CO2	0.00)X (tons/quar							
NBio-CO2	0.00	ed ROG + NO	1.6079	0.6536	0.5463	0.9779	0.9912	0.7497	1.6079
Bio- CO2	0.00	Maximum Mitigated ROG + NOX (tons/quarter)							
PM2.5 Total Bio- CO2 NBio-CO2 Total CO2 PM2.5	28.65	Maxir							
Exhaust PM2.5	0.00	arter)							
Fugitive PM2.5	42.06	OX (tons/qu							
Exhaust PM10 Total PM10	32.19	Maximum Unmitigated ROG + NOX (tons/quarter)	1.6079	0.6536	0.5463	0.9779	0.9912	0.7497	1.6079
Exhaust PM10	0.00	um Unmitiga							
Fugitive PM10	37.86	Maximu							
S02	0.00	End Date	2023	-2023	1-31-2024	2024	2024	2024	lest
co	0.00	End	7-31-2023	10-31-2023	1-31-	4-30-2024	7-31-2024	9-30-2024	Highest
NOX	0.00	Start Date	5-1-2023	8-1-2023	11-1-2023	2-1-2024	5-1-2024	8-1-2024	
ROG	0.00	Sta	ю́	ò	11-	5-	ئ	ò	
	Percent Reduction	Quarter	-	7	3	4	5	Q	

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.0 Construction Detail

Construction Phase

Phase Description								210 h				20
Num Days	20 a	5 b	с 8	5 d	20 e	30 f	90 g	210 h	180 i	10 j	20 K	20
Num Days Week	2	5	5	5	5	2	2	2	5	5	5	2
End Date	5/26/2023	5/23/2023	5/26/2023	6/2/2023	6/30/2023	7/15/2023	11/3/2023	8/23/2024	10/4/2024	9/6/2024	10/4/2024	11/1/2024
Start Date	5/1/2023	5/17/2023	5/17/2023	5/27/2023	6/3/2023	6/3/2023	7/1/2023	11/4/2023	1/28/2024	8/24/2024	9/7/2024	10/5/2024
Phase Type	Demolition	Demolition	Demolition	Site Preparation	Grading	Grading	Grading	Building Construction	Building Construction	Paving	Architectural Coating	Trenching
Phase Name	Demolition (Building + Asphalt)	Building Demolition Debris Haul	Asphalt Demolition Debris Haul				Ĩ	Ĩ	I		1	Finishing/Landscaping
Phase Number	-	2	e	4	1]		E		8	<u> </u>	12

Acres of Grading (Site Preparation Phase): 7.5

Acres of Grading (Grading Phase): 20

Acres of Paving: 6.19

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 189,048; Non-Residential Outdoor: 5,327; Striped Parking Area: 7,775

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition (Building + Asphalt)	Concrete/Industrial Saws	-	8.00	81	0.73
Demolition (Building + Asphalt)	Excavators	3	8.00	158	0.38
Demolition (Building + Asphalt)	Rubber Tired Dozers	2	8.00	247	0.40
Building Demolition Debris Haul	Concrete/Industrial Saws	0	8.00	81	0.73
Building Demolition Debris Haul	Excavators	0	8.00	158	0.38
Building Demolition Debris Haul	Rubber Tired Dozers	0	8.00	247	0.40
Asphalt Demolition Debris Haul	Concrete/Industrial Saws	0	8.00	81	0.73
Asphalt Demolition Debris Haul	Excavators	0	8.00	158	0.38
Asphalt Demolition Debris Haul	Rubber Tired Dozers	0	8.00		0.40
Site Preparation	Rubber Tired Dozers	S	8.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	4	8.00	16	0.37
Rough Grading	Excavators	-	8.00	158	0.38
	Graders	~	8.00	187	0.41
Rough Grading	Rubber Tired Dozers	~	8.00	247	0.40
Rough Grading	Tractors/Loaders/Backhoes	S	8.00	26	0.37
Rough Grading Soil Haul	Excavators	0	8.00	158	0.38
Rough Grading Soil Haul	Graders	0	8.00	187	0.41
Rough Grading Soil Haul	Rubber Tired Dozers	0	8.00	247	0.40
Rough Grading Soil Haul	Tractors/Loaders/Backhoes	0	8.00	67	0.37
Fine Grading/Trenching	Excavators	L	8.00	158	0.38
Fine Grading/Trenching	Graders	L	8.00	187	0.41
Fine Grading/Trenching	Rubber Tired Dozers	L	8.00	247	0.40
Fine Grading/Trenching	Tractors/Loaders/Backhoes	3	8.00	26	0.37
Building Construction	Cranes	L	1.00	231	0.29
Building Construction	Forklifts	3	8.00	89	0.20

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

		1			0.74
i.	Tractors/Loaders/Backhoes	3	7.00		0.37
	Welders	~			
		-			0.29
Parking Structure Construction	Forklifts	3	8.00	89	0.20
	Generator Sets	L	8.00	84	0.74
	Tractors/Loaders/Backhoes	3	7.00	26	0.37
	Welders	Ł	8.00	46	0.45
	Pavers	2	8.00	130	0.42
		2	8.00	132	0.36
		2	8.00	80	0.38
	Air Compressors	1	6.00	78	0.48
Finishing/Landscaping	Excavators	1	8.00	158	0.38

Page 1 of 1

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition (Building + Asphalt)	G	15.00	4.00	0.0	10.80	7.30	20.00	20.00 LD_Mix	HDT_Mix	HHDT
Building Demolition Debris Haul	0	00.0	00.0	649.00	10.80	7.30	20.00	20.00 LD_Mix	HDT_Mix	ННDT
Asphalt Demolition Debris Haul	0	0.00	0.00	337.00	10.80	7.30	20.00	20.00 LD_Mix	HDT_Mix	ННDT
Site Preparation	7	18.00	4.00	0.00	10.80	7.30	20.00	20.00 LD_Mix	HDT_Mix	HHDT
Rough Grading	9	15.00	4.00	0.00	10.80	7.30	20.00	20.00 LD_Mix	HDT_Mix	HHDT
Rough Grading Soil Haul		0.00	0.00	7,346.00		7.30	20.00	20.00 LD_Mix	HDT_Mix	ННDT
Fine Grading/Trenching	9	15.00	4.00	0.00	10.80	7.30	20.00	20.00 LD_Mix	HDT_Mix	ННDT
Building Construction	6	138.00	57.00	0.00	10.80	7.30	20.00	20.00 LD_Mix	HDT_Mix	HHDT
Parking Structure Construction	0	138.00	57.00	0.00	10.80	7.30	20.00	20.00 LD_Mix	HDT_Mix	ННDT
Paving	9	15.00	0.00	0.00	10.80	7.30	20.00	20.00 LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	28.00	0.00	0.00	10.80	7.30	20.00	20.00 LD_Mix	HDT_Mix	ННDT
Finishing/Landscaping	-	3.00	0.00	0.00	10.80	7.30	20.00	20.00 LD_Mix	HDT_Mix	ННDT

3.1 Mitigation Measures Construction

Replace Ground Cover

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

Clean Paved Roads

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied 3.2 Demolition (Building + Asphalt) - 2023

Unmitigated Construction On-Site

		_		
CO2e			34.2301	34.2301
N2O		0.0000	0.0000	0.000
CH4	MT/yr	0.0000	9.5200e- 003	9.5200e- 003
Total CO2	MT	0.0000	33.9921	33.9921
NBio- CO2			33.9921	33.9921
Bio- CO2		0.0000	0.0000	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.000.0	9.2800e-003 0.0000	9.2800e- 9.2800e-003 0.0000 003
Exhaust PM2.5		0.0000	9.2800e- 003	9.2800e- 003
Fugitive PM2.5		0.0000		0.000
PM10 Total		0.0000	9.9800e- 003	9.9800e- 003
Exhaust PM10	tons/yr	0.0000	9.9800e- 003	9.9800e- 003
Fugitive PM10	tons	0.0000	4	0.000
S02			3.9000 004	3.9000e- 004
со			0.1964	0.1964
NOX			0.2148	0.2148
ROG			0.0227	0.0227
	Category	Fugitive Dust	Off-Road	Total

	ROG	NOX	со	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	C02e
Category					tons/yr	/yr							MT/yr	/yr		
Hauling	0.0000	0.0000	0000.0	0.0000	0.0000			0.0000 0.0000 0.0000	0.0000	0.0000			0.0000 0.0000	0.0000	0.0000	0.0000
Vendor	4.0000e- 005	1.7800e- 003	1.7800e- 5.6000e-004 1.0000e- 2.6000e-004 1.0000e- 003 005 005 005	1.0000e- 005	2.6000e-004	1.0000e- 005	2.7000e- 004	8.0000e- 005	.0000e- 005	9.0000e-005 0.0000	0.0000	0.7953	0.7953		1.2000e-004 0.8306	0.8306
Worker	3.7000e- 004	2.6000e- 004	3.7000e- 2.6000e- 3.3500e-003 1.0000e- 004 004 004 005	1.0000e- 005	1.1900e-003 1.0000e- 005	1.0000e- 005	1.2000e- 003	3.2000e- 004	.0000e- 005	3.2000e-004	0.0000	0.9057	0.9057	3.0000e- 005	3.0000e-005 0.9139	0.9139
Total	4.1000e- 004	2.0400e- 003	4.1000e- 2.0400e- 3.9100e-003 2.0000e- 004 003 003 005	2.0000e- 005	1.4500e-003 2.0000e- 005		1.4700e- 003	4.0000e- 004	2.0000e- 005	2.0000e- 4.1000e-004 005	0.0000	1.7010	1.7010	5.0000e- 005	1.5000e-004	1.7444

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigated Construction On-Site

	_	_		
CO2e		0.0000	34.2300	34.2300
N2O		0.0000	0.0000	0.000
CH4	/yr	0.0000	9.5200e- 003	9.5200e- 003
Total CO2	MT/yr	0.0000	33.9920	33.9920
NBio- CO2 Total CO2		0.0000	33.9920	33.9920
Bio- CO2		0.0000	0.0000	0.000
Exhaust PM2.5 Total Bio- CO2 PM2.5		0.0000	9.2800e- 9.2800e-003 003	9.2800e- 9.2800e-003 0.0000 003
Exhaust PM2.5			9.2800e- 003	9.2800e- 003
Fugitive PM2.5				0.000
PM10 Total		0.0000	9.9800e- 003	9.9800e- 003
Exhaust PM10	tons/yr	0000.0	9.9800e- 003	9.9800e- 003
Fugitive PM10		0.0000		0.0000
SO2			3.9000e- 004	3.9000e- 004
со			0.1964	0.1964
XON			0.2148	0.2148
ROG			0.0227	0.0227
	Category	Fugitive Dust	Off-Road	Total

CO2e		0.0000		005 0.9139	004 1.7444
N20				3.0000e-005	1.5000e-004
CH4	MT/yr			3.0000e- 005	5.0000e- 005
Total CO2	M		0.7953	0.9057	1.7010
NBio- CO2				0.9057	1.7010
Bio- CO2		0.0000		0.0000	0.000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	8.0000e-005	3.0000e-004	2.0000e- 3.8000e-004 005
Exhaust PM2.5			1	1.0000e- 005	
Fugitive PM2.5		0.0000	7.0000e- 005	2.9000e- 004	3.6000e- 004
PM10 Total		0.0000	2.6000e- 004	1.1000e- 003	1.3600e- 003
Exhaust PM10	s/yr	0.0000	1.0000e- 005	1.0000e- 005	2.0000e- 005
Fugitive PM10	tons/yr	0.0000		1.1000e-003 1.0000e- 005	1.3500e-003 2.0000e- 005
S02		0.0000	1.0000e- 005	1.0000e- 005	2.0000e- 005
СО		0000.0	1.7800e- 5.6000e-004 003	3.3500e-003 1.0000e- 005	4.1000e- 2.0400e- 3.9100e-003 2.0000e- 004 003 005 005
NOX				2.6000e- 004	2.0400e- 003
ROG				3.7000e- 004	4.1000e- 004
	Category	Hauling	Vendor	Worker	Total

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied 3.3 Building Demolition Debris Haul - 2023

Unmitigated Construction On-Site

0		0	0	0
C02e			0.0000	0.000
N2O			0.0000	0.0000
CH4	MT/yr		0.0000	0.0000
Total CO2	ΤM	0.0000	0.0000	0.0000
NBio- CO2		0.0000	0.0000	0.000
Bio- CO2		0.0000	0.0000	
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5			0.0000	0.0000 5.4500e-003 0.0000
			0.0000	
Fugitive PM2.5		5.4500e- 003		5.4500e- 003
Exhaust PM10 Total Fugitive PM10 PM2.5		0.0360	0.0000	0.0360
Exhaust PM10	tons/yr	0.0000	0.0000	0.0000
Fugitive PM10	ton	0.0360		0.0360
S02			0.0000	0.0000
CO			0.0000	0.0000
NOX			0.0000	0.000
ROG			0.0000	0.000
	Category	Fugitive Dust	Off-Road	Total

PM2.5 Total Bio-CO2 NBio-CO2 Total CO2 CH4 N20 CO2e PM2.5	MT/yr	.4000e- 1.8600e-003 0.0000 19.4328 19.4328 6.6000e- 3.0800e-00 004 004	00000.0 00000.0 00000.0 00000.0	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	с, Ч
		000e- 3.08 004			3000e- 3.080 004
	MT/yr				
200-00A		19.4328		0.0000	19.4328
BIO- CO2		0.0000	0.0000	0.0000	0.0000
PM2.5 Lotal		1.8600e-003	0000.0	0000.0	1.8600e-003
Exhaust PM2.5		3.4000e- 004	0.0000	0.0000	3.4000e- 004
Fugitive PM2.5		1.5100e- 003	0.0000	0.0000	1.5100e- 003
PM10 Total		5.860	0.0000	0.0000	5.8600e- 003
Exhaust PM10	tons/yr	3.6000e- 004	0.0000	0.0000	3.6000e- 004
Fugitive PM10	tons			0.0000	2.0000e- 5.5100e-003 3.6000e- 004 004 004
S02		2.0000e- 004		0.0000	2.0000e- 004
CO		0.0102	0.0000	0.0000	0.0102
NOX		6.8000e- 0.0441 004	0.0000	0.0000	0.0441
ROG			-	0.0000	6.8000e- 004
	Category	Hauling	Vendor	Worker	Total

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigated Construction On-Site

	ROG	NOX	со	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2	Bio- CO2	NBio- CO2 Total CO2	Total CO2	CH4	N2O	CO2e
Category					tons/yr	s/yr							MT/yr	/yr		
Fugitive Dust					0.0154	0.0000	0.015		0.0000	0.0000 2.33006-003 0.0000		0.0000	0000.0	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0154	0.0000	0.0154	2.3300e- 003	0.0000	2.3300e-003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOX	со	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons/yr	s/yr							MT/yr	/yr		
Hauling	6.8000e- 004	0.0441	0.0102	2.0000e- 004			5.4900e- 003		3.4000e- 004	3.4000e- 1.7600e-003 004	0.0000	19.4328		6.6000e- 004		20.3674
Vendor	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	6.8000e- 004	0.0441	0.0102	2.0000e- 004	2.0000e- 5.1400e-003 3.6000e- 004 004 004	3.6000e- 004	5.4900e- 003	1.4200e- 003	3.4000e- 004	3.4000e- 1.7600e-003 004	0.0000	19.4328	19.4328	6.6000e- 004	6.6000e- 3.0800e-003 20.3674 004	20.3674

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.4 Asphalt Demolition Debris Haul - 2023 Unmitigated Construction On-Site

			-									
CO2e		0.0000	0.0000	0.000								
N2O		0.0000	0.0000	0.0000								
CH4	/yr		0.0000	0.000								
Total CO2	MT/yı	MT	MTA	MT/y		MT/y	MT/yr		0.0000		0.0000	0.000
NBio- CO2			0.0000	0.0000								
Bio- CO2			0.0000	0.0000								
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0160	0.0000	0.0160								
Exhaust PM2.5		0.0000	0.0000	0.000								
Fugitive PM2.5		0.0160		0.0160								
PM10 Total		0.1054	0.0000	0.1054								
Exhaust PM10	tons/yr	0000.0	0.0000	0.0000								
Fugitive PM10	ton.	0.1054		0.1054								
SO2			0.0000	00000								
СО								0.0000	0.000			
NOX			0.0000	0.000								
ROG			0.0000	0.000								
	Category	Fugitive Dust	Off-Road	Total								

	ROG	NOX	со	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons/yr	/yr							MT/yr	/yr		
Hauling	3.5000e- 004	0.0229		1.0000e- 004	0e- 2.8600e-003 1.9000e- 004	1.9000e- 004	3.0400e- 003	7.9000e- 004	1.8000e- 004		0000.0	10.0907	10.0907	3.4000e- 004	10.0907 10.0907 3.4000e- 1.6000e-003 10.5760 004	10.5760
Vendor	0.0000				0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000
Worker	0.0000	0.0000	0000.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	3.5000e- 004	0.0229	0.0229 5.3100e-003 1.0000e- 2.8600e-003 004	1.0000e- 004	2.8600e-003	1.9000e- 004	3.0400e- 003	7.9000e- 004	1.8000e- 004	1.8000e- 9.6000e-004 0.0000 004	0.0000	10.0907	10.0907	3.4000e- 004	1.6000e-003 10.5760	10.5760

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigated Construction On-Site

	ROG	NOX	co	S02	Fugitive PM10		Exhaust PM10 Total PM10	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2	Bio- CO2	NBio- CO2 Total CO2	Total CO2	CH4	N2O	CO2e
Category					ton:	tons/yr							MT/yr	yr		
Fugitive Dust					0.0451	0.000.0	0.0451		0.0000	0.0000 6.8200e-003 0.0000	0.0000	0.0000	0.0000	0000.0	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.000	0.0000	0.0000	0.0000	0.0451	0.0000	0.0451	6.8200e- 003	0.0000	6.8200e-003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	XON	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	Bio- CO2 NBio- CO2 Total CO2	Total CO2	CH4	N2O	CO2e
Category					tons/yr	s/yr							MT/yr	/yr		
	3.5000e- 004	0.0229	5.3100e-003	1.0000e- 004	2.6700e-003	1.9000e- 004	2.8500e- 003	7.4000e- 004	1.8000e- 004		0000.0	10.0907	10.0907	3.4000e- 004	10.0907 3.4000e- 1.6000e-003 10.5760 004 004	10.5760
	0.0000	0.0000		0.0000		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	3.5000e- 004		0.0229 5.3100e-003 1.0000e- 2.6700e-003 004	1.0000e- 004		1.9000e- 004	2.8500e- 003	7.4000e- 004	1.8000e- 004	1.8000e- 9.2000e-004 004	0.0000	10.0907	10.0907	3.4000e- 004	1.6000e-003	10.5760

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.5 Site Preparation - 2023

Unmitigated Construction On-Site

CO2e		0.0000	8.4303	8.4303
N2O			0.0000	0.0000
CH4	yr		2.7000e- 003	2.7000e- 003
Total CO2	MT/yr	0.0000	8.3627	8.3627
NBio- CO2			8.3627	8.3627
Bio- CO2		0000.0	0.0000	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0253	2.9100e- 2.9100e-003 003	0.0282
Exhaust PM2.5		0.0000	2.9100e- 003	2.9100e- 003
Fugitive PM2.5		0.0253		0.0253
PM10 Total		0.0491	3.1700e- 003	0.0523
Exhaust PM10	tons/yr		3.1700e- 003	3.1700e- 003
Fugitive PM10	ton	0.0491		0.0491
S02			1.0000e- 004	1.0000e- 004
со			0.0456	0.0456
NOX			0.0688	0.0688
ROG			6.6500e- 003	6.6500e- 003
	Category	Fugitive Dust	Off-Road	Total

0.4818	1.0000e- 4.0000e-005 0.4818 005	1.0000e- 005	0.4705	0.4705	0.0000	0.0000 1.2000e-004 0.0000 0.4705 0.4705	0.0000	1.1000e- 004	4.3000e- 004	0.000.0	4.3000e-004	00000	1.2000e- 5.3000e- 11.1400e-003 0.0000 4.3000e-004 0.0000 4.3000e- 11.1000e- 004 004 004	5.3000e- 004	1.2000e- 004	Total
0.2742	1.0000e-005 0.2742	1.0000e- 005	0.2717	0.2717		1.0000e-004 0.0000	0.0000	3.6000e- 9.0000e- 004 005	3.6000e- 004	0.0000	3.6000e-004 0.0000	0.0000	1.0000e-003	8.0000e- 005	1.1000e- 004	Worker
0.2076	3.0000e-005 0.2076	0.0000	0.1988	0.1988	0.0000			2.0000e- 005	7.0000e- 005	0.0000		0.0000	1.4000e-004 0.0000	4.5000e- 1 004	1.0000e- 005	Vendor
0.0000	0.0000	0.0000	0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000		0.0000		0000.0		0.0000	0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	Hauling
		/yr	MT/yr							tons/yr	tons					Category
CO2e	N2O	CH4	Total CO2	NBio- CO2	Bio- CO2	PM2.5 Total Bio- CO2 NBio- CO2 Total CO2	Exhaust PM2.5	Fugitive PM2.5	PM10 Total	Exhaust PM10	Fugitive PM10	SO2	co	XON	ROG	

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigated Construction On-Site

		_		
CO2e		0.0000	8.4303	8.4303
N2O		0.0000	0.0000	0.000
CH4	'yr	0.0000	2.7000e- 003	2.7000e- 003
Total CO2	MT/yr	0.0000	8.3627	8.3627
NBio- CO2		0.0000	8.3627	8.3627
Bio- CO2		0.0000 0.0000 0.0000	0.0000	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0108	2.9100e- 2.9100e-003 0.0000 003	0.0137
Exhaust PM2.5		0.0000	2.9100e- 003	2.9100e- 003
Fugitive PM2.5		0.0108		0.0108
PM10 Total		0.0210	3.1700e- 003	0.0242
Exhaust PM10	s/yr	0.0000	3.1700e- 003	3.1700e- 003
Fugitive PM10	tons/yr	0.0210		0.0210
SO2			1.0000e- 004	1.0000e- 004
со			0.0456	0.0456
NOX			0.0688	0.0688
ROG			6.6500e- 003	6.6500e- 003
	Category	Fugitive Dust	Off-Road	Total

-					
CO2e		0.0000		0.2742	0.4818
N2O		0.0000	3.0000e-005	1.0000e-005	1.0000e- 4.0000e-005 005
CH4	/yr	0.000	0.0000	1.0000e- 005	1.0000e- 005
Total CO2	MT/yr	0.0000	0.1988	0.2717	0.4705
NBio- CO2		0.0000	0.1988	0.2717	0.4705
Bio- CO2 NBio- CO2 Total CO2				0.0000	
PM2.5 Total		0.0000	2.0000e-005	9.0000e-005	1.1000e-004 0.0000
Exhaust PM2.5		0.0000	0.0000	0.0000	0.000
Fugitive PM2.5		0.0000	2.0000e- 005	9.0000e- 005	1.1000e- 004
PM10 Total		0.000.0	6.0000e- 005	3.3000e- 004	3.9000e- 004
Exhaust PM10	s/yr	0.0000		0.0000	0.0000
Fugitive PM10	tons/y	0.0000	6.0000e-005	3.3000e-004	3.9000e-004 0.0000
SO2		0.0000	0.0000	0.0000	0.0000
co		0.0000	1.4000e-004 0.0000	1.0000e-003	5.3000e- 1.1400e-003 0.0000 004
XON		0.0000	4.5000e- 004	8.0000e- 1.0 005	5.3000e- 004
ROG		0.0000	1.0000e- 005	1.1000e- 004	1.2000e- 004
	Category	Hauling	Vendor	Worker	Total

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.6 Rough Grading - 2023 Unmitigated Construction On-Site

	ROG	XON	co	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2	Bio- CO2	NBio- CO2	NBio- CO2 Total CO2	CH4	NZO	CO2e
					tons/yr	s/yr							ΤM	MT/yr		
Fugitive Dust					0.0708		0.0708		0.0000	0.0343	0.000.0		0.0000		0.0000	0.0000
Off-Road	0.0171	0.1794	0.1475	3.0000e- 004		7.7500e- 003	7.7500e- 003		7.1300e- 003	7.1300e-003	0.0000	26.0606	26.0606	8.4300e- 003	0.0000	26.2713
	0.0171	0.1794	0.1475	3.0000e- 004	0.0708	7.7500e- 003	0.0786	0.0343	7.1300e- 003	0.0414	0.0000	26.0606	26.0606	8.4300e- 003	0.0000	26.2713

CO2e		0.000	0.8306	0.9139	1.7444
N2O		0.0000	1.2000e-004 0.8306	3.0000e-005	1.5000e-004
CH4	MT/yr	0.0000 0.0000		3.0000e- 005	5.0000e- 005
Total CO2	μ	0.0000		0.9057	1.7010
NBio- CO2			0.7953	0.9057	1.7010
Bio- CO2			0.0000	0.0000	0.000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.000.0	9.0000e-005 0.0000	3.2000e-004	4.1000e-004
Exhaust PM2.5		0.0000 0.0000	.0000e- 005	.0000e- 005	2.0000 0 - 005
Fugitive PM2.5		0.0000	000	004	4.0000e- 004
PM10 Total		0.0000	2.7000e- 004	1.2000e- 003	1.4700e- 003
Exhaust PM10	tons/yr	0.0000	1.0000e- 005	1.0000e- 005	2.0000e- 005
Fugitive PM10	ton	0.0000	2.6000e-004 1.0000e- 005	1.1900e-003 1.0000e- 005	1.4500e-003
S02		0.0000	1.0000e- 005	1.0000e- 005	2.0000e- 005
со		0000.0	1.7800e- 5.6000e-004 1.0000e- 003 005	3.7000e- 2.6000e- 3.3500e-003 1.0000e- 004 004 005	4.1000e- 2.0400e- 3.9100e-003 2.0000e- 1.4500e-003 2.0000e- 004 003 003 005 005 005
XON		0.0000	1.7800e- 003	2.6000e- 004	2.0400e- 003
ROG		0.0000	4.0000e- 005	3.7000e- 004	4.1000e- 004
	Category	Hauling	Vendor	Worker	Total

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigated Construction On-Site

		_		
CO2e		0.0000	26.2713	26.2713
N2O			0.0000	0.000
CH4	'yr	0.0000	8.4300e- 003	8.4300e- 003
Total CO2	MT/yr	0.0000	26.0606	26.0606
NBio- CO2		0.0000	26.0606	26.0606
Bio- CO2		0.0000 0.0000 0.0000	0.0000	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0146	7.1300e- 7.1300e-003 0.0000 003	0.0218
Exhaust PM2.5			7.1300e- 003	7.1300e- 003
Fugitive PM2.5		0.0146		0.0146
PM10 Total		0.0303	7.7500e- 003	0.0380
Exhaust PM10	s/yr	0.0000	7.7500e- 003	7.7500e- 003
Fugitive PM10	tons/yr	0.0303		0.0303
SO2			3.0000e- 004	3.0000e- 004
со			0.1475	0.1475
NOX			0.1794	0.1794
ROG			0.0171	0.0171
	Category	Fugitive Dust	Off-Road	Total

C O 2 e		0.0000		0.9139	1.7444
N2O		0.0000	1.2000e-004	3.0000e-005	1.5000e-004
CH4	/yr	0.000	2.0000e- 005	3.0000e- 005	5.0000e- 005
Total CO2	MT/yr	0.0000	0.7953	0.9057	1.7010
Bio- CO2 NBio- CO2 Total CO2		0.0000	0.7953	0.9057	1.7010
Bio- CO2				0.0000	0.0000
PM2.5 Total				3.0000e-004	3.8000e-004
Exhaust PM2.5			1.0000e- 005	1.0000e- 005	2.0000e- 005
Fugitive PM2.5		0.0000	7.0000e- 005	2.9000e- 004	3.6000e- 004
PM10 Total				1.1000e- 003	1.3600e- 003
Exhaust PM10	s/yr	0.0000	1.0000 c- 005	1.0000e- 005	2.0000e- 005
Fugitive PM10	tons/y	0000.0	2.5000e-004	1.1000e-003	1.3500e-003 2.0000e- 005
SO2		0.0000	1.0000e- 005	1.0000e- 005	2.0000e- 005
co		0000.0	1.7800e- 5.6000e-004 1.0000e 003 005	3.3500e-003 1.0000e 005	4.1000e- 2.0400e- 3.9100e-003 2.0000e- 004 003 003 005
XON		0.0000	1.7800e- 003	2.6000e- 004	2.0400e- 003
ROG		0.0000	4.0000e- 005	3.7000e- 2.6000e- 0 004 004	4.1000e- 004
	Category	Hauling	Vendor	Worker	Total

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied 3.7 Rough Grading Soil Haul - 2023

Unmitigated Construction On-Site

		0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000
	MT/yr		0.0000 0.00	0.000
		0.0000	0.0000	0.000
BI0- CO2		0.0000	0.0000	00000
PM2.5 Total Bio-CO2 NBio-CO2 Total CO2			0.0000	0.0000 5.0000e-004 0.0000
Exhaust PM2.5			0.0000	
Fugitive PM2.5		5.0000e- 004		5.0000e- 004
PM10 Total			0.0000	3.3200e- 003
Exhaust PM10	tons/yr	3 0.0000	0.0000	0.0000
Fugitive PM10	tor	3.3200e-003 0.0000		3.3200e-003 0.0000
S02			0.0000	0.0000
00			0.0000	00000
NOX			0.0000	0.0000
ROG			0.0000	0.0000
	Category	Fugitive Dust	Off-Road	Total

CO2e		230.5380	0.0000	0.0000	230.5380
N2O			0.0000	0.0000	0.0349
CH4	MT/yr	7.5000e- 003	0.0000	0.0000	7.5000e- 003
Total CO2	MT	219.9584	0.0000	0.0000	219.9584
NBio- CO2			0.0000	0.0000	219.9584
Bio- CO2		0.000.0	0.0000	0.0000	0.000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0210	0.0000	0.0000	0.0210
Exhaust PM2.5		3.8600e- 003	0.0000	0.0000	3.8600e- 003
Fugitive PM2.5		0.0171	0.0000	0.0000	0.0171
PM10 Total				0.0000	0.0664
Exhaust PM10	tons/yr	4.0400e- 003	0.0000	0.0000	4.0400e- 003
Fugitive PM10	ton			0.0000	0.0623
SO2		2.2200e- 003		0.0000	2.2200e- 003
СО		0.1158	0.0000	0.0000	0.1158
NOX		0.4992		0.0000	0.4992
ROG		7.6800e- 003	0.0000	0.0000	7.6800e- 003
	Category	Hauling	Vendor	Worker	Total

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigated Construction On-Site

				_
CO2e			0.0000	0.0000
N20		0.0000	0.0000	0.000
CH4	MT/yr	0.0000 0.0000	0.0000	0.000
Total CO2	ΤM	0.0000	0.0000	0.000
NBio- CO2		0.0000	0.0000	0.000
Bio- CO2		0.0000	0.0000	0.000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		1.4200e-003 0.0000 1.4200e- 2.2000e- 0.0000 2.2000e-004 0.0000 0.000	0.0000	0.0000 2.2000e-004 0.0000
Exhaust PM2.5		0.0000	0.0000	0.000
Fugitive PM2.5		2.2000e- 004		2.2000e- 004
PM10 Total		1.4200e- 003	0.0000	1.4200e- 003
Exhaust PM10	s/yr	0.0000	0.0000	0.000
Fugitive PM10	tons/yr	1.4200e-003		1.4200e-003
S02			0.0000	0.0000
со			0.0000	0.000
NOX			0.0000	0.000
ROG			0.0000	0.000
	Category	Fugitive Dust	Off-Road	Total

			-	-	
CO2e		230.5380	0.0000	0.0000	230.5380
N2O		0.0349	0.0000	0.0000	0.0349
CH4	/yr	7.5000e- 003	0.0000	0.0000	7.5000e- 003
Total CO2	MT/yr	219.9584	0.0000	0.0000	219.9584
NBio- CO2		219.9584	0.0000	0.0000	219.9584
Bio- CO2			0.0000	0.0000	0.0000
PM2.5 Total Bio-CO2 NBio-CO2 Total CO2 PM2.5		0.0200	0.0000	0.0000	0.0200
Exhaust PM2.5		3.8600e- 003	0.0000	0.0000	3.8600e- 003
Fugitive PM2.5		0.0161	0.0000	0.0000	0.0161
Exhaust PM10 Total PM10		0.0622	0.0000	0.0000	0.0622
Exhaust PM10	s/yr	4.0400e- 003	0.0000	0.0000	4.0400e- 003
Fugitive PM10	tons/yr	0.0581	0.0000	0.0000	0.0581
S02		2.2200e- 003	0.0000	0.0000	2.2200 0 - 003
co		0.1158	0.0000	0.0000	0.1158
XON		0.4992	0.0000	0.0000	0.4992
ROG		7.6800e- 003	0.0000	0.0000	7.6800e- 003
	Category	Hauling	Vendor	Worker	Total

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.8 Fine Grading/Trenching - 2023 Unmitigated Construction On-Site

			-	
CO2e			118.2210	118.2210
N2O		0.0000	0.0000	0.000
CH4	/yr		0.0379	0.0379
Total CO2	MT/yr		117.2728	117.2728
NBio- CO2		0.0000	117.2728 117.2728	0.0000 117.2728 117.2728 0.0379
Bio- CO2			0.0000	
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.1541	0.0321	0.1862
Exhaust PM2.5		0.0000	0.0321	0.0321
Fugitive PM2.5		0.1541		0.1541
Exhaust PM10 Total PM10		0.3187	0.0349	0.3536
Exhaust PM10	tons/yr	0000.0	0.0349	0.0349
Fugitive PM10	tons	0.3187		0.3187
S02			1.3300e- 003	1.3300e- 003
со			0.6638	0.6638
NOX			0.8071	0.8071
ROG			0.0770	0.0770
	Category	Fugitive Dust	Off-Road	Total

	ROG	NOX	со	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2 Total CO2	Total CO2	CH4	N2O	CO2e
Category					tons/yr	s/yr							MT/yr	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.000.0			0.0000	0.0000	0.0000	0000.0		0.0000		0.0000	0.0000
Vendor	2.0000e- 004	8.0200e- 003	2.5300e-003	4.0000e- 005	1.1800e-003 5.0000e- 005	5.0000e- 005	1.2300e- 003	3.4000e- 004	5.0000e- 005	3.9000e-004		3.5790	3.5790		5.3000e-004 3.7375	3.7375
Worker	1.6900e- 003	1.1700e- 003	0.0151	4.0000e- 005	5.3500e-003 3.0000e- 005	3.0000e- 005	5.3800e- 003	1.4200e- 003	2.0000e- 005	1.4500e-003 0.0000		4.0756	4.0756	1.2000e- 004	1.1000e-004 4.1124	4.1124
Total	1.8900e- 003	1.8900e- 9.1900e- 003 003	0.0176	8.0000e- 005	8.0000e- 6.5300e-003 8.0000e- 005 005 005		6.6100e- 003	1.7600e- 003	7.0000e- 005	1.7600e- 7.0000e- 1.8400e-003 0.0000 003 005	0.0000	7.6545	7.6545	2.0000e- 004	2.0000e- 6.4000e-004 7.8499 004	7.8499

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigated Construction On-Site

	ROG	NOX	00	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	Bio- CO2 NBio- CO2 Total CO2	Total CO2	CH4	N2O	CO2e
Category					tons/yr	/yr							MT/yr	'yr		
Fugitive Dust					0.1363	0.0000	0.1363		0.0000	0.0659	0.0000		0000.0	0.0000	0.0000	0.0000
Off-Road	0.0770	0.8071	0.6638	1.3300e- 003		0.0349	0.0349		0.0321	0.0321	0.0000	117.2726	117.2726	0.0379	0.0000	118.2208
Total	0.0770	0.8071	0.6638	1.3300e- 003	0.1363	0.0349	0.1711	0.0659	0.0321	0.0980	0.0000	117.2726	117.2726	0.0379	0.0000	118.2208

	ROG	XON	S	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons/yr	s/yr							MT/yr	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	2.0000e- 004	8.0200e- 003	2.5300e-003	4.0000e- 005	1.1100e-003	5.0000e- 005	1.1600e- 003	3.2000e- 004		3.7000e-004	0.0000	3.5790	3.5790		5.3000e-004	3.7375
Worker	1.6900e- 003	1.1700e- 003	0.0151	4.0000e- 005	4.9400e-003 3.0000e- 005	3.0000e- 005	4.9600e- 003	1.3200e- 003	2.0000e- 005	1.3500e-003 0.0000	0.0000	4.0756	4.0756	1.2000e- 004	1.1000e-004	4.1124
Total	1.8900e- 003	9.1900e- 003	0.0176	8.0000e- 005	8.0000e- 6.0500e-003 8.0000e- 005 005	8.0000e- 005	6.1200e- 003	1.6400e- 003	7.0000e- 005	1.7200e-003	0.0000	7.6545	7.6545	2.0000e- 004	2.0000e- 6.4000e-004 004	7.8499

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.9 Building Construction - 2023

On-Site	
<u>istruction</u>	
itigated Con	
Unm	

		_	
CO2e		38.9709	38.9709
N2O		0.0000	0.000
CH4	ʻyr	8.5700e- 003	8.5700e- 003
Total CO2	MT/yr	38.7567	38.7567
NBio- CO2 Total CO2		38.7567	38.7567
		0.000.0	0.0000
PM2.5 Total Bio- CO2		0.0110	0.0110
Exhaust PM2.5		0.0110	0.0110
Fugitive PM2.5			
PM10 Total		0.0116	0.0116
Exhaust PM10	tons/yr	0.0116	0.0116
Fugitive PM10	tons		
S02		4.5000e- 004	4.5000e- 004
со		0.2974	0.2974
XON		0.2305	0.2305
ROG		0.0262	0.0262
	Category	Off-Road	Total

CO2e		0.0000	23.6709	16.8150	40.4859
N2O		0.0000	3.3300e-003	4.6000e-004 16.8150	3.7900е-003
CH4	yr		4.8000e- 3 004	4.8000e- 4 004	9.6000e- 3 004
Total CO2	MT/yr		22.6667	16.6647	39.3313
NBio- CO2 Total CO2		0.0000	22.6667	16.6647	39.3313
Bio- CO2			0.0000		0.0000
PM2.5 Total Bio- CO2		0.0000	2.4500e-003	5.9200e-003 0.0000	8.3700e-003
Exhaust PM2.5		0.0000	2.9000e- 004	1.0000e- 004	3.9000e- 004
Fugitive PM2.5				5.8200e- 003	7.9900e- 003
Exhaust PM10 Total PM10			7.8000e- 003	0.0220	0.0298
Exhaust PM10	s/yr		3.0000e- 004	1.1000e- 004	4.1000e- 004
Fugitive PM10	tons/yr	0.0000	7.5000e-003 3.0000e- 004	0.0219	0.0294
S02		0.0000	2.3000e- 004	1.8000e- 004	4.1000e- 004
со				0.0616	0.0776
NOX				4.8000e- 003	0.0556
ROG			1.2500e- 003	6.8900e- 003	8.1400e- 003
	Category	Hauling	Vendor	Worker	Total

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigated Construction On-Site

CO2e		38.9709	38.9709
N2O		0.0000	0.000
CH4	/yr	8.5700e- 003	8.5700e- 003
Total CO2	MT/yr	38.7566	38.7566
NBio- CO2		38.7566 38.7566	38.7566
Bio- CO2		0.0000	0.000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0110	0.0110
Exhaust PM2.5		0.0110	0.0110
Fugitive PM2.5			
PM10 Total		0.0116	0.0116
Exhaust PM10	tons/yr	0.0116	0.0116
Fugitive PM10	ton		
S02		4.5000e- 004	4.5000e- 004
со		0.2974	0.2974
NOX		0.2305	0.2305
ROG		0.0262	0.0262
	Category	Off-Road	Total

CO2e		0.0000	23.6709	16.8150	40.4859
N2O		0.0000	3.3300e-003 23.6709	4.6000e-004 16.8150	3.7900e-003
CH4	'yr			4.8000e- 4 004	9.6000e- 3 004
Total CO2	MT/yr	0.0000	22.6667	16.6647	39.3313
NBio- CO2			22.6667	16.6647	39.3313
Bio- CO2 NBio- CO2 Total CO2			0.0000	0.0000	0.0000
PM2.5 Total		0.0000	2.3400e-003	5.5000e-003 0.0000	7.8400e-003
Exhaust PM2.5		0.0000		1.0000e- 004	3.9000e- 004
Fugitive PM2.5		0.0000	2.0500e- 003	5.4000e- 003	7.4500e- 003
PM10 Total		0.0000	7.3300e- 003	0.0203	0.0276
Exhaust PM10	s/yr	0.0000	3.0000e- 004	1.1000e- 004	4.1000e- 004
Fugitive PM10	tons/yr	0.0000	N .	0.0202	0.0272
S02		0.0000	2.3000e- 004	1.8000e- 004	4.1000e- 004
со		0.000.0	0.0160	0.0616	0.0776
NOX		0.0000	0.0508	4.8000e- 003	0.0556
ROG		0.0000	1.2500 003	6.8900e- 003	8.1400e- 003
	Category	Hauling	Vendor	Worker	Total

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.9 Building Construction - 2024

<u>n-Site</u>	
Ч	
struction	
ns	
ပိ	
Unmitigated	

C02e		165.6580	165.6580
N2O		0.0000	0.000
CH4	yr	0.0362	0.0362
Total CO2	MT/yr	164.7542	164.7542
NBio- CO2		164.7542	0.0000 164.7542 164.7542 0.0362
Bio- CO2		0.0000	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0405 0.0000 164.7542 164.7542 0.0362	0.0405
Exhaust PM2.5		0.0405	0.0405
Fugitive PM2.5			
PM10 Total		0.0428	0.0428
Exhaust PM10	tons/yr	0.0428	0.0428
Fugitive PM10	tons		
S02		1.9200e- 003	1.9200e- 003
со		1.2610	1.2610
NOX		0.9193	0.9193
ROG		0.1039	0.1039
	Category	Off-Road	Total

CO2e		0.0000	99.1144	s 69.1558	168.2702
N2O		0.0000	0.0139	.8400e-003	0.0158
CH4	MT/yr		2.0000e- 003	1.8500e- 1. 003	3.8500e- 003
Total CO2	ΙM		94.9165	68.5611	163.4776
NBio- CO2 Total CO2		0.0000	94.9165	68.5611	163.4776
Bio- CO2		0.0000	0.0000	0.0000	0.0000
PM2.5 Total		0.000.0	0.0104	0.0252	0.0356
Exhaust PM2.5			1.2200 6- 003	4.0000e- 004	1.6200e- 003
Fugitive PM2.5			9.2200e- 003	0.0247	0.0340
PM10 Total				0.0935	0.1266
Exhaust PM10	s/yr		1.2800e- 003	4.4000e- 004	1.7200e- 003
Fugitive PM10	tons/yr	0000.0	0.0319	0.0930	0.1249
S02				7.5000e- 004	1.7200e- 003
со			0.0667	0.2444	0.3111
NOX		0.0000	0.2159	0.0183	0.2341
ROG		0.0000	47	0.0275	0.0327
	Category	Hauling		Worker	Total

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigated Construction On-Site

CO2e		165.6578	165.6578
N2O		0.0000	0.0000
CH4	MT/yr	0.0362	0.0362
Total CO2	ΙM	164.7540	164.7540
NBio- CO2		0.0000 164.7540 164.7540 0.0362	164.7540
Bio- CO2		0.0000	0.000
PM2.5 Total Bio-CO2 NBio-CO2 Total CO2		0.0405	0.0405 0.0000 164.7540 164.7540 0.0362
Exhaust PM2.5		0.0405	0.0405
Fugitive PM2.5			
PM10 Total		0.0428	0.0428
Exhaust PM10	tons/yr	0.0428	0.0428
Fugitive PM10	ton		
S02		1.9200e- 003	1.9200e- 003
СО		1.2610	1.2610
NOX		0.9193	0.9193
ROG		0.1039	0.1039
	Category	Off-Road	Total

CO2e		0.0000	99.1144	69.1558	168.2702
N2O			0.0139	1.8400e-003 69.1558	0.0158
CH4	MT/yr		2.0000e- 003	1.8500e- 003	3.8500e- 003
Total CO2	ΕW		94.9165	68.5611	163.4776
NBio- CO2			94.9165	68.5611	163.4776
Bio- CO2 NBio- CO2		0.0000		0.0000	0.0000
PM2.5 Total		0000.0	<u> </u>	0.0234	0.0333
Exhaust PM2.5			1.2200e- 003	4.0000e- 004	1.6200e- 003
Fugitive PM2.5		0.0000		0.0230	0.0317
PM10 Total			0.0312	0.0862	0.1174
Exhaust PM10	s/yr		1.2800e- 003	4.4000e- 0 004	1.7200e- 003
Fugitive PM10	tons/yr	0.0000		0.0858	0.1157
S02			9.7000e- 004	7.5000e- 004	1.7200e- 003
со		0.000.0	0.0667	0.2444	0.3111
XON		0.0000	0.2159	0.0183	0.2341
ROG		0.000.0	5.1800e- 003	0.0275	0.0327
	Category	Hauling	Vendor	Worker	Total

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.10 Parking Structure Construction - 2024

Unmitigated Construction On-Site

CO2e		175.4026	175.4026
N2O		0.0000	0.000
CH4	MT/yr	0.0383	0.0383
Total CO2	ΜT	174.4456	174.4456
NBio- CO2		0.0000 174.4456 174.4456	0.0000 174.4456
Bio- CO2		0.0000	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0429	0.0429
Exhaust PM2.5		0.0429	0.0429
Fugitive PM2.5			
PM10 Total		0.0454	0.0454
Exhaust PM10	tons/yr	0.0454	0.0454
Fugitive PM10	ton		
S02		2.0400e- 003	2.0400e- 003
CO		1.3352	1.3352
NOX		0.9734	0.9734
ROG		0.1101	0.1101
	Category	Off-Road	Total

CO2e		0.0000	104.9447	73.2238	178.1684
N2O			0.0147	1.9500e-003 73.2238	0.0167
CH4	MT/yr		2.1200e- 003	1.9600e- 003	4.0800e- 003
Total CO2	ΙM	0.0000	100.4998	72.5941	173.0939
NBio- CO2		0.0000		72.5941	173.0939
Bio- CO2 NBio- CO2			0.0000	0.0000	0.0000
PM2.5 Total		0.0000	0.0111	0.0266	0.0377
Exhaust PM2.5			1.3000e- 003	4.3000e- 004	1.7300e- 003
Fugitive PM2.5		0.0000	9.7600e- 003	0.0262	0.0360
PM10 Total			0.0351	0660.0	0.1341
Exhaust PM10	tons/yr		1.3500e- 003	4.6000e- (004	1.8100e- 003
Fugitive PM10	ton		0.0338	0.0985	0.1323
S02				7.9000e- 004	1.8200e- 003
со		0.000.0	0.0706	0.2588	0.3294
NOX		0.0000	0.2286	0.0193	0.2479
ROG		0.0000	5.4800e- 003	0.0291	0.0346
	Category	Hauling	Vendor	Worker	Total

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigated Construction On-Site

_			
CO2e		0.0000 175.4023	175.4023
N2O			0.000
CH4	/yr	0.0383	0.0383
Total CO2	MT/yr	174.4454	174.4454
NBio- CO2		0.0000 174.4454 174.4454	0.0000 174.4454 174.4454 0.0383
Bio- CO2		0.0000	0.000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0429	0.0429
Exhaust PM2.5		0.0429	0.0429
Fugitive PM2.5			
PM10 Total		0.0454	0.0454
Exhaust PM10	tons/yr	0.0454	0.0454
Fugitive PM10	tons		
S02		2.0400e- 003	2.0400e- 003
СО		1.3352	1.3352
NOX		0.9734	0.9734
ROG		0.1101	0.1101
	Category	Off-Road	Total

Ze		00	447	73.2238	684
CO2e		0.0000			178.1684
N2O			0.0147	1.9500e-003	0.0167
CH4	MT/yr	0.0000	2.1200e- 003	1.9600e- 003	4.0800e- 003
Total CO2	μ	0.0000		72.5941	173.0939
NBio- CO2		0.0000		72.5941	173.0939 173.0939
Bio- CO2 NBio- CO2 Total CO2		0.000.0	0.0000	0.0000	0.0000
PM2.5 Total		0.000.0		0.0247	0.0353
Exhaust PM2.5			1.3000e- 003	4.3000e- 004	1.7300e- 003
Fugitive PM2.5		0.0000	9.2400e- 003	0.0243	0.0336
PM10 Total			0.0330	0.0913	0.1243
Exhaust PM10	tons/yr		1.3500e- 003	4.6000e- 004	1.8100e- 003
Fugitive PM10	ton			0.0908	0.1225
SO2		0.0000	1.0300e- 003	7.9000e- 004	1.8200e- 003
со		0.0000	0.0706	0.2588	0.3294
XON		0.0000	0.2286	0.0193	0.2479
ROG		0.0000	5.4800e- 003	0.0291	0.0346
	Category	Hauling	Vendor	Worker	Total

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.11 Paving - 2024

Unmitigated Construction On-Site

CO2e		10.0942	0.0000	10.0942
N2O		0.0000	0.0000	0.0000
CH4	MT/yr		0.0000	3.2400e- 003
Total CO2	TM	10.0133	0.0000	10.0133
Bio- CO2 NBio- CO2 Total CO2			0.0000	10.0133
Bio- CO2		0.0000	0.0000	0.0000
PM2.5 Total		2.1600e- 2.1600e-003 0.0000 003	0.0000	2.1600e-003
Exhaust PM2.5		2.1600e- 003	0.0000	2.1600e- 003
Fugitive PM2.5				
PM10 Total		2.3400e- 003	0.0000	2.3400e- 003
Exhaust PM10	tons/yr	2.3400e- 003	0.0000	2.3400e- 003
Fugitive PM10	ton			
SO2				1.1000e- 004
со		0.0731		0.0731
NOX				0.0476
ROG		4.9400e- 003	3.9000e- 003	8.8400e- 003
	Category	Off-Road	Paving	Total

0.4422	1.0000e- 1.0000e-005 0.4422 005	1.0000e- 005	0.4384	0.4384	0.000	0.0000 1.6000e-004 0.0000		1.6000e- 004	6.0000e- 004	0.0000	1.8000e- 1.2000e- 1.5600e-003 0.0000 5.9000e-004 004 004	0.0000	1.5600e-003	1.2000e- 004	1.8000e- 004	Total
0.4422	1.0000e-005	1.0000e- 1. 005	0.4384	0.4384	0000.0	1.6000e-004	0.0000	1.6000e- 004	6.0000e- 004	0.0000	5.9000e-004	0.0000	1.5600e-003)e- 1.2000e- 1. 004	1.8000e- 004	Worker
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0000.0	0.0000			0.0000	0.0000	0.0000	Vendor
					0000.0					0.0000				0.0000	0.0000	Hauling
		MT/yr	ΤΜ							tons/yr	ton					Category
CO2e	N2O	CH4	Total CO2	NBio- CO2	Bio- CO2	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		PM10 Total Fugitive PM2.5	PM10 Total	Exhaust PM10	Fugitive PM10	S02	00	NOX	ROG	

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigated Construction On-Site

		10.0942	0.0000	10.0942
074		0.0000	0.0000	0.0000
5	/yr	3.2400e- 003	0.0000	3.2400e- 003
	MT/yr		0.0000	10.0133
		10.0133	0.0000	10.0133
BI0- UUZ		0.0000	0.0000	0.000
		2.1600e- 2.1600e-003 0.0000 10.0133 10.0133 003	0.0000	2.1600e- 2.1600e-003 003
Exnaust PM2.5		2.1600e- 003	0.0000	2.1600e- 003
Fugitive PM2.5				
PM10 Lotal		2.3400e- 003	0.0000	2.3400e- 003
Exnaust PM10	tons/yr	2.3400e- 003	0.0000	2.3400e- 003
Fugitive PM10	ton			
202		1.1000e- 004		1.1000e- 004
00		0.0731		0.0731
NOX				0.0476
2002		4.9400e- 003	3.9000e- 003	8.8400e- 003
	Category	Off-Road	Paving	Total

2 CH4 N20 CO2e				0.4422	0.4422
CH4		00		I	
		0.0000	0.0000	1.0000e-005	1.0000e-005
2	/yr	0.0000	0.0000	1.0000e- 005	1.0000e- 005
Total CO	MT/yr	0.0000	0.0000	0.4384	0.4384
NBio- CO2		0.0000	0.0000	0.4384	0.4384
Bio- CO2 NBio- CO2 Total CO2		0.0000		0.0000	0.0000
PM2.5 Total			0.0000	1.5000e-004	1.5000e-004 0.0000
Exhaust PM2.5		0.0000	0.0000	0.0000	0.0000
Fugitive PM2.5		0.0000	0.0000	1.5000e- 004	1.5000e- 004
PM10 Total		0.0000	0.0000	5.5000e- 004	5.5000e- 004
Exhaust PM10	s/yr	0.0000	0.0000	0.0000	0.000
Fugitive PM10	tons/yr	0000.0	0.0000	5.5000e-004	5.5000e-004 0.0000
S02			0.0000	0.0000	-
со				1.5600e-003	1.2000e- 1.5600e-003 0.0000 004
XON			0.0000	1.2000e- 004	1.2000e- 004
ROG		0.0000	0.0000	1.8000e- 004	1.8000e- 004
	Category	Hauling	Vendor	Worker	Total

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.12 Architectural Coating - 2024 Unmitigated Construction On-Site

CO2e			2.5569	2.5569
N2O		0.0000	0.0000	0.0000
CH4	/yr	0.0000	1.4000e- 004	1.4000e- 004
Total CO2	MT/yr	0.0000	2.5533	2.5533
NBio- CO2		0.0000	2.5533	2.5533
Bio- CO2		0.0000	0.0000	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0000	6.1000e-004	6.1000e- 6.1000e-004 0.0000 004
Exhaust PM2.5		0.0000	6.1000e- 004	6.1000e- 004
Fugitive PM2.5				
PM10 Total			6.1000e- 004	6.1000e- 004
Exhaust PM10	tons/yr	0.0000	6.1000e- 004	6.1000e- 004
Fugitive PM10	tons			
SO2			3.0000e- 005	3.0000e- 005
со			0.0181	0.0181
NOX			0.0122	0.0122
ROG		0.2655	1.8100e- 003	0.2673
	Category	Archit. Coating	Off-Road	Total

	ROG	NOX	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2:5 Total Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons/yr	s/yr							MT/yr	/yr		
Hauling	0.0000	0.0000	0000.0	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000
Worker	6.6000e- 004	4.4000e- 004	6.6000e- 4.4000e- 5.8300e-003 2.0000e- 004 004 004 005	2.0000e- 005	2.2200e-003 1.0000e- 005	1.0000e- 005	2.2300e- 003	5.9000e- 1 004	.0000e- 005	0000e-004	0.0000	1.6366	1.6366	4.0000e- 005	4.0000e-005	1.6508
Total	6.6000e- 004	4.4000e- 004	6.6000e- 4.4000e- 5.8300e-003 2.0000e- 2.2200e-003 1.0000e- 004 005 005 005	2.0000e- 005	2.2200e-003	1.0000e- 005	2.2300e- 003	5.9000e- 004	1.0000e- 005	1.0000e- 6.0000e-004 005	0.0000	1.6366	1.6366	4.0000e- 005	4.0000e-005	1.6508

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigated Construction On-Site

CO2e		0.0000	2.5568	2.5568
N2O		0.0000	0.0000	0.000
CH4	/yr	0.0000	1.4000e- 004	1.4000e- 004
Total CO2	MT/yr		2.5533	2.5533
NBio- CO2 Total CO2		0.0000	2.5533	2.5533
Bio- CO2		0.0000	0.0000	0.000
Exhaust PM2.5 Total Bio- CO2 PM2.5		0.000.0	6.1000e- 6.1000e-004 004	6.1000e- 6.1000e-004 0.0000 004
Exhaust PM2.5		0.0000	6.1000e- 004	6.1000e- 004
Fugitive PM2.5				
PM10 Total		0.0000	6.1000e- 004	6.1000e- 004
Exhaust PM10	s/yr	0000.0	6.1000e- 004	6.1000e- 004
Fugitive PM10	tons/yr			
S02			3.0000e- 005	3.0000e- 005
со			0.0181	0.0181
NOX			0.0122	0.0122
ROG			1.8100e- 003	0.2673
	Category	Archit. Coating	Off-Road	Total

Mitigated Construction Off-Site

CO2e		0.0000		1.6508	1.6508
N2O		0.0000	0.0000	4.0000e-005	4.0000e-005
CH4	/yr		0.0000	4.0000e- 005	4.0000e- 005
Total CO2	MT/yr	0.0000	0.0000	1.6366	1.6366
Bio- CO2 NBio- CO2 Total CO2		0.0000	0.0000	1.6366	1.6366
Bio- CO2		0.000.0		0.0000	0.0000
PM2.5 Total		0.0000	0.0000	5.6000e-004	5.6000e-004
Exhaust PM2.5		0.0000	0.0000	1.0000e- 005	1.0000e- 005
Fugitive PM2.5		0.0000	0.0000	5.5000e- 004	5.5000e- 004
PM10 Total		0.0000	0.0000	2.0600e- 003	2.0600e- 003
Exhaust PM10	s/yr			1.0000 c- 005	1.0000e- 005
Fugitive PM10	tons/y	0000.0	0.0000	2.0500e-003	2.0500e-003 1.0000e- 005
SO2			0.0000	2.0000e- 005	2.0000e- 005
co			0000.0	4.4000e- 5.8300e-003 2.0000e 004 005	4.4000e- 5.8300e-003 2.0000e 004 005
XON			0.0000	4.4000e- 004	4.4000e- 004
ROG		_	0.0000	6.6000e- 004	6.6000e- 004
	Category	Hauling	Vendor	Worker	Total

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.13 Finishing/Landscaping - 2024 Unmitigated Construction On-Site

		0.0000 4.5750	0.0000 4.5750
CH4	MT/yr	1.4700e- 003	1.4700e- 003
Total CO2	W	4.5383	4.5383
NBio- CO2		4.5383	4.5383
Bio- CO2			0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		6.4000e- 6.4000e-004 0.0000 004	6.4000e- 6.4000e-004 0.0000 004
Exhaust PM2.5		6.4000e- 004	6.4000e- 004
Fugitive PM2.5			
PM10 Total		6.9000e- 004	6.9000e- 004
Exhaust PM10	tons/yr	6.9000e- 004	6.9000e- 004
Fugitive PM10	tor		
SO2		5.0000e- 005	5.0000e- 005
CO		0.0327	0.0327
NOX		0.0140	0.0140
ROG		1.8000e- 003	1.8000e- 003
	Category	Off-Road	Total

Unmitigated Construction Off-Site

		<u></u>			
CO2e			0.0000	0.1769	0.1769
N2O		0.0000	0.0000	0.0000	0.0000
CH4	yr	0.0000	0000.0	0.0000	0.000
Total CO2	MT		0.0000	0.1754	0.1754
NBio- CO2		0.0000 0.0000	0.0000	0.1754	0.1754
Bio- CO2			0.0000	0.0000	
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	0.0000	6.0000e-005 0.0000	0.0000 6.0000e-005 0.0000
Exhaust PM2.5		0.0000		0.0000	0.000
Fugitive PM2.5		0.0000 0.0000	0.0000	6.0000e- 005	6.0000e- 005
Exhaust PM10 Total PM10				2.4000e- 004	2.4000e- 004
Exhaust PM10	/yr	0.0000	0.0000	0.0000	0.0000
Fugitive PM10	tons/yr	0.0000	0.0000	2.4000e-004	2.4000e-004 0.0000
S02		0.0000			0.000
co			0.0000	7.0000e- 5.0000e- 6.2000e-004 0.0000 005 005	7.0000e- 5.0000e- 6.2000e-004 0.0000 005 005
XON		0.0000	0.0000	5.0000e- 005	5.0000e- 005
ROG			0.0000	7.0000e- 005	7.0000e- 005
	Category	Hauling	Vendor	Worker	Total

Page 1 of 1

Date: 11/22/2021 5:20 PM

VP1 Apple Office Project - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigated Construction On-Site

	RUG	NOX	00	202	Fugitive PM10	Exnaust PM10	PM10 Lotal	Fugitive PM2.5	Exnaust PM2.5	Extraust PM10 I otal Fugitive Extraust PM2.5 PM2	BIO- CO2	NBIO- CO2	lotal CO2	CH4	NZN	COZe
Category					tons/yr	s/yr							MT/yr	/yr		
Off-Road	1.8000e- 003	0.0140	0.0327	5.0000e- 005		6.9000e- 004	6.9000e- 004		6.4000e- 004	6.4000e- 6.4000e-004 0.0000 004		4.5383	4.5383	1.4700e- 003	0.0000	4.5750
Total	1.8000e- 003	0.0140	0.0327	5.0000e- 005		6.9000e- 004	6.9000e- 004		6.4000e- 004	6.4000e- 6.4000e-004 0.0000 004	0.0000	4.5383	4.5383	1.4700e- 003	0.0000	4.5750
Mitigated Construction Off-Site	nstruction	n Off-Site														

XON	со	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
			tons/yr	/yr							MT/yr	yr		
0.0000 0.0000	0.0000	0.0000		0.0000			0.0000	0.0000	0.0000	0.0000	0.0000	haaraa aa ahaa ahaa ah	0.0000	0.0000
0000.	0000.	0.0000		0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5.0000e- 6.2000e-004 0.0000 2.2000e-004 005	0000.	2.2000e-004	<u> </u>	0.0000	2.2000e- 004	6.0000e- 005	0.0000	6.0000e-005	0.0000	0.1754	0.1754	0.0000	0.0000	0.1769
7.0000e- 5.0000e- 6.2000e-004 0.0000 2.2000e-004 0.0000 005 005	0.0000 2.2000e-004	2.2000e-004		0.0000	2.2000e- 004	6.0000e- 005	0.0000	0.0000 6.0000e-005 0.0000	0.0000	0.1754	0.1754	0.0000	0.000	0.1769

CalEEMod Existing Conditions Model

Page 1 of 1

Date: 6/18/2022 8:50 AM

VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

VP1 Apple Office Project, Existing Current (2021) Santa Clara County, Annual

1.0 Project Characteristics

1.1 Land Usage

Population	0	0	0
Floor Surface Area	141,024.00	64,857.00	141,292.00
Lot Acreage	3.24		3.24
Metric	1000sqft	1000sqft	1000sqft
Size			141.29
Land Uses	General Office Building	Other Non-Asphalt Surfaces 64.86	Parking Lot 141.29

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	58
Climate Zone	4			Operational Year	2021
Utility Company	Silicon Valley Clean Energy				
CO2 Intensity (Ib/MWhr)	2	CH4 Intensity (Ib/MWhr)	0	N2O Intensity (Ib/MWhr)	O
1.3 User Entere	1.3 User Entered Comments & Non-Default Data	Default Data			
Project Characteristics -	Project Characteristics -	Ĩ			

Land Use - Based on applicant info., see assumptions file

Construction Phase -

Vehicle Trips - Assume 100% primary trips, see assumptions file

Area Coating - Based on square footage in site plan, see assumptions file

Energy Use -

Water And Wastewater - Assume 100% aerobic treatment, see assumptions file

Solid Waste - Based on per capital disposal for employees -Cal Recycle, 2020, see assumptions file

VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Fleet Mix - See fleet mix adjustment in assumptions file

Table Name	Column Name	Default Value	New Value
tblAreaCoating	Area_Parking	12369	8478
tblFleetMix	ННD	6.4250e-003	1.5960e-003
tbIFleetMix	LDA	0.57	0.66
tblFleetMix	LDT1	0.05	0.06
tblFleetMix	LDT2	0.19	0.22
tblFleetMix	LHD1	0.02	5.1300e-003
tblFleetMix	LHD2	4.8940e-003	1.2160e-003
tblFleetMix	MCY	0.02	0.03
tblFleetMix	MDV	0.12	0.02
tblFleetMix	HM	2.9780e-003	0.00
tblFleetMix	МНЮ	8.2890e-003	2.0590e-003
tblFleetMix	OBUS	9.6600e-004	0.00
tblFleetMix	SBUS	9.50006-004	0.00
tblFleetMix	UBUS	4.07006-004	0.00
tblLandUse	LandUseSquareFeet	141,020.00	141,024.00
tblLandUse	LandUseSquareFeet	64,860.00	64,857.00
tblLandUse	LandUseSquareFeet	141,290.00	141,292.00
tblSolidWaste	SolidWasteGenerationRate	131.15	223.00
tblVehicleTrips	CW_TL	9.50	15.60
tblVehicleTrips	DV_TP	19.00	0.00
tblVehicleTrips	PB_TP	4.00	0.00
tblVehicleTrips	PR_TP	77.00	100.00
tblVehicleTrips	ST_TR	2.21	0.00
tblVehicleTrips	SU_TR	0.70	0.00
tblVehicleTrips	WD_TR	9.74	12.93

0
7
0
ö
2
d.202
σ
ō
ž
2
ш
alEE
=
σ
()
-
5
ion: (
5
rsior
sior
rsior
Versior
rsior
Versior
Mod Versior
Mod Versior
Mod Versior
Mod Versior
Mod Versior
alEEMod Versior

Page 1 of 1

Date: 6/18/2022 8:50 AM

VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

100.00	0.00	15,704.00	5,731,957.00	00.0
87.46	2.21	25,064,013.14	OutdoorWaterUseRate 15,361,814.51	SepticTankPercent 10.33 0.00
	AnaerobicandFacultativeLagoonsPercent	IndoorWaterUseRate 25,064,013.14 15,704.00 15,704.00	OutdoorWaterUseRate	SepticTankPercent
tblWater			tblWater	tblWater

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

		_	-			
CO2e		35.2153	35.2153		CO2e	
N2O		3.0000e-005	9.6000e- 005 003		N2O	
CH4	'yr	9.6000e- 003	9.6000e- 003		CH4	'yr
Total CO2	MT/yr	34.9664	34.9664		Total CO2	MT/yr
NBio- CO2		34.9664	34.9664		NBio- CO2	
Bio- CO2		0.0000	0.0000		Bio- CO2 NBio- CO2	
PM2.5 Total		0.0147	0.0147		PM2.5 Total	
Exhaust PM2.5		0.0144	0.0144		Exhaust PM2.5	
Fugitive PM2.5		3.2000e- 004	3.2000e- 004		Fugitive PM2.5	
PM10 Total		0.0167	0.0167		PM10 Total	
Exhaust PM10	/yr	0.0155	0.0155		Exhaust PM10	/yr
Fugitive PM10	tons/yr	1.1900e-003	4.0000e- 1.1900e-003 004		Fugitive PM10	tons/yr
S02		4.0000e- 004	4.0000e- 004		S02	
со		0.2196	0.2196		со	
NOX		0.3147	0.3147		NOX	
ROG		0.0321	0.0321	struction	ROG	
	Year	2021	Maximum	Mitigated Construction		Year

35.2152

0000e-005

9.6000e-003

34.9664

34.9664

0.0000

0.0147

0.0144

3.2000e-004

0.0167

0.0155

.1900e-003

4.0000e-004

0.2196

0.3147

0.0321

Maximum

35.2152

3.0000e-005

9.6000e-003

34.9664

34.9664

0.0000

0.0147

0.0144

3.2000e-004

0.0167

0.0155

1.1900e-003

4.0000e-004

0.2196

0.3147

0.0321

Page 1 of 1

Date: 6/18/2022 8:50 AM

VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

												ighest	Hig			
		ter))X (tons/quar	Maximum Mitigated ROG + NOX (tons/quarter)	mum Mitigat	Maxi	arter)	OX (tons/qu	Maximum Unmitigated ROG + NOX (tons/quarter)	um Unmitiga	Maxim	End Date	End	Start Date	ũ	Quarter
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Percent Reduction
CO2e	N20	CH4	Total CO2	NBio-CO2	Bio- CO2	Exhaust PM2.5 Total Bio- CO2 NBio-CO2 Total CO2 PM2.5	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10 Total PM10	Exhaust PM10	Fugitive PM10	SO2	CO	NOX	ROG	

2.2 Overall Operational

Unmitigated Operational

C:Uze		6.6200e- 003	153.8476	1,412.9039	112.1470	0.0279	1,678.9330
ö		6.62 0(1,675
N20		0.0000	2.7500e-003	0.0550	0.0000	1.0000e-005	0.0578
CH4	/yr	2.0000e- 005	2.8800e- 003	0.0981	2.6752	2.0000e- 005	2.7763
Total CO2	MT/yr	6.2000e- 003	152.9550	1,394.0578	45.2670	0.0238	1,592.3097
NBio- CO2		6.2000e- 003	152.9550	ŝ	0.0000	0.0183	1,547.0372 1,592.3097
Bio- CO2			0.0000	0.0000	45.2670	5.5600e- 003	45.2725
PM2.5 Total		.0000e- 1.0000e-005 005	0.0105	0.4732	0.0000	0.0000	0.4837
Exhaust PM2.5		1.0000e- 005	0.0105	0.0100	0.0000	0.0000	0.0205
Fugitive PM2.5				0.4632			0.4632
PM10 Total		1.0000e- 005	0.0105	1.7542	0.0000	0.0000	1.7647
Exhaust PM10	tons/yr	1.0000e- 005	0.0105	0.0108	0.0000	0.0000	0.0213
Fugitive PM10	ton			1.7435			1.7435
S02		0.0000	8.3000e- 004	0.0152			0.0160
co		3.0000e- 3.2000e-003 0.0000 005	0.1159	8.5633			8.6824
NOX				0.7211			0.8592
ROG		0.6409	0.0152	0.8060			1.4620
	Category	Area	Energy	Mobile	Waste	Water	Total

Page 1 of 1

Date: 6/18/2022 8:50 AM

VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Mitigated Operational

		_	-				
CO2e		6.6200e- 003		1,412.9039	112.1470	0.0279	1,678.9330
N2O		0.0000	2.7500e-003	0.0550	0.0000	1.0000e-005	0.0578
CH4	/yr	2.0000e- 005	2.8800e- 003	0.0981	2.6752	2.0000e- 005	2.7763
Total CO2	MT/yr	6.2000e- 003		1,394.0578	45.2670	0.0238	1,592.3097
NBio- CO2		6.2000e- 003	152.9550	1,394.0578	0.0000	0.0183	1,547.0372
Bio- CO2			0.0000	0.0000	45.2670	5.5600e- 003	45.2725
PM2.5 Total		1.0000e- 1.0000e-005 005	0.0105	0.4732	0.0000	0.0000	0.4837
Exhaust PM2.5		1.0000e- 005	0.0105	0.0100	0.0000	0.0000	0.0205
Fugitive PM2.5				0.4632			0.4632
PM10 Total		1.0000e- 005	0.0105	1.7542	0.0000	0.0000	1.7647
Exhaust PM10	tons/yr	1.0000e- 005	0.0105	0.0108	0.0000	0.0000	0.0213
Fugitive PM10	tons			1.7435			1.7435
S02		0.0000	8.3000e- 004	0.0152			0.0160
CO		0.6409 3.0000e- 3.2000e-003 0.0000 005 005	0.1159	8.5633			8.6824
NOX		3.0000e- 005	0.1380	0.7211			0.8592
ROG		0.6409	0.0152	0.8060			1.4620
	Category		Energy	Mobile		Water	Total

	_
C02e	0.00
N20	0.00
CH4	0.00
Total CO2	0.00
NBio-CO2	0.00
Bio- CO2	0.00
PM2.5 Total	0.00
Exhaust PM2.5	0.00
Fugitive PM2.5	0.00
PM10 Total	0.00
Exhaust PM10	0.00
Fugitive PM10	0.00
S02	0.00
co	0.00
XON	0.00
ROG	0.00
	Percent Reduction

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Page 1 of 1

Date: 6/18/2022 8:50 AM

VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

1,412.9039	1,412.9039
0.0550	0.0550
0.0981	0.0981
1,394.0578	1,394.0578
0.0000 1,394.0578 1,394.0578 0.0981	1,394.0578 1,394.0578
0.0000	0.0000
0.0100 0.4732	0.4732
0.0100	0.0100
0.4632	0.4632
1.7542	1.7542
0.0108	0.0108
1.7435	1.7435
0.0152	0.0152
8.5633	8.5633
0.7211	0.7211
0.8060	0.8060
Mitigated	Unmitigated

4.2 Trip Summary Information

	Avei	Average Daily I rip Kate	te	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
General Office Building	1,823.39	0.00	0.00	4,759,300	4,759,300
Other Non-Asphalt Surfaces	0.00	0.00	0.00		0.00
Parking Lot	0.00	0.00	0.00		
Total	1,823.39	0.00	0.00	4,759,300	4,759,300

4.3 Trip Type Information

%	Pass-by	0	0	0
Trip Purpose %	Diverted	0	0	0
	Primary	100	0	0
	H-O or C-NW	19.00	0.00	0.00
Trip %	H-S or C-C	48.00	00.0	0.00
	H-W or C-W	33.00	0.00	0.00
	H-O or C-NW H-W or C-W H-S or C-C H-O or C-NW	7.30	7.30	7.30
Miles	H-S or C-C	7.30	7.30	7.30
	H-W or C-W H-S or C-C	15.60	9.50	9.50
	Land Use	General Office Building	Other Non-Asphalt Surfaces 9.50 7.30	Parking Lot

4.4 Fleet Mix

ΗM	0.00000	0.002978	0.002978
SBUS	0.000000	0.000950	0.000950
MCY	0.031898	0.024432	0.024432
UBUS	0.00000	0.000407	0.000407
OBUS	0.000000	0.000966	0.000966
ОНН	0.001596	0.006425	0.006425
ДНМ	0.002059	0.008289	0.008289
LHD2	0.001216	0.004894	0.004894
LHD1	0.005130	0.020652	0.020652
MDV	0.020000	0.116880	0.116880
LDT2	0.063318 0.219781	0.190502	0.190502
LDT1	0.063318	0.054883	0.054883
LDA	0.655002	0.567742	0.567742
Land Use	General Office Building	Other Non-Asphalt Surfaces 0.567742 0.054883 0.190502	Parking Lot 0.567742 0.054883 0.190502

Page 1 of 1

Date: 6/18/2022 8:50 AM

VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.0 Energy Detail

Historical Energy Use: Y

5.1 Mitigation Measures Energy

		····	10.													
	ROG	NOX	СО	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2 NBio- CO2 Total CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons/yr	s/yr							MT/yr	yr		
Electricity Mitigated						0.0000			0.0000	0.0000	0.0000			0.0000	0.0000 0.0000 2.7444	2.7444
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	2.7444	2.7444	0.0000	0.0000	2.7444
NaturalGas Mitigated	0.0152	-		8.3000e- 004	2	0.0105	0.0105		0.0105	0.0105	0.0000	5	150.2105	2.8800 0 - 003	2.7500e-003 151.1032	151.1032
NaturalGas Unmitigated	0.0152	0.1380	0.1159	8.3000e- 004		0.0105	0.0105		0.0105	0.0105	0.0000	150.2105	150.2105	2.8800 e- 003	2.7500e-003 151.1032	151.1032

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

CO2e		151.1032	0.0000	0.0000	151.1032
N20 0				0.0000	2.7500e- 15 003
		e- 2.7			
CH4	MT/yr	2.8800e 003		0.0000	2.8800e- 003
Total CO2	W	150.2105	0.0000	0.0000	150.2105
NBio- CO2		150.2105 150.2105 2.8800e- 003	0.0000	0.0000	150.2105
Bio- CO2			0.0000	0.0000	0.0000
PM2.5 Total Bio-CO2 NBio-CO2 Total CO2		0.0105	0.0000	0.0000	0.0105
Exhaust PM2.5		0.0105	0.0000	0.0000	0.0105
Fugitive PM2.5					
PM10 Total		0.0105	0.0000	0.0000	0.0105
Exhaust PM10	tons/yr	0.0105	0.0000	0.0000	0.0105
Fugitive PM10	ton				
S02		0.1159 8.3000e-004	0.0000 0.0000 0.0000	0.0000 0.0000	0.1159 8.3000e-004
co		0.1159	0.0000	0.0000	0.1159
NOX		0.1380	0.0000	0.0000	0.1380
ROG			0.0000	0.0000	0.0152
NaturalGas Use	kBTU/yr	2.81484e+ 006		0	
	Land Use	General Office 2.81484e+ Building 006	Other Non-Asphalt Surfaces	Parking Lot	Total

Page 1 of 1

Date: 6/18/2022 8:50 AM

VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Mitigated

	NaturalGas Use	ROG	XON	C	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio-CO2 NBio-CO2 Total CO2	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					tons/yr	s/yr							MT/yr	/yr		
General Office 2.81484e+ 0.0152 Building 006	2.81484e+ 006	0.0152	0.1380	0.1159	0.1159 8.3000e-004		0.0105	0.0105		0.0105	0.0105	0.000.0		150.2105 150.2105 2.8800e- 003	2.8800e- 003	2.7500e- 003	151.1032
Other Non-Asphalt 0 Surfaces	0		0.0000	0.0000	0.0000		0.0000	0.000.0		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000 0.0000 0.0000 0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0152	0.1380		0.1159 8.3000e-004		0.0105	0.0105		0.0105	0.0105	0.0000	150.2105 150.2105	150.2105	2.8800e- 003	2.7500e- 003	151.1032

5.3 Energy by Land Use - Electricity

Unmitigated

CO2e		2.6316	0.0000	0.1128	2.7444
N2O	'yr	0.0000	0.0000	0.0000	0.0000
CH4	MT/yr	0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.1128	0.0000
Total CO2		2.6316	0.0000	0.1128	2.7444
Electricity Total CO2 Use	kWh/yr	2.90086e+ 006	o	124337	
	Land Use		Other Non-Asphalt Surfaces	Parking Lot	Total

Page 1 of 1

Date: 6/18/2022 8:50 AM

VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Mitigated

	Lectricity Use	Use	CH4	NZO	UU2e
Land Use	kWh/yr		LΜ	MT/yr	
General Office Building	2.90086e+ 006			0.0000	2.6316
Other Non-Asphalt Surfaces	0	0.0000	0.0000	0.0000 0.0000	0.0000
Parking Lot	124337	0.1128	0.0000	0.1128 0.0000 0.0000 0.1128	0.1128
Total		2.7444	0.0000	0.0000	2.7444

6.0 Area Detail

6.1 Mitigation Measures Area

		_	
CO2e		6.6200e- 003	6.6200e- 003
N2O			0.0000
CH4	yr	2.0000 c- 005	2.0000e- 005
Total CO2	MT/yr	6.2000e- 003	6.2000e- 003
Bio- CO2 NBio- CO2 Total CO2		6.2000e- 003	6.2000e- 003
Bio- CO2		0.0000	0.0000
PM2.5 Total		0000e-005	0000e-005
Exhaust PM2.5		1.0000e- 1 005	1.0000e- 1. 005
Fugitive PM2.5			
PM10 Total Fugitive PM2.5		-	1.0000e- 005
Exhaust PM10	tons/yr	1.0000e- 005	1.0000e- 005
Fugitive PM10	ton		
S02		0.0000	0.0000
00		3.0000e- 3.2000e-003 005	3.2000е-003 0.0000
NOX		3.0000 0 - 005	0.6409 3.0000e- 005
ROG		0.6409	0.6409
	Category		Unmitigated

Page 1 of 1

Date: 6/18/2022 8:50 AM

VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Unmitigated

	ROG	NOX	8	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2 Total CO2	Total CO2	CH4	N2O	CO2e
					tons/yr	/yr							MT/yr	'yr		
	0.0765					0.0000	0.000.0			0.0000	0.0000	0.0000	0.0000	0.0000		0.0000
	0.5641					0.0000	0.000.0		0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000
Landscaping	3.0000e- 004	3.0000e- 005	3.2000e-003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e-005	0.0000	6.2000e- 003	6.2000e- 003	2.0000e- 005	0.0000	6.6200e- 003
	0.6409	3.0000e- 005	3.0000e- 3.2000e-003 005	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e-005	0.0000	6.2000e- 003	6.2000e- 003	2.0000e- 005	0.0000	6.6200e- 003

Mitigated

CO2e		0.0000	0.0000	6.6200e- 003	6.6200e- 003
N2O		0.0000		0.0000	0.000
CH4	MT/yr	0.0000	0.0000	2.0000 c - 005	2.0000e- 005
Total CO2	μ	0.0000	0.0000	6.2000e- 003	6.2000e- 003
NBio- CO2		0.0000	0.0000	6.2000e- 003	6.2000e- 003
Bio-CO2 NBio-CO2 Total CO2		0.0000		0.0000	0.0000
PM2.5 Total		0.0000	0000.0	1.0000e-005	1.0000e-005
Exhaust PM2.5		0.0000	0.0000	1.0000e- 005	1.0000e- 005
Fugitive PM2.5					
PM10 Total		0.0000	0.0000	1.0000e- 005	1.0000e- 005
Exhaust PM10	tons/yr	0.0000	0.0000	1.0000e- 005	1.0000e- 005
Fugitive PM10	ton				
S02				0.0000	0.000
СО				3.2000e-003	3.0000e- 3.2000e-003 005
NOX				3.0000e- 005	3.0000e- 005
ROG		0.0765		3.0000e- 004	0.6409
	SubCategory	Architectural Coating		Landscaping	Total

Page 1 of 1

Date: 6/18/2022 8:50 AM

VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

7.0 Water Detail

7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	CO2e
Category		LM	MT/yr	
Mitigated	0.0238	2.0000e- 005	2.0000e- 1.0000e-005 005	0.0279
Unmitigated	0.0238	2.0000e- 005	2.0000e- 1.0000e-005 0.0279 005	0.0279

7.2 Water by Land Use

Unmitigated

0.0279	1.0000e- 005	2.0000e-005 1.0000e- 005	0.0238		Total
0.0000	0.0000	0.0000	0.0000	0 / 0	Parking Lot 0 / 0
0.0000	0.0000	0.0000	0.0000	0 / 0	Other Non-Asphalt Surfaces
0.0279	1.0000e- 005	2.0000e-005 1.0000e- 005	0.0238	0.015704 / 5.73196	General Office Building
	/yr	MT/yr		Mgal	Land Use
CO2e	N20	CH4	Total CO2	Indoor/Out door Use	

Page 1 of 1

Date: 6/18/2022 8:50 AM

VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Mitigated

CO2e		0.0279	0.0000	0.0000	0.0279
N2O	/yr		0.0000	0.0000	1.0000e- 005
CH4	MT/yr	2.0000e-005	0.0000	0.0000	2.0000e-005
door/Out Total CO2			0.0000	0.0000	0.0238
Indoor/Out door Use	Mgal	~	0 / 0	0 / 0	
	Land Use	General Office Building	Other Non-Asphalt Surfaces	Parking Lot 0 / 0	Total

1

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	I otal CO2	CH4	NZO	COZe
		ΕW	MT/yr	
Mitigated	45.2670	2.6752	0000.0	112.1470
Unmitigated	45.2670	2.6752	45.2670 2.6752 0.0000 112.1470	112.1470

Page 1 of 1

Date: 6/18/2022 8:50 AM

VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

8.2 Waste by Land Use

Unmitigated

	Disposed	10141 002	t	0.20	2700
Land Use	tons		MT/yr	/yr	
General Office Building	223	45.2670	2.6752	0.0000	-
	0	0.0000	0.0000	0.0000	
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Total		45.2670	2.6752	0.0000	112.1470
Mitigated					

112.1470	0.000	2.6752	45.2670		Total
0.0000	0.0000	0.0000	0.0000	0	Parking Lot
0.0000	0.0000	0.0000	0.0000	0	Other Non-Asphalt Surfaces
112.1470	0.0000	2.6752	45.2670	223	General Office Building
	MT/yr	ΤM		tons	Land Use
CO2e	N2O	CH4	Total CO2	Waste Disposed	

CalEEMod Operation Model Baseline Conditions (Year 2024)

Page 1 of 1

Date: 6/18/2022 8:47 AM

VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

VP1 Apple Office Project, Baseline Conditions (2024) Santa Clara County, Annual

1.0 Project Characteristics

1.1 Land Usage

Population		0	0
Floor Surface Area			141,292.00
Lot Acreage	3.24	1.49	3.24
Metric	1000sqft	Other Non-Asphalt Surfaces 64.86 for 1000sqft	1000sqft
Size	141.02	64.86	141.29
Land Uses	General Office Building	Other Non-Asphalt Surfaces	Parking Lot 141.2

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	58
Climate Zone	4			Operational Year	2024
Utility Company	Silicon Valley Clean Energy				
CO2 Intensity (Ib/MWhr)	7	CH4 Intensity (Ib/MWhr)	O	N2O Intensity (Ib/MWhr)	o
1.3 User Entere	1.3 User Entered Comments & Non-Default Data)efault Data			
Project Characteristics -	stics -				
Land Use - Based	Land Use - Based on applicant info., see assumptions file	ssumptions file			
Construction Phase -	e -				
Vehicle Trips - As:	Vehicle Trips - Assume 100% primary trips, see assumptions file	, see assumptions file			
Vehicle Emission Factors -	-actors -				

Š

Vehicle Emission Factors -

Vehicle Emission Factors -

Area Coating - Based on square footage in site plan, see assumptions file

VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Energy Use -

Water And Wastewater - Assume 100% aerobic treatment, see assumptions file

Solid Waste - Based on per capital disposal for employees -Cal Recycle, 2020, see assumptions file

Fleet Mix - See fleet mix adjustment in assumptions file

Table Name	Column Name	Default Value	New Value
tblAreaCoating	Area_Parking	12369	8478
tblFleetMix	НН	6.4040e-003	1.5960e-003
tblFleetMix	LDA	0.57	0.66
tblFleetMix	LDT1	0.06	0.06
tblFleetMix	LDT2	0.19	0.22
tblFleetMix	LHD1	0.02	5.1300e-003
tblFleetMix	LHD2	5.1020e-003	1.2160e-003
tblFleetMix	MCY	0.02	0.03
tblFleetMix	MDV	0.12	0.02
tblFleetMix	HM	2.7760e-003	0.00
tblFleetMix	MHD	7.9340e-003	2.0590e-003
tblFleetMix	OBUS	9.00006-004	0.00
tblFleetMix	SBUS	9.1400e-004	0.00
tblFleetMix	UBUS	3.8000e-004	0.00
tblLandUse	LandUseSquareFeet	141,020.00	141,024.00
tblLandUse	LandUseSquareFeet	64,860.00	64,857.00
tblLandUse	LandUseSquareFeet	141,290.00	141,292.00
tblSolidWaste	SolidWasteGenerationRate	131.15	223.00
tblVehicleTrips		9.50	19.50
tblVehicleTrips	DV_TP	19.00	0.00
tblVehicleTrips	PB_TP	4.00	0.00
tblVehicleTrips	PR_TP	77.00	100.00

0
-
7
0
2
0
d.2020
-
ŏ
<
N
ш
аE
a
$(\tilde{)}$
-
on:
sion:
rsion:
ersion:
<u> </u>
Ver
/er;
Ver
Mod Ver
Mod Ver
Mod Ver
Mod Ver
alEEMod Vers

Page 1 of 1

Date: 6/18/2022 8:47 AM

VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

ST_TR 2.21 0.00	0.00	12.93	100.00	0.00	15,704.00	5,731,957.00	0.00
2.21	0.70	9.74	87.46	2.21	25,064,013.14	15,361,814.51	10.33
ST_TR	tbiVehicleTrips SU_TR 0.70 0.00	WD_TR 9.74 12.93	AerobicPercent 87.46 100.00	tblWater AnaerobicandFacultativeLagoonsPercent 2.21 0.00	tblWater IndoorWaterUseRate 25,064,013.14 15,704.00 15,704.00	tblWater OutdoorWaterUseRate 15,361,814.51 5,731,957.00	SepticTankPercent
tblVehicleTrips	tblVehicleTrips	tblVehicleTrips	tblWater	tblWater	tblWater	tblWater	tblWater

2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

			<i>(</i> 0	Q			9
COZe		6.6100e- 003	153.8476	1,472.4795		0.0279	1,738.5086
N2O			2.7500e-003 153.8476	0.0516	0.0000	1.0000e-005	0.0544
CH4	/yr	2.0000e- 005	2.8800e- 003	0.0939	2.6752	2.0000e- 005	2.7720
Total CO2	MT/yr		152.9550	1,454.7552	45.2670	0.0238	1,653.0072
NBio- CO2		6.2000e- 003	152.9550	1,454.7552 1,454.7552	0.0000	0.0183	1,607.7346 1,653.0072
Bio- CO2			0.0000	0.0000	45.2670	5.5600e- 003	45.2725
Exhaust PM2.5 Total Bio-CO2 NBio-CO2 Total CO2 PM2.5		1.0000e- 1.0000e-005 005	0.0105		0.0000	0.0000	0.5419
Exhaust PM2.5		1.0000e- 005	0.0105	8.8400e- 003	0.0000	0.0000	0.0193
Fugitive PM2.5							0.5225
Exhaust PM10 Total PM10		1.0000 c- 005	0.0105	1.9765	0.0000	0.0000	1.9870
Exhaust PM10	tons/yr	1.0000e- 005	0.0105	9.5700e- 003	0.0000	0.0000	0.0201
Fugitive PM10	ton			1.9670			1.9670
S02		0.0000	8.3000e- 004	0.0156			0.0164
CO		0.6409 3.0000e- 3.1900e-003 0.0000 005	0.1159	8.2370			8.3561
NOX		3.0000e- 005	0.1380	0.6193			0.7573
ROG		0.6409	0.0152	0.7628			1.4188
	Category	Area		Mobile	Waste	Water	Total

Page 1 of 1

Date: 6/18/2022 8:47 AM

VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Mitigated Operational

			-	-	-	-		
CO2e		6.6100e- 003	153.8476	1,472.4795	112.1470	0.0279	1,738.5086	
N2O		0.000.0	2.7500e-003	0.0516	0.000.0	1.0000e-005	0.0544	
CH4	/yr	2.0000e- 005	2.8800e- 003	0.0939	2.6752	2.0000e- 005	2.7720	
Total CO2	MT/yr	6.2000e- 003	152.9550	1,454.7552	45.2670	0.0238	1,653.0072	
NBio- CO2			6.2000e- 003	152.9550	1,454.7552	0.0000	0.0183	1,607.7346
Bio- CO2			0.0000	0.0000	45.2670	5.5600e- 003	45.2725	
PM2.5 Total		1.0000e-005	0.0105	0.5314	0.000	0.0000	0.5419	
Exhaust PM2.5			0.0105	8.8400e- 003	0.0000	0.0000	0.0193	
Fugitive PM2.5				0.5225			0.5225	
PM10 Total		1.0000e- 005	0.0105	1.9765	0.0000	0.0000	1.9870	
Exhaust PM10	tons/yr	1.0000e- 005	0.0105	9.5700e- 003	0.0000	0.0000	0.0201	
Fugitive PM10	ton			1.9670			1.9670	
S02		0.0000	8.3000e- 004	0.0156			0.0164	
со		3.0000e- 3.1900e-003 0.0000 005	0.1159	8.2370			8.3561	
XON		3.0000e- 005	0.1380	0.6193			0.7573	
ROG			0.0152	0.7628			1.4188	
	Category	Area		Mobile		Water	Total	

NOX CO SO2 Fugitive PM10	Exhaust PM10 Total Fugitive Exhaust PM2.5 Bio-CO2 NBio-CO2 Total CO2 PM10 PM2.5 PM2.5 Total
0.00 0.00 0.00	
	0.00 0.00 0.00 0.00 0.00 0.00 0.00

Page 1 of 1

Date: 6/18/2022 8:47 AM

VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

CO2e		0.0516 1,472.4795	1,472.4795
N20		0.0516	0.0516
CH4	'yr		0.0939
Total CO2	MT/yr	1,454.7552	1,454.7552
NBio- CO2		0.0000 1,454.7552 1,454.7552	1,454.7552 1,454.7552
Bio- CO2	tons/yr	0.0000	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2			0.5314
Exhaust PM2.5		8.8400e- 003	8.8400e- 003
Fugitive PM2.5		0.5225	0.5225
PM10 Total		1.9765	1.9765
Exhaust PM10		9.5700e- 003	9.5700e- 003
Fugitive PM10		1.9670	1.9670
S02		0.0156	0.0156
со			8.2370
NOX		0.6193	0.6193
ROG		0.7628	0.7628
	Category	Mitigated	Unmitigated

4.2 Trip Summary Information

	Ave	Average Daily Trip Rate	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
	1,823.39	0.00	0.00	5,369,442	5,369,442
Other Non-Asphalt Surfaces	0.00	0.00	0.00		
	0.00	0.00	0.00		
Total	1,823.39	0.00	0.00	5,369,442	5,369,442

4.3 Trip Type Information

% 6	Pass-by	0	0	0
Trip Purpose	Diverted	0	0	0
	Primary	100	0	0
	H-O or C-NW	19.00	0.00	0.00
Trip %	H-S or C-C	48.00	00.0	00.0
	H-W or C-W	33.00	0.00	0.00
	H-S or C-C H-O or C-NW H-W or C-W H-S or C-C H-O or C-NW	7.30	7.30	7.30
Miles	H-S or C-C	7.30	7.30	7.30
	H-W or C-W	-	9.50	9.50
	Land Use	General Office Building	Other Non-Asphalt Surfaces 9.50	Parking Lot

4.4 Fleet Mix

Page 1 of 1

Date: 6/18/2022 8:47 AM

VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.0 Energy Detail

Historical Energy Use: Y

5.1 Mitigation Measures Energy

CO2e		2.7444	2.7444	51.1032	51.1032
N20			0.0000 2	2.7500e-003 151.1032	2.7500e-003 151.1032
CH4					2.8800e- 2.7 003
Fotal CO2	MT/yr	2.7444		150.2105 2	150.2105 2
PM2.5 Total Bio-CO2 NBio-CO2 Total CO2		0.0000 2.7444 2.7444	2.7444	150.2105	150.2105
Bio- CO2		0.0000			0.0000
PM2.5 Total		0.0000	0.0000	0.0105	0.0105
Exhaust PM2.5	tons/yr	0.0000	0.0000	0.0105	0.0105
Fugitive PM2.5					
PM10 Total		0.0000	0000.0	0.0105	0.0105
Exhaust PM10		0.0000	0.0000	0.0105	0.0105
Fugitive PM10					
S02				8.3000e- 004	8.3000e- 004
8				0.1159	0.1159
XON					0.1380
ROG				0.0152	0.0152
	Category	Electricity Mitigated	Electricity Unmitigated	NaturalGas Mitigated	NaturalGas Unmitigated

5.2 Energy by Land Use - NaturalGas

Unmitigated

CO2e		151.1032	0.0000	0.0000	151.1032	
		~			4	
N2O				0.0000		
CH4	MT/yr		0.0000	0.0000	2.8800e- 003	
Total CO2	MT		0.0000	0.0000	150.2105	
NBio- CO2			0.0000	0.0000	150.2105	
Bio- CO2			0.0000	0.0000	0.000.0	
PM2.5 Total Bio-CO2 NBio-CO2 Total CO2		0.0105	0.0000	0.0000	0.0105	
Exhaust PM2.5		0.0105	0.0000	0.0000	0.0105	
Fugitive PM2.5						
PM10 Total		0.0105	0.0000	0.0000	0.0105	
Exhaust PM10	s/yr	0.0105	0.0000	0.0000	0.0105	
Fugitive PM10	tons/yr					
S02		0.1159 8.3000e-004	0.000.0	0.000.0	0.1159 8.3000e-004	
CO		0.1159	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.1159	
NOX		0.1380	0.0000	0.0000	0.1380	
ROG			0.0000	0.0000	0.0152	
NaturalGas Use	kBTU/yr	2.81484e+ 006	0	0		
	Land Use	General Office 2.81484e+ Building 006	Other Non-Asphalt Surfaces	Parking Lot	Total	Mitigated

Page 1 of 1

Date: 6/18/2022 8:47 AM

VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

NaturalGas ROG NOX Use kRTI I/vr	CO S02	Fugitive E PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	Bio- CO2 NBio- CO2 Total CO2	Total CO2	CH4	N2O	CO2e
		(veril)									2		
			0.0105	0.0105		0.0105	0.0105	0.0000	150.2105 150.2105 2.8800e- 003	150.2105	2.8800e- 003		151.1032
0.0000 0.0000 0.0000 0.0000			0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000 0.0000 0.0000 0.0000			0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0152 0.1380 0.1159 8.3000e-004			0.0105	0.0105		0.0105	0.0105	0.0000	150.2105	150.2105	2.8800e- 003	2.7500e- 003	151.1032

5.3 Energy by Land Use - Electricity Unmitigated

CO2e		2.6316	0.0000	0.1128	2.7444
N2O	'yr	0.0000	0.0000	0.0000	0.0000
CH4	MT/yr	0.0000	0.0000 0.0000 0.0000 0.0000	0.1128 0.0000 0.0000 0.1128	0.0000
Total CO2		2.6316	0.0000	0.1128	2.7444
Electricity Total CO2 Use	kWh/yr	2.90086e+ 006	o	124337	
	Land Use		Other Non-Asphalt Surfaces	Parking Lot	Total

Page 1 of 1

Date: 6/18/2022 8:47 AM

VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Mitigated

	Lectricity Use	Lectricity Lotal CU2 Use	CH4	NZU	UUze
Land Use	kWh/yr		MT/yr	/yr	
	2.90086e+ 006		0.0000		2.6316
Other Non-Asphalt Surfaces	0		0.0000 0.0000	0.0000	0.0000 0.0000
Parking Lot	124337	0.1128	0.0000	0.1128 0.0000 0.0000 0.1128	0.1128
Total		2.7444	0.0000	0.0000	2.7444

6.0 Area Detail

6.1 Mitigation Measures Area

			-
CO2e		6.6100e- 003	6.6100e- 003
N2O		0.0000	0.0000
CH4	yr	2.0000e- 005	2.0000e- 005
Total CO2	MT/yr	6.2000e- 003	6.2000e- 003
NBio- CO2		6.2000e- 003	6.2000e- 003
Bio- CO2		0.0000	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		1.0000e-005 0.0000	1.0000e-005 0.0000
Exhaust PM2.5		1.0000e- 1 005	1.0000e- 005
Fugitive PM2.5			
PM10 Total		1.0000e- 005	1.0000e- 005
Exhaust PM10	tons/yr	1.0000e- 005	1.0000e- 005
Fugitive PM10	ton		
S02		0.0000	0.0000
00		3.1900e-003	3.1900e-003
XON		3.0000e- 3.1900e-003 0.0000 005	0.6409 3.0000e 3.1900e-003 0.0000 005 005
ROG		0.6409	0.6409
	Category	Mitigated	Unmitigated

Page 1 of 1

Date: 6/18/2022 8:47 AM

VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Unmitigated

	ROG	NOX	00	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2	Bio- CO2	NBio- CO2 Total CO2	Total CO2	CH4	N2O	CO2e
SubCategory					tons/yr	/yr							MT/yr	/yr		
Architectural Coating	0.0765					0.0000	0000.0		0.0000		0.0000	0.0000		0.0000	0.0000	0.000.0
3	0.5641					0.0000	0.000.0		0.0000	0.0000	0.0000		0.0000	0.0000		0.0000
Landscaping	2.9000e- 004		3.0000e- 3.1900e-003 005	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e-005	0.0000	6.2000e- 003	6.2000e- 003	2.0000e- 005	0.0000	6.6100e- 003
Total	0.6409	3.0000e- 005	3.000e- 3.1900e-003 005	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e-005	0.0000	6.2000e- 003	6.2000e- 003	2.0000e- 005	0.0000	6.6100e- 003

Mitigated

					PM2.5	PM2.5				4	5	071	
		tons/yr	yr							MT/yr	/yr		
			0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000
				0.0000		0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
3.0000e- 3.1900e-003 005	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e-005	0.0000	6.2000e- 003	6.2000e- 003	э- 2.0000е- 005	0.0000	6.6100e- 003
3.0000e- 3.1900e-003 005	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e-005	0.0000	6.2000e- 003	6.2000e- 003	2.0000e- 005	0.0000	6.6100e- 003

Page 1 of 1

Date: 6/18/2022 8:47 AM

VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

7.0 Water Detail

7.1 Mitigation Measures Water

	Total CO2	CH4	N20	CO2e
Category		W	MT/yr	
Mitigated	0.0238	2.0000 e- 005	2.0000e- 1.0000e-005 005	
Unmitigated	0.0238	2.0000e- 005	2.0000e- 1.0000e-005 005	0.0279

7.2 Water by Land Use <u>Unmitigated</u>

CO2e		0.0279	0.0000	0.0000	0.0279
N2O	/yr	1.0000e- 005	0.0000	0.0000	1.0000e- 005
CH4	MT/yr	2.0000e-005 1.0000e- 005	0.0000	0.0000	2.0000e-005
door/Out Total CO2 door Use		0.0238	0.0000	0.0000	0.0238
Indoor/Out door Use	Mgal	0.015704 / 5.73196	0/0	0/0	
	Land Use	General Office Building	Other Non-Asphalt Surfaces	Parking Lot 0 / 0	Total

Page 1 of 1

Date: 6/18/2022 8:47 AM

VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Mitigated

CO2e		0.0279	0.0000	0.0000	0.0279
N2O	/yr		0.0000	0.0000	1.0000e- 005
CH4	MT/yr	2.0000e-005	0.0000	0.0000	2.0000e-005
door/Out Total CO2			0.0000	0.0000	0.0238
Indoor/Out door Use	Mgal	~	0 / 0	0 / 0	
	Land Use	General Office Building	Other Non-Asphalt Surfaces	Parking Lot 0 / 0	Total

1

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	NZO	COZe
		LM	MT/yr	
	45.2670	2.6752	0.0000	112.1470
Unmitigated	45.2670	2.6752	45.2670 2.6752 0.0000 112.1470	112.1470

Page 1 of 1

Date: 6/18/2022 8:47 AM

VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

8.2 Waste by Land Use

Unmitigated

CO2e		<u> </u>	0.0000	0.0000	112.1470
N2O	MT/yr	0.000.0	0.0000	0.0000	0.0000
CH4	ΤM	2.6752	0.0000	0.0000	2.6752
Total CO2		45.2670	0.0000	0.0000	45.2670
Waste Disposed	tons	223	o	0	
	Land Use	General Office Building	Other Non-Asphalt Surfaces	Parking Lot	Total

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MT/yr	/yr	
General Office Building	223	45.2670	2.6752	0.0000	112.1470
Other Non-Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Total		45.2670	2.6752	0.0000	112.1470

CalEEMod Operations Model

0
~
4
Ö.
\sim
$\widetilde{\sim}$
<u>0</u> .2
Q
0
≥
ш
ш
쁰
σ
$^{\circ}$
Ē
ō
· 0
2
Ð
>
5
2
2
2
ш
ш
=
Ω,
()

Page 1 of 1

Date: 6/18/2022 9:02 AM

VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

VP1 Apple Office Project, Operation (2024) Santa Clara County, Annual

1.0 Project Characteristics

1.1 Land Usage

Size Metric Lot Acreage Floor Surface Area Population	280.02 1000sqft 1.73 280,020.00 0				2.30 1000sqft 0.05 2,300.00 0
Size				129.59	2.30
Land Uses	General Office Building 280	Enclosed Parking with Elevator	Other Non-Asphalt Surfaces 10	Parking Lot 12	Convenience Market (24 hour)

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	58
Climate Zone	4			Operational Year	2024
Utility Company	Silicon Valley Clean Energy				
CO2 Intensity (Ib/MWhr)	2	CH4 Intensity (Ib/MWhr)	0	N2O Intensity (Ib/MWhr)	0

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Based on applicant info., see assumptions file

Construction Phase -

Vehicle Trips - Assume normal office operations of similar Apple Campus 2 buildings in which offices and retail space will be assumed to be closed on weekends, assume Area Coating - Based on applicant info, see assumptions file

Water And Wastewater - Assume 100% aerobic treatment, see assumptions file

VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Solid Waste - This calculation includes General Office Building and Commercial Retail space, based on CalRecycle 2020, see assumptions file Energy Mitigation - PV system installed based on Applicant

Fleet Mix - See fleet mix adjustment in assumptions file

Table Name	Column Name	Default Value	New Value
tblAreaCoating	Area_Nonresidential_Exterior	141160	5327
tblAreaCoating	Area_Nonresidential_Interior	423480	189048
tblAreaCoating	Area_Parking	26836	7775
tblFleetMix	НН	6.4040e-003	1.6100e-003
tblFleetMix	НН	6.4040e-003	1.6100e-003
tblFleetMix	LDA	0.57	0.66
tblFleetMix	LDA	0.57	0.66
tblFleetMix	LDT1	0.06	0.06
tblFleetMix	LDT1	0.06	0.06
tblFleetMix	LDT2	0.19	0.22
tblFleetMix	LDT2	0.19	0.22
tblFleetMix	LHD1	0.02	5.1120e-003
tblFleetMix	LHD1	0.02	5.1120e-003
tblFleetMix	LHD2	5.1020e-003	1.2830e-003
tblFleetMix	LHD2	5.1020e-003	1.2830e-003
tblFleetMix	MCY	0.02	0.03
tblFleetMix	MCY	0.02	0.03
tblFleetMix	MDV	0.12	0.02
tblFleetMix	MDV	0.12	0.02
tblFleetMix	HM	2 <i>.77</i> 60e-003	0.00
tblFleetMix	HM	2.7760e-003	0.00
tblFleetMix	MHD	7.9340e-003	1.9950e-003
tblFleetMix	МНD	7.9340e-003	1.9950e-003

VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblFleetMix	OBUS	9.000e-004	0.00
tblFleetMix	OBUS	9.00006-004	0.00
tblFleetMix	SBUS	9.1400e-004	0.00
tblFleetMix	SBUS	9.1400e-004	0.0
tblFleetMix	UBUS	3.8000e-004	0.00
tblFleetMix	UBUS	3.8000e-004	0.00
tblLandUse	LandUseSquareFeet	104,600.00	104,602.00
tblLandUse	LotAcreage	6.43	1.73
tblLandUse	LotAcreage	4.89	0.81
tblLandUse	LotAcreage	2.97	2.98
tblSolidWaste	SolidWasteGenerationRate	6.91	0.00
tblSolidWaste	SolidWasteGenerationRate	260.42	445.00
tblVehicleTrips	CW_TL	9.50	15.51
tblVehicleTrips	CW_TL	9.50	15.51
tblVehicleTrips	DV_TP	15.00	0.00
tblVehicleTrips	DV_TP	19.00	0.00
tblVehicleTrips	PB_TP	61.00	0.00
tblVehicleTrips	PB_TP	4.00	0.00
tblVehicleTrips	PR_TP	24.00	1 00.00
tblVehicleTrips	PR_TP	77.00	100.00
tblVehicleTrips	ST_TR	1,084.17	0.00
tblVehicleTrips	ST_TR	2.21	0.00
tblVehicleTrips	su_TR	901.17	0.00
tblVehicleTrips	su_tr	0.70	0.00
tblVehicleTrips	WD_TR	762.28	142.17
tblVehicleTrips	WD_TR	9.74	12.93
tblWater	AerobicPercent	87.46	100.00

VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblWater	tblWater i 87.46 i 100.00	87.46	100.00
)	
tblWater	AerobicPercent	87.46 100.00	100.00
tblWater		2.21 0.00	0.00
tblWater		2.21 0.00	0.00
tblWater	Percent		00.0
tblWater	IndoorWaterUseRate	170,366.80	179,945.00
tblWater	IndoorWaterUseRate	49,769,004.11	9,965,230.00
tblWater		104,418.36	0.00
tblWater		30,503,58	00.0
tblWater	OutdoorWaterUseRate	0.00	813,595.00
tblWater	SepticTankPercent		0.00
tblWater	SepticTankPercent	10.33	0.00
tblWater	SepticTankPercent	10.33	0.00
3.0 Emissions Summany			

2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

CO2e		0.0139	249.2791	2,762.1585		6.2767	3,241.5193
N2O		0.0000)3		0.0000	7.8100e-003	0.1120
CH4	/yr	3.0000e- 005	4.6500e- 4 003	0.1823	5.3384	0.0124	5.5378
Total CO2	MT/yr		247.8388	2,727.8667	90.3310	3.6418	2,975.7709 3,069.6912
NBio- CO2		0.0130	247.8388	2,727.8667 2,727.8667	0.0000	0.0524	2,975.7709
Bio- CO2			0.0000	0.0000	90.3310	3.5894	93.9204
PM2.5 Total		2.0000e-005	0.0169	0.9948	0.0000	0.0000	1.0117
Exhaust PM2.5			0.0169	0.0168	0.0000	0.0000	0.0338
Fugitive PM2.5				0.9780			0.9780
PM10 Total		2.0000e- 005	0.0169	3.6996	0.0000	0.0000	3.7166
Exhaust PM10	tons/yr	2.0000e- 005	0.0169	0.0182	0.0000	0.0000	0.0351
Fugitive PM10	ton			3.6814			3.6814
SO2		0.0000		0.0292			0.0305
CO		6.0000e- 6.6900e-003 0.00 005		15.7260			15.9197
NOX			0.2226	1.1859			1.4086
ROG		1.1805		1.5058			2.7108
	Category	Area	Energy	Mobile	Waste	Water	Total
		- 1	•	• *	. 1	• •	- '

Page 1 of 1

Date: 6/18/2022 9:02 AM

VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Mitigated Operational

	_		-	-	-		
CO2e		0.0139	248.5290	2,762.1585	223.7912	6.2767	3,240.7693
N20		0.0000	со		0.0000	7.8100e-003	0.1120
CH4	/yr	3.0000e- 005			5.3384	0.0124	5.5378
Total CO2	MT/yr	0.0130	247.0887	2,727.8667	90.3310	3.6418	3,068.9412
NBio- CO2		0.0130	247.0887	2,727.8667 2,727.8667	0.0000	0.0524	2,975.0208 3,068.9412
Bio- CO2			0.0000	0.0000	90.3310	3.5894	93.9204
Exhaust PM2.5 Total Bio-CO2 NBio-CO2 Total CO2 PM2.5		2.0000e- 2.0000e-005 005	0.0169	0.9948	0.0000	0.0000	1.0117
Exhaust PM2.5		2.0000e- 005	0.0169	0.0168	0.0000	0.0000	0.0338
Fugitive PM2.5				0.9780			0.9780
Exhaust PM10 Total PM10		2.0000e- 005	0.0169	3.6996	0.0000	0.0000	3.7166
Exhaust PM10	tons/yr	2.0000e- 005	0.0169	0.0182	0.0000	0.0000	0.0351
Fugitive PM10	ton			3.6814			3.6814
S02		0.0000	1.3400e- 003	0.0292			0.0305
00		6.0000e- 6.6900e-003 0.0000 005	0.1870	15.7260			15.9197
NOX		6.0000e- 005	0.2226	1.1859			1.4086
ROG			0.0245	1.5058			2.7108
	Category	Area		Mobile	Waste	Water	Total

C02e	0.02
N20	00.0
CH4	0.00
NBio-CO2 Total CO2	0.02
NBio-CO2	0.03
Bio- CO2	0.00
PM2.5 Total	0.00
Exhaust PM2.5	0.00
Fugitive PM2.5	0.00
PM10 Total	0.00
Exhaust PM10	0.00
Fugitive PM10	0.00
S02	0.00
S	0.00
NOX	0.00
ROG	0.00
	Percent Reduction

3.0 Construction Detail

Construction Phase

Phase Description	
Num Days	20
Num Days Week	5
End Date	12/20/2021
Start Date	11/23/2021
Phase Type	Demolition
Phase Name	Demolition
Phase Number	-

Acres of Grading (Site Preparation Phase): 0

0
<u> </u>
4
<u> </u>
20
2.2
σ
õ
Ś
ш
щ
аE
E
õ
\circ
F
. <u>u</u>
S
۹ ۳
~
~
σ
õ
₹
듧
ш
T
~
U

Page 1 of 1

VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Acres of Grading (Grading Phase): 0

Acres of Paving: 6.19

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	~	8.00	81	0.73
	Excavators 3 8.00 158 0.38	3	8.00	158	0.38
Demolition	Rubber Tired Dozers 247	2	8.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Demolition	9	15.00	0.00	0.00	10.80	7.30		20.00 LD_Mix	HDT_Mix	ННDT

3.1 Mitigation Measures Construction

3.2 Demolition - 2021

Unmitigated Construction On-Site

9700		34.2400	34.2400
074		0.0000	0.0000
<u>t</u>	MT/yr	9.5700e- 003	9.5700e- 003
10141 002	Μ	34.0008	34.0008
		0.0000 34.0008 34.0008	34.0008
NOO -010		0.000.0	0.0000
		0.0144	0.0144
PM2.5		0.0144	0.0144
PM2.5			
		0.0155	0.0155
PM10	tons/yr	0.0155	0.0155
PM10	ton		
200		3.9000e- 004	3.9000e- 004
2		0.2157	0.2157
		0.3144	0.0317 0.3144
202		0.0317	0.0317
	Category	Off-Road	Total

Page 1 of 1

Date: 6/18/2022 9:02 AM

VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Unmitigated Construction Off-Site

	ROG	NOX	co	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	Bio- CO2 NBio- CO2 Total CO2	Total CO2	CH4	N2O	CO2e
Category					tons/yr	s/yr							MT/yr	/yr		
Hauling	0.0000			0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.000.0
Vendor	0.0000	0.0000	00000		0.0000			0.0000		0.0000		0.0000	0.0000		0.0000	0.0000
Worker	4.3000e- 004	3.3000e- 004	3.9300e-003 1.0000e- 005		1.1900e-003 1.0000e- 005		1.2000e- 003	3.2000e- 004	1.0000e- 005	3.2000e-004	0.0000	0.9656	0.9656	3.0000e- 005	3.0000e-005	0.9752
Total	4.3000e- 004		3.3000e- 3.9300e-003 1.0000e- 004 005	1.0000e- 005	1.1900e-003	1.0000e- 005	1.2000e- 003	3.2000e- 004	1.0000e- 005	1.0000e- 3.2000e-004 005	0.000	0.9656	0.9656	3.0000e- 005	3.0000e- 3.0000e-005 005	0.9752
Without Construction On City		0.10														

Mitigated Construction On-Site

			-
CO2e		34.2400	34.2400
N2O		0.0000	0.000
CH4	'yr	9.5700e- 003	9.5700e- 003
Total CO2	MT/yr	34.0007	34.0007
NBio- CO2		34.0007	34.0007
Bio- CO2		0.0000	0.000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0144	0.0144
Exhaust PM2.5		0.0144	0.0144
Fugitive PM2.5			
PM10 Total		0.0155	0.0155
Exhaust PM10	tons/yr	0.0155	0.0155
Fugitive PM10	ton		
S02		3.9000e- 004	3.9000e- 004
со		0.2157	0.2157
XON		0.3144 0.2157	0.3144
ROG		0.0317	0.0317
	Category	Off-Road	Total

Page 1 of 1

Date: 6/18/2022 9:02 AM

VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Mitigated Construction Off-Site

CO2e		0.0000	0.0000	0.9752	0.9752
N2O				3.0000e-005 0	
CH4	١٢	0.0000		3.0000e- 3. 005	3.0000e- 3.0000e-005 005
Total CO2	MT/yr			0.9656	0.9656
NBio- CO2			0.0000	0.9656	0.9656
Bio- CO2		0.0000	0.0000	0.0000	0.0000
PM2.5 Total		0.000.0	0.0000	3.2000e-004	1.0000e- 3.2000e-004 005
Exhaust PM2.5		0.0000	0.0000	1.0000 c - 005	1.0000e- 005
Fugitive PM2.5		0.0000	0.0000	3.2000e- 004	3.2000e- 004
PM10 Total			0.0000	1.2000e- 003	1.2000e- 003
Exhaust PM10	s/yr		0.0000	1.0000e- 005	1.1900e-003 1.0000e- 005
Fugitive PM10	tons/yr	0.000.0	0.0000	1.1900e-003	1.1900e-003
SO2		Ŭ	0.0000	1.0000e- 005	1.0000e- 005
со		0000.0	0.0000	3.3000e- 3.9300e-003 1.0000e- 004 005	3.3000e- 3.9300e-003 1.0000e- 004 005
NOX		0.0000	0.0000	3.3000e- 004	3.3000e- 004
ROG		0.0000		4.3000e- 004	4.3000e- 004
	Category	Hauling		Worker	Total

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

			-
CO2e		2,762.1585	2,762.1585
N2O		0.0998	0.0998
CH4	/yr	0.1823	0.1823
Total CO2	MT/yr	2,727.8667	2,727.8667
Bio- CO2 NBio- CO2 Total CO2		0.0000 2,727.8667 2,727.8667	0.0000 2,727.8667 2,727.8667
Bio- CO2		0000.0	0.0000
PM2.5 Total		0.9948	0.9948
Exhaust PM2.5			0.0168
Fugitive PM2.5		0.9780	0.9780
PM10 Total		3.6996	3.6996
Exhaust PM10	tons/yr	0.0182	0.0182
Fugitive PM10	ton	3.6814	3.6814
S02		0.0292	0.0292
со		15.7260	15.7260
XON		1.1859	1.1859
ROG		1.5058	1.5058
	Category	Mitigated	Unmitigated

Page 1 of 1

Date: 6/18/2022 9:02 AM

VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

4.2 Trip Summary Information

10,049,378	10,049,378	0.00	0.00	3,947.65	Total
		00.0	0.00	0.00	Parking Lot
		0.00	0.00	0.00	Other Non-Asphalt Surfaces
0.00 9,422,467 9,422,467	9,422,467			3,620.66	General Office Building
		0.00		0.00	Enclosed Parking with Elevator
626,911	626,911		0.00	326.99	Convenience Market (24 hour)
Annual VMT	Annual VMT	Sunday	Saturday	Weekday	Land Use
Mitigated	Unmitigated	te	Average Daily Trip Rate	Ave	

4.3 Trip Type Information

						-
%	Pass-by	0	0	0	0	0
Trip Purpose %	Diverted	0	0	0	0	0
	Primary	100	0	100	0	
	H-O or C-NW	19.00	00.00	19.00	0.00 0 0	0.00
Trip %	H-S or C-C	80.10	00.0	48.00	0.00	0.00
	H-W or C-W	06.0	0.00	33.00	0.00	0.00
	H-S or C-C H-O or C-NW H-W or C-W H-S or C-C H-O or C-NW	7.30	7.30	7.30	7.30 7.30 0.00	7.30
Miles	H-S or C-C	7.30	7.30	7.30	7.30	7.30
	H-W or C-W	15.51	9.50	15.51	9.50	9.50
	Land Use	Convenience Market (24 hour)	Enclosed Parking with Elevator 9.50	General Office Building 15.51	Other Non-Asphalt Surfaces 9.50	Parking Lot 9.50

4.4 Fleet Mix

	0.000000	0.000914 (0.000000	0.000914 0	0.024412 0.000914 0.002776	
UBUS	0.00000	0.000380	0.00000		0.000380	
OBUS			0.000000		0.000900	
ОНН	-		-	-	0.006404	
DHM					0.007934	
LHD2					0.005102	
LHD1			0		0.020329	
MDV		0	Ŭ	0.115672	-	
LDT2				0.187060	0.187060	
LDA LDT1 LDT2	0.064065	0.055653	0.064065	0.055653	0.055653	
LDA	0.658989	0.572464	0.658989 0.064065	0.572464	0.572464	
Land Use	Convenience Market (24 hour)	Enclosed Parking with Elevator 0.572464 0.055653	General Office Building	Other Non-Asphalt Surfaces 0.572464 0.055653	Parking Lot 0.572464 0.055653 0.187060	

Historical Energy Use: N

5.0 Energy Detail

Page 1 of 1

Date: 6/18/2022 9:02 AM

VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.1 Mitigation Measures Energy

Kilowatt Hours of Renewable Electricity Generated

Percent of Electricity Use Generated with Renewable Energy

															- puc I M	E 2 Energy by Land Hee - NaturalGae
243.8030	4.4400e-003 243.8030	4.6500e- 003	242.3627	242.3627	0.0000	0.0169	0.0169		0.0169	0.0169		1.3400e- 003	0.1870	0.2226	0.0245	NaturalGas Unmitigated
243.8030	4.4400e-003 243.8030	4.6500e- 003		242.3627	0.0000	0.0169	0.0169		0.0169	0.0169		1.3400e- 003	0.1870	0.2226	0.0245	NaturalGas Mitigated
5.4761	0.0000	0.0000	5.4761	5.4761	0.0000	0.0000	0.0000		0.0000	0.0000						Electricity Unmitigated
4.7260	0.0000	0.0000		0.0000 4.7260	0.0000	0.0000	0.0000		0000.0	0.0000						Electricity Mitigated
		/yr	MT/yr							tons/yr	ton					Category
CO2e	N20	CH4	Total CO2	NBio- CO2 Total CO2	Bio- CO2	Exhaust PM2.5 Total PM2.5	Exhaust PM2.5	Fugitive PM2.5	PM10 Total	Exhaust PM10	Fugitive PM10	S02	CO	NOX	ROG	

5.2 Energy by Land Use - NaturalGas

Unmitigated

		_					_
CO2e		0.2889	0.0000	243.5141	0.0000	0.0000	243.8030
N2O		1.0000e- 005	0.0000	4.4400e- 003	0.0000	0.0000	4.4500e- 003
CH4	yr	1.0000e- 005	0.0000	4.6400e- 003	0.0000	0.0000	4.6500e- 003
Total CO2	MT/yr	0.2872	0.0000	242.0755	0.0000	0.0000	242.3627
NBio- CO2		0.2872	0.0000	242.0755	0.0000	0.0000	242.3627
Bio- CO2		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
PM2.5 Total		2.0000e-005	0.0000	0.0169	0.0000	0.0000	0.0169
Exhaust PM2.5			0.0000	0.0169	0.0000	0.0000	0.0169
Fugitive PM2.5							
PM10 Total		2.0000e- 005	0.0000	0.0169	0.0000	0.0000	0.0169
Exhaust PM10	s/yr	2.0000e- 005	0.0000	0.0169	0.0000	0.0000	0.0169
Fugitive PM10	tons/y						
SO2		0.0000	0.0000	0.1868 1.3300e-003	0.0000	0.0000	0.1870 1.3300e-003
CO		2.2000e- 004	0.0000		0.0000	0.0000 0.0000	0.1870
NOX		3.0000e- 2.6000e-004 2.2000e- 005 004		-			0.2226
ROG		3.0000e- 2 005	0.0000	0.0245	0.0000	0.0000	0.0245
NaturalGas Use	kBTU/yr	5382	0	4.53632e+ 006	0	0	
	Land Use	Convenience Market (24 hour)	Enclosed Parking with Elevator	General Office 4.53632e+ Building 006	Other Non-Asphalt Surfaces	Parking Lot	Total

Mitigated

Page 1 of 1

Date: 6/18/2022 9:02 AM

VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

CO2e		0.2889	0.0000	243.5141	0.0000	0.0000	243.8030
N20		1.0000e- 005	0.0000	4.4400e- 003	0.0000	0.0000	4.4500e- 003
CH4	/yr	1.0000e- 005	0.0000	4.6400e- 003	0.0000	0.0000	4.6500e- 003
Total CO2	MT/yr	0.2872	0.0000	242.0755	0.0000	0.0000	242.3627
NBio- CO2 Total CO2		0.2872	0.0000	242.0755	0.0000	0.0000	242.3627
Bio- CO2		0.0000	0.0000	0.0000	0.0000	0.0000	0.000
PM2.5 Total		2.0000e-005	0.0000	0.0169	0.000.0	0.000.0	0.0169
Exhaust PM2.5		2.0000e- 005	0.0000	0.0169	0.0000	0.0000	0.0169
Fugitive PM2.5							
PM10 Total		2.0000e- 005	0.0000	0.0169	0.0000	0.0000	0.0169
Exhaust PM10	síyr	2.0000e- 005	0.0000	0.0169	0.0000	0.0000	0.0169
Fugitive PM10	tons/yr						
S02		0.000.0	0.000.0	1.3300e-003		0.000.0	0.1870 1.3300e-003
CO		2.2000e- 004	0.0000	0.1868		0.0000	0.1870
NOX		3.0000e- 2.6000e-004 2.2000e- 005 004	0.0000	0.0245 0.2224 0.1868 1		0.0000	0.2226
ROG		3.0000e- 005	0.0000	0.0245	0.0000	0.0000	0.0245
NaturalGas Use	kBTU/yr	5382	0	4.53632e+ 006	o	o	
	Land Use	Convenience Market (24 hour)	-	General Office Building	Other Non-Asphalt Surfaces	Parking Lot	Total

5.3 Energy by Land Use - Electricity

Unmitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT/yr	/yr	
Convenience Market (24 hour)	23897	0.0217	0.0000	0.0000	0.0217
Enclosed Parking with Elevator	1.15916e+ 006	1.0516	0.0000	0.0000	1.0516
General Office Building	4.80794e+ 006	4.3617	0.0000	0.0000 0.0000 4.3617	4.3617
Parking Lot	45356.5	0.0412	0.0000	0.0000	0.0412
Total		5.4761	0.0000	0.0000	5.4761
Mitigated					

T

1

Τ

Page 1 of 1

Date: 6/18/2022 9:02 AM

VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Land Use kW Land Use kW Convenience 822 Market (24 hour) 996 with Elevator General Office 4465 Building 900 Other Non-Asphalt -105 Surfaces -1619	Electricity Use kWh/yr -82297.9 996197 996197 -4.46255e+ 006 -105000	Total CO2 -0.0747 0.9037 4.0484 -0.0953	CH4 MT/yr 0.0000 0.0000 0.0000 0.0000	N2O 0.00000 0.00000 0.00000 0.00000	CO2e -0.0747 0.9037 4.0484 -0.0953
		4.7260	0.0000	0.0000	4.7260

6.0 Area Detail

6.1 Mitigation Measures Area

CO2e		0.0139	0.0139
N2O			0.0000
CH4	/yr	3.0000e- 005	3.0000e- 005
Total CO2	MT/yr	0.0130	0.0130
NBio- CO2 Total CO2		0.0130	0.0130
Bio- CO2		0.000.0	0.0000
PM2.5 Total		2.0000e- 2.0000e-005 0.0000 0.0130 0.0130 3.0000e- 005 005	2.0000e-005 0.0000
Exhaust PM2.5		2.0000e- 005	2.0000e- 1 005
Fugitive PM2.5			
PM10 Total		2.0000e- 005	. 2.0000e- 005
Exhaust PM10	tons/yr	2.0000e- 005	2.0000e- 005
Fugitive PM10	ton		
SO2		0.0000	0.0000
00		6.6900e-003 0.0000	6.6900e-003
NOX		6.0000e- 005	1.1805 6.0000e- 6.6900e-003 0.0000 005
ROG			
	Category	Mitigated	Unmitigated

6.2 Area by SubCategory

Page 1 of 1

Date: 6/18/2022 9:02 AM

VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Unmitigated

	ROG	XON	8	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2 Total CO2	Total CO2	CH4	N2O	CO2e
SubCategory					tons/yr	s/yr							MT/yr	/yr		
Architectural Coating	0.0484					0.0000	0.000.0		0.0000	0.000.0	0.0000	0.0000		0.0000	0.000.0	0.0000
Consumer Products	1.1315	-				0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	6.2000e- 004		6.0000e- 6.6900e-003 005	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e-005	0.0000	0.0130	0.0130	3.0000e- 005	0.0000	0.0139
Total	1.1805	6.0000e- 005	6.0000e- 6.6900e-003 005	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e-005	0.0000	0.0130	0.0130	3.0000e- 005	0.0000	0.0139

Mitigated

	ROG	NOX	СО	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio-CO2 NBio-CO2 Total CO2	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					tons/yr	s/yr							MT/yr	'yr		
Architectural Coating	0.0484					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	1.1315		1.1315			0.0000	0.0000			0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	6.2000e- 004	6.0000e- 005	6.6900e-003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e-005	0.0000	0.0130	0.0130	3.0000e- 005	0.0000	0.0139
Total	1.1805	6.0000e- 005	6.0000e- 005	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 2.0000e-005 0.0000 005	0.0000	0.0130	0.0130	3.0000e- 005	0.0000	0.0139

Page 1 of 1

Date: 6/18/2022 9:02 AM

VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

7.0 Water Detail

7.1 Mitigation Measures Water

		-	
CO2e		6.2767	6.2767
N2O	MT/yr	7.8100e-003 6.2767	0.0124 7.8100e-003 6.2767
CH4	M	0.0124	0.0124
Total CO2		3.6418	3.6418
	Category	Mitigated	Unmitigated

7.2 Water by Land Use

Unmitigated

			0.0000		2.5	0.0000	6.2767
	MT/yr	<u>_</u>	0.0000	7.6700e- 003	0.0000	0.0000	7.8100e- 003
	LM	2.2000e-004	0.0000	0.0121	0.0000	0.0000	0.0124
			0.0000	3.5746	2.5800e- 003	0.0000	3.6418
door Use	Mgal	0.179945/ 0	0/0	ര		0/0	
	Land Use	Convenience Market (24 hour)	Enclosed Parking with Elevator	General Office Building	Other Non-Asphalt Surfaces	Parking Lot	Total

Page 1 of 1

Date: 6/18/2022 9:02 AM

VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Mitigated

				1:070	0 0 Waste Datail
6.2767	7.8100e- 003	0.0124	3.6418		Total
0.0000	0.0000	0.0000	0.0000	0/0	Parking Lot
2.5800e-00:	0.0000	0.0000	2.5800e- 003	0 / 0.813595	Other Non-Asphalt Surfaces
6.1629	7.6700e- 003	0.0121	3.5746	9.96523 / 0	General Office Building
0.0000	0.0000	0.0000	0.0000	0/0	Enclosed Parking with Elevator
0.1113		2.2000e-004		0.179945 / 0	Convenience Market (24 hour)
	/yr	MT/yr		Mgal	Land Use
CO2e	N20	CH4	Total CO2	Indoor/Out door Use	

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

MT/yr	90.3310 5.3384 0.0000	90.3310 5.3384 0.0000 223.7912
	L	
	90.3310	90.3310
	Mitigated	Unmitigated

8.2 Waste by Land Use

VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Unmitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MT/yr	/yr	
Convenience Market (24 hour)	0	0.000.0	0.000.0	0.0000	0.0000
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000
General Office Building	445	90.3310	5.3384	0.0000	223.7912
Other Non-Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Total		90.3310	5.3384	0.0000	223.7912
Mitigated					

	Disposed		±	020	9000
Land Use	tons		MT/yr	/yr	
Convenience Market (24 hour)	0	0.0000	0.0000	0.0000	0.0000
Enclosed Parking with Elevator	o	0.0000	0.0000	0.0000	0.0000
General Office Building	445	90.3310	5.3384	0.0000	223.7912
Other Non-Asphalt Surfaces	o	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Total		90.3310	5.3384	0.0000	223.7912

CO2e

Total CO3

Energy Calculations

Existing Conditions (Year 2021) - Vehicle Fuel Usage Land Use

Vehicle type	Fleet percent	VMT
	General Office Building	General Office Building
LDA	65.50%	3,117,351
LDT1	6.33%	301,349
LDT2	21.98%	1,046,004
MDV	2.00%	95,186
LHD1	0.51%	24,415
LHD2	0.12%	5,787
MHD	0.21%	9,799
HHD	0.16%	7,596
OBUS	0.00%	0
UBUS	0.00%	0
MCY	3.19%	151,812
SBUS	0.00%	0
MH	0.00%	0
	100.00%	4,759,300

4.2 Trip Summary Information

	Ave	rage Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
General Office Building	1,823.39	0.00	0.00	4,759,300	4,759,300
Other Non-Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Total	1,823.39	0.00	0.00	4,759,300	4,759,300

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
General Office Building	0.655002	0.063318	0.219781	0.020000	0.005130	0.001216	0.002059	0.001596	0.000000	0.000000	0.031898	0.000000	0.000000
Other Non-Asphalt Surfaces	0.567742	0.054883	0.190502	0.116880	0.020652	0.004894	0.008289	0.006425	0.000966	0.000407	0.024432	0.000950	0.002978
Parking Lot	0.567742	0.054883	0.190502	0.116880	0.020652	0.004894	0.008289	0.006425	0.000966	0.000407	0.024432	0.000950	0.002978

	EXISTING CO	NDITIONS		
Vehicle type	Gas percent	Diesel percent	CNG percent	Electricity percent
LDA	91.24%	0.26%	0.00%	8.49
LDT1	99.63%	0.03%	0.00%	0.34
LDT2	99.35%	0.35%	0.00%	0.30
MDV	97.93%	1.66%	0.00%	0.41
LHD1	66.21%	33.79%	0.00%	0.00
LHD2	35.74%	64.26%	0.00%	0.00
MHD	13.67%	85.59%	0.73%	0.00
HHD	0.01%	95.48%	4.51%	0.00
OBUS	26.81%	72.77%	0.42%	0.00
UBUS	8.18%	83.35%	8.13%	0.34
MCY	100.00%	0.00%	0.00%	0.00
SBUS	32.11%	65.50%	2.38%	0.00
MH	72.57%	27.43%	0.00%	0.00

Advisors and a second s

			EXIST	ING CONDITIONS								
Vehicle type		Gasoline			Diesel			CNG			Electricity	
venicie type	VMT	mpg	Gallons	VMT	mpg	Gallons	VMT	mpg	Gallons	VMT	m/kWh	kWh
LDA	2,844,398	28.61	99,408	8,228	42.72	193	0	0.00	0	264,725	2.66	99,490
LDT1	300,238	24.23	12,389	83	24.44	3	0	0.00	0	1,028	2.61	393
LDT2	1,039,220	22.85	45,471	3,644	31.41	116	0	0.00	0	3,139	3.01	1,041
MDV	93,212	18.83	4,951	1,583	24.16	66	0	0.00	0	391	2.96	132
LHD1	16,165	9.10	1,777	8,250	15.69	526	0	0.00	0	0	0.00	0
LHD2	2,068	8.19	253	3,719	12.90	288	0	0.00	0	0	0.00	0
MHD	1,340	4.57	293	8,388	8.35	1,005	72	7.02	10	0	0.00	0
HHD	1	3.30	0	7,252	5.67	1,279	343	4.94	69	0	0.00	0
OBUS	0	4.66	0	0	7.97	0	0	7.39	0	0	0.00	0
UBUS	0	8.81	0	0	9.23	0	0	6.04	0	0	0.57	0
MCY	151,812	41.45	3,662	0	0.00	0	0	0.00	0	0	0.00	0
SBUS	0	9.74	0	0	8.10	0	0	5.41	0	0	0.00	0
MH	0	4.41	0	0	9.40	0	0	0.00	0	0	0.00	0
	4,448,453		168,203	41,148		3,475	415		80	269,284		101,057

Operation - Vehicle Fuel Usage

Land Use Vehicle type Fleet percent VMT Fleet percent VMT

			General Office	General Office	
	Convenience Market	Convenience Market	Building	Building	Total
LDA	65.90%	413,127	65.90%	6,209,302	6,622,430
LDT1	6.41%	40,163	6.41%	603,650	643,813
LDT2	21.53%	134,995	21.53%	2,028,968	2,163,963
MDV	2.00%	12,538	2.00%	188,449	200,988
LHD1	0.51%	3,205	0.51%	48,168	51,372
LHD2	0.13%	804	0.13%	12,089	12,893
MHD	0.20%	1,251	0.20%	18,798	20,049
HHD	0.16%	1,009	0.16%	15,170	16,179
OBUS	0.00%	0	0.00%	0	0
UBUS	0.00%	0	0.00%	0	0
MCY	3.16%	19,819	3.16%	297,882	317,701
SBUS	0.00%	0	0.00%	0	0
MH	0.00%	0	0.00%	0	0
	100.00%	626,911	100.00%	9,422,467	10,049,388

4.2 Trip Summary Information

	Ave	rage Daily Trip Ri	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Convenience Market (24 hour)	326.99	0.00	0.00	626,911	626,911
Enclosed Parking with Elevator	0.00	0.00	0.00		
General Office Building	3,620.66	0.00	0.00	9,422,467	9,422,467
Other Non-Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Total	3,947.65	0.00	0.00	10,049,378	10,049,378

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Convenience Market (24 hour)	0.658989	0.064065	0.215333	0.020000	0.005112	0.001283	0.001995	0.001610	0.000000	0.000000	0.031614	0.000000	0.000000
Enclosed Parking with Elevator	0.572464	0.055653	0.187060	0.115672	0.020329	0.005102	0.007934	0.006404	0.000900	0.000380	0.024412	0.000914	0.002776
General Office Building	0.658989	0.064065	0.215333	0.020000	0.005112	0.001283	0.001995	0.001610	0.000000	0.000000	0.031614	0.000000	0.000000
Other Non-Asphalt Surfaces	0.572464	0.055653	0.187060	0.115672	0.020329	0.005102	0.007934	0.006404	0.000900	0.000380	0.024412	0.000914	0.002776
Parking Lot	0.572464	0.055653	0.187060	0.115672	0.020329	0.005102	0.007934	0.006404	0.000900	0.000380	0.024412	0.000914	0.002776

	PROPOSED COM	IDITIONS		
Vehicle type	Gas percent	Diesel percent	CNG percent	Electricity percent
LDA	88.63%	0.20%	0.00%	11.17%
LDT1	99.41%	0.02%	0.00%	0.57%
LDT2	98.63%	0.36%	0.00%	1.01%
MDV	96.95%	1.52%	0.00%	1.52%
LHD1	64.19%	35.36%	0.00%	0.45%
LHD2	33.10%	66.44%	0.00%	0.45%
MHD	14.00%	84.84%	0.84%	0.32%
HHD	0.01%	94.45%	5.29%	0.26%
OBUS	24.17%	75.18%	0.57%	0.11%
UBUS	8.18%	83.15%	8.27%	0.40%
MCY	100.00%	0.00%	0.00%	0.00%
SBUS	34.89%	62.36%	2.49%	0.26%
MH	69.86%	30.14%	0.00%	0.00%

PROPOSED CONDITIONS

C Equal to T6 (https://www.arb.ca.gov/msei/downloads/emfar2014/emfar2014-vol3-technical-documentation-052015.pdf)
C Equal to T7 (https://www.arb.ca.gov/msei/downloads/emfar2014/emfar2014-vol3-technical-documentation-052015.pdf)
Motor coach, all other buses, and OBUS (https://www.arb.ca.gov/msei/downloads/emfar2014/emfar2014/emfar2014/emfar2014-effar2014/emfar2014-eff

			PROPOS	ED CONDITIONS								
Vehicle type		Gasoline			Diesel			CNG			Electricit	1
venicie type	VMT	mpg	Gallons	VMT	mpg	Gallons	VMT	mpg	Gallons	VMT	m/kWh	kWh
LDA	5,869,152	29.99	195,675	13,351	43.63	306	0	0.00	0	739,927	2.67	277,285
LDT1	640,028	25.24	25,358	129	24.45	5	0	0.00	0	3,656	2.70	1,357
LDT2	2,134,346	24.18	88,258	7,812	32.63	239	0	0.00	0	21,805	2.89	7,547
MDV	194,866	19.93	9,780	3,061	24.82	123	0	0.00	0	3,060	2.78	1,099
LHD1	32,975	9.72	3,392	18,164	16.00	1,135	0	0.00	0	233	1.53	153
LHD2	4,268	8.65	493	8,567	13.32	643	0	0.00	0	58	1.55	38
MHD	2,806	4.79	586	17,009	8.45	2,012	169	7.16	24	65	0.90	72
HHD	2	3.93	0	15,281	5.88	2,599	855	5.09	168	42	0.55	77
OBUS	0	4.82	0	0	8.10	0	0	7.68	0	0	0.00	0
UBUS	0	9.28	0	0	9.22	0	0	6.04	0	0	0.57	0
MCY	317,701	42.14	7,539	0	0.00	0	0	0.00	0	0	0.00	0
SBUS	0	9.92	0	0	8.18	0	0	5.51	0	0	0.95	0
MH	0	4.42	0	0	9.39	0	0	0.00	0	0	0.00	0
	9,196,144		331,082	83,373		7,063	1,024		192	768,847		287,626

Operation-Related Vehicle Fuel/Energy Usage

		РКОЈ	ECT LAND US	SE COIVIIVIU	IE			
Vehicle Type	Gas	;	Dies	el	CN	IG	Elect	ricity
venicie rype	VMT	Gallons	VMT	Gallons	VMT	Gallons	VMT	kWh
Existing Passenger Vehicles	4,448,453	168,203	41,148	3,475	415	80	269,284	101,057
Proposed Passenger Vehicles	9,196,144	331,082	83,373	7,063	1,024	192	768,847	287,626
Net Change	4,747,691	162,879	42,225	3,589	609	112	499,563	186,569

PROJECT LAND USE COMMUTE

Vehicle type		GAS			DSL			NG			ELEC	
Venice Type	VMT/day	Gallons/day	Miles/gallon	VMT/day	Gallons/day	Miles/gallon	VMT/day	Gallons/day	Miles/gallon	VMT/day	kWh/day	Miles/kWh
All other buses	0	0	0.00	49,405	5,778	8.55	355	48	7.39	0	0	0.00
LDA	22,621,029	790,575	28.61	65,439	1,532	42.72	0	0	0.00	2,105,313	791,230	2.66
LDT1	1,810,612	74,711	24.23	503	21	24.44	0	0	0.00	6,199	2,372	2.61
LDT2	9,665,133	422,896	22.85	33,893	1,079	31.41	0	0	0.00	29,197	9,684	3.01
LHD1	672,783	73,958	9.10	343,383	21,881	15.69	0	0	0.00	0	0	0.00
LHD2	87,553	10,693	8.19	157,443	12,203	12.90	0	0	0.00	0	0	0.00
MCY	160,382	3,869	41.45	0	0	0.00	0	0	0.00	0	0	0.00
MDV	5,065,073	269,019	18.83	86,018	3,560	24.16	0	0	0.00	21,269	7,186	2.96
MH	23,630	5,358	4.41	8,934	950	9.40	0	0	0.00	0	0	0.00
Motor coach	0	0	0.00	11,679	2,121	5.51	0	0	0.00	0	0	0.00
OBUS	22,503	4,830	4.66	0	0	0.00	0	0	0.00	0	0	0.00
PTO	0	0	0.00	24,993	5,248	4.76	0	0	0.00	0	0	0.00
SBUS	7,565	777	9.74	15,431	1,904	8.10	561	104	5.41	0	0	0.00
T6	67,829	14,832	4.57	424,633	50,857	8.35	3,645	519	7.02	0	0	0.00
17	108	33	3.30	949,282	167,379	5.67	44,859	9,074	4.94	0	0	0.00
UBUS	4,770	541	8.81	48,603	5,267	9.23	4,738	784	6.04	199	347	0.57
Total	40,208,971	1,672,093	24.05	2,219,639	279,780	7.93	54,158	10,529	5.14	2,162,177	810,819	2.67

EMFAC Fuel Usage: Year 2021

 Image: Total
 40,208,971
 1,672,093
 24.05
 2,219,639
 279,780
 7.93
 54,1

 Source: EMFAC2021 (v1.0.1) Emissions Inventory
 Region Type: Sub-Area
 Region: Snata Clara (SF)
 210,639
 279,780
 7.93
 54,1

 Region: Snata Clara (SF)
 Calendar Year: 2021
 Season: Annual
 Vehicle Classification: EMFAC202x Categories
 Vehicle Classification: EMFAC202x Categories
 Units: miles/day for CVMT and EVMT, trips/day for Trips, kWh/day for Energy Consumption, tons/day for Emissions, 1000 gallons/day for Fuel Consumption

Desire	Calender Vers Vehicle Category	Madal Vers	Canad	Freed	Population	Tatal MAT	CVMT	EVMT	Trine	Fuel Consumption	Constant
Region Santa Clara (SF)	Calendar Year Vehicle Category 2021 All Other Buses	Model Year Aggregate	Speed Aggregate	Fuel Diesel	753.1575293	Total VMT 49405.18401	49405.18401	CVIVII	Trips 6703.102011	Fuel Consumptio E 5.777878175	nergy consumpt
Santa Clara (SF)	2021 All Other Buses	Aggregate	Aggregate	Natural Gas	5.469370639	354.9736968	354.9736968	0		0.048056971	0
Santa Clara (SF)	2021 LDA	Aggregate	Aggregate	Gasoline	606787.9769	22328684.33	22328684.33	C		780.6858842	0
Santa Clara (SF)	2021 LDA	Aggregate	Aggregate	Diesel	2097.284571	65438.92679	65438.92679	C	9106.700913	1.531676911	0
Santa Clara (SF)	2021 LDA	Aggregate	Aggregate	Electricity	45687.59288	1848394.432	0	1848394.432		0	713632.807
Santa Clara (SF)	2021 LDA	Aggregate	Aggregate	Plug-in Hybrid	12325.74943	549262.6478	292344.2183	256918.4295		9.889487832	77597.02311
Santa Clara (SF)	2021 LDT1	Aggregate	Aggregate	Gasoline	56250.20079	1810348.739	1810348.739	C		74.70242986	0
Santa Clara (SF)	2021 LDT1	Aggregate	Aggregate	Diesel	32.08332827	503.068528	503.068528	0		0.020586637	0
Santa Clara (SF) Santa Clara (SF)	2021 LDT1 2021 LDT1	Aggregate	Aggregate	Electricity Plug-in Hybrid	176.8773976 10.8247161	5945.758431 516.8070657	0 263.2287822	5945.758431 253.5782836		0 0.008934833	2295.553484 76.58819948
Santa Clara (SF)	2021 LDT1 2021 LDT2	Aggregate Aggregate	Aggregate Aggregate	Gasoline	269286.0936	9644865.293	9644865.293	255.5782850		422.2047138	76.58819948
Santa Clara (SF)	2021 LDT2	Aggregate	Aggregate	Diesel	883.6520453	33892.88704	33892.88704	0		1.07901186	0
Santa Clara (SF)	2021 LDT2	Aggregate	Aggregate	Electricity	295.5133619	10300.33172	0	10300.33172		0	3976.778176
Santa Clara (SF)	2021 LDT2	Aggregate	Aggregate	Plug-in Hybrid	845.8397775	39165.02709	20268.10602	18896.92107		0.690805468	5707.433382
Santa Clara (SF)	2021 LHD1	Aggregate	Aggregate	Gasoline	18933.42146	672783.0793	672783.0793	C		73.9582791	0
Santa Clara (SF)	2021 LHD1	Aggregate	Aggregate	Diesel	9139.777162	343382.9252	343382.9252	C		21.88118037	0
Santa Clara (SF)	2021 LHD2	Aggregate	Aggregate	Gasoline	2465.999662	87553.13797	87553.13797	C		10.69316918	0
Santa Clara (SF)	2021 LHD2	Aggregate	Aggregate	Diesel	4074.911372	157442.8322	157442.8322	C	51257.25882	12.20264652	0
Santa Clara (SF)	2021 MCY	Aggregate	Aggregate	Gasoline	27304.17111	160382.2212	160382.2212	C	54608.34222	3.869155128	0
Santa Clara (SF)	2021 MDV	Aggregate	Aggregate	Gasoline	147596.411	5051242.336	5051242.336	C	682293.6698	268.5401362	0
Santa Clara (SF)	2021 MDV	Aggregate	Aggregate	Diesel	2291.713788	86017.73007	86017.73007	C	11013.96254	3.56015193	0
Santa Clara (SF)	2021 MDV	Aggregate	Aggregate	Electricity	256.6989907	9069.305494	0	9069.305494		0	3501.500451
Santa Clara (SF)	2021 MDV	Aggregate	Aggregate	Plug-in Hybrid	609.3867768	26030.39053	13830.97191	12199.41861		0.478586587	3684.588022
Santa Clara (SF)	2021 MH	Aggregate	Aggregate	Gasoline	2769.699029	23630.01423	23630.01423	C		5.358089555	0
Santa Clara (SF)	2021 MH	Aggregate	Aggregate	Diesel	922.1828121	8933.6317	8933.6317	C		0.950306588	0
Santa Clara (SF)	2021 Motor Coach	Aggregate	Aggregate	Diesel	81.53049559	11679.1	11679.1	C		2.120919284	0
Santa Clara (SF)	2021 OBUS	Aggregate	Aggregate	Gasoline	483.6838018	22502.67818	22502.67818	C		4.829767036	0
Santa Clara (SF)	2021 PTO	Aggregate	Aggregate	Diesel	152 5255502	24993.17659	24993.17659	C		5.248193576	0
Santa Clara (SF) Santa Clara (SF)	2021 SBUS 2021 SBUS	Aggregate	Aggregate Aggregate	Gasoline Diesel	153.6366592 657.673104	7565.400387 15431.13438	7565.400387 15431.13438	0		0.777123714 1.904488696	0
Santa Clara (SF)	2021 SBUS	Aggregate Aggregate	Aggregate	Natural Gas	21.69727028	560.930124	560.930124	0		0.10359294	0
Santa Clara (SF)	2021 T6 CAIRP Class 4	Aggregate	Aggregate	Diesel	3.191002305	212.8721668	212.8721668	0		0.024297722	0
Santa Clara (SF)	2021 T6 CAIRP Class 4	Aggregate	Aggregate	Diesel	4.310174367	292.0223334	292.0223334	0		0.033186661	0
Santa Clara (SF)	2021 T6 CAIRP Class 5	Aggregate	Aggregate	Diesel	12.45959208	763.062712	763.062712	C		0.086247965	0
Santa Clara (SF)	2021 T6 CAIRP Class 7	Aggregate	Aggregate	Diesel	22.93216118	4786.315022	4786.315022	0		0.502883669	ů 0
Santa Clara (SF)	2021 T6 Instate Delivery Class 4	Aggregate	Aggregate	Diesel	612.8301517	20829.51569	20829.51569	C		2.567432606	0
Santa Clara (SF)	2021 T6 Instate Delivery Class 4	Aggregate	Aggregate	Natural Gas	1.830674252	63.44725924	63.44725924	C		0.009899292	0
Santa Clara (SF)	2021 T6 Instate Delivery Class 5	Aggregate	Aggregate	Diesel	675.9474262	24019.11183	24019.11183	-		2.977356034	0
Santa Clara (SF)	2021 T6 Instate Delivery Class 5	Aggregate	Aggregate	Natural Gas	2.756833047	88.24103156	88.24103156	- C		0.013771781	0
Santa Clara (SF)	2021 T6 Instate Delivery Class 6	Aggregate	Aggregate	Diesel	1326.288643	45819.37235	45819.37235	C	18926.13894	5.662933295	0
Santa Clara (SF)	2021 T6 Instate Delivery Class 6	Aggregate	Aggregate	Natural Gas	5.671909136	178.9246539	178.9246539	C	80.93814338	0.027907575	0
Santa Clara (SF)	2021 T6 Instate Delivery Class 7	Aggregate	Aggregate	Diesel	177.0745972	9667.778262	9667.778262	C		1.181915766	0
Santa Clara (SF)	2021 T6 Instate Delivery Class 7	Aggregate	Aggregate	Natural Gas	2.079798146	115.789164	115.789164	C	29.67871955	0.017000265	0
Santa Clara (SF)	2021 T6 Instate Other Class 4	Aggregate	Aggregate	Diesel	1153.641255	44696.31364	44696.31364	C	13336.09291	5.3051215	0
Santa Clara (SF)	2021 T6 Instate Other Class 4	Aggregate	Aggregate	Natural Gas	2.999170231	128.8153801	128.8153801	C	34.67040788	0.017548595	0
Santa Clara (SF)	2021 T6 Instate Other Class 5	Aggregate	Aggregate	Diesel	2099.734608	92823.44359	92823.44359	C	24272.93207	11.01065155	0
Santa Clara (SF)	2021 T6 Instate Other Class 5	Aggregate	Aggregate	Natural Gas	6.797922762	278.3236265	278.3236265	C	78.58398713	0.037898623	0
Santa Clara (SF)	2021 T6 Instate Other Class 6	Aggregate	Aggregate	Diesel	2089.072098	87626.8249	87626.8249	C	24149.67345	10.28171777	0
Santa Clara (SF)	2021 T6 Instate Other Class 6	Aggregate	Aggregate	Natural Gas	7.569347646	304.7325574	304.7325574	C		0.041603751	0
Santa Clara (SF)	2021 T6 Instate Other Class 7	Aggregate	Aggregate	Diesel	760.0843419	37161.59994	37161.59994	C		4.324156076	0
Santa Clara (SF)	2021 T6 Instate Other Class 7	Aggregate	Aggregate	Natural Gas	12.7679093	724.0727401	724.0727401	C		0.093315473	0
Santa Clara (SF)	2021 T6 Instate Tractor Class 6	Aggregate	Aggregate	Diesel	9.003860786	413.3960528	413.3960528	C		0.048106618	0
Santa Clara (SF)	2021 T6 Instate Tractor Class 6	Aggregate	Aggregate	Natural Gas	0.00822374	0.545394258	0.545394258	C		7.10783E-05	0
Santa Clara (SF)	2021 T6 Instate Tractor Class 7	Aggregate	Aggregate	Diesel	236.9637473	14889.04709	14889.04709 193.6099982	C		1.655480794 0.024445495	0
Santa Clara (SF) Santa Clara (SF)	2021 T6 Instate Tractor Class 7 2021 T6 OOS Class 4	Aggregate	Aggregate	Natural Gas Diesel	2.756433892 1.778086599	193.6099982 117.8152097	193.8099982	0		0.013443158	0
Santa Clara (SF)	2021 T6 OOS Class 4	Aggregate Aggregate	Aggregate Aggregate	Diesel	2.393321106	161.6212817	161.6212817	0		0.018366402	0
Santa Clara (SF)	2021 T6 OOS Class 6	Aggregate	Aggregate	Diesel	6.935725289	422.3210332	422.3210332	C		0.047731996	0
Santa Clara (SF)	2021 T6 OOS Class 7	Aggregate	Aggregate	Diesel	12.32729318	3070.799063	3070.799063	-		0.321736515	0
Santa Clara (SF)	2021 T6 Public Class 4	Aggregate	Aggregate	Diesel	143.7498453	4747.57382	4747.57382	C		0.635908823	0
Santa Clara (SF)	2021 T6 Public Class 4	Aggregate	Aggregate	Natural Gas	5.360182228	229.9653441	229.9653441	C	27.49773483	0.036009087	0
Santa Clara (SF)	2021 T6 Public Class 5	Aggregate	Aggregate	Diesel	214.1930194	8160.979498	8160.979498	C	1098.81019	1.060764155	0
Santa Clara (SF)	2021 T6 Public Class 5	Aggregate	Aggregate	Natural Gas	11.9992102	509.6634785	509.6634785	C	61.55594832	0.077058852	0
Santa Clara (SF)	2021 T6 Public Class 6	Aggregate	Aggregate	Diesel	134.102726	4453.114651	4453.114651	C		0.60375566	0
Santa Clara (SF)	2021 T6 Public Class 6	Aggregate	Aggregate	Natural Gas	4.301227559	183.6421442	183.6421442	C		0.027852201	0
Santa Clara (SF)	2021 T6 Public Class 7	Aggregate	Aggregate	Diesel	313.2921679	13581.62819	13581.62819	C		1.808098164	0
Santa Clara (SF)	2021 T6 Public Class 7	Aggregate	Aggregate	Natural Gas	9.366051128	558.3149312	558.3149312	C		0.083180183	0
Santa Clara (SF)	2021 T6 Utility Class 5	Aggregate	Aggregate	Diesel	99.8421442	4080.449273	4080.449273	C		0.47330999	0
Santa Clara (SF)	2021 T6 Utility Class 5	Aggregate	Aggregate	Natural Gas	1.338996223	54.31770076	54.31770076	C		0.007528796	0
Santa Clara (SF)	2021 T6 Utility Class 6	Aggregate	Aggregate	Diesel Natural Gar	19.22872506	771.8002691	771.8002691 9.586990271	C	246.1276808	0.089934857	0
Santa Clara (SF)	2021 T6 Utility Class 6 2021 T6 Utility Class 7	Aggregate	Aggregate	Natural Gas Diesel	0.236629894	9.586990271	9.586990271 1064.624707	C		0.001313654 0.122748127	0
Santa Clara (SF) Santa Clara (SF)		Aggregate	Aggregate	Diesei Natural Gas	21.81231847 0.493812058	1064.624707 22.5445299	22.5445299	L C		0.122748127 0.003079515	0
Santa Clara (SF)	2021 T6 Utility Class 7 2021 T6TS	Aggregate Aggregate	Aggregate Aggregate	Gasoline	1442.735201	67829.4691	67829.4691			14.83176809	0
Santa Clara (SF)	2021 T7 CAIRP Class 8	Aggregate	Aggregate	Diesel	960.9184699	199974.4842	199974.4842	0		33.72757296	0
Santa Clara (SF)	2021 T7 CAIRP Class 8	Aggregate	Aggregate	Natural Gas	1.717438777	379.9869222	379.9869222	C		0.067879723	0
Santa Clara (SF)	2021 T7 NNOOS Class 8	Aggregate	Aggregate	Diesel	878.8053948	237882.7441	237882.7441	C		40.28997061	0
Santa Clara (SF)	2021 T7 NOOS Class 8	Aggregate	Aggregate	Diesel	361.1500246	86438.74259	86438.74259	C		14.66875617	0
Santa Clara (SF)	2021 T7 Other Port Class 8	Aggregate	Aggregate	Diesel	103.885508	17544.32334	17544.32334	C		3.028295891	0
Santa Clara (SF)	2021 T7 POAK Class 8	Aggregate	Aggregate	Diesel	653.5390099	63384.10999	63384.10999	C		11.19477942	0
Santa Clara (SF)	2021 T7 POAK Class 8	Aggregate	Aggregate	Natural Gas	1.335804021	129.4575643	129.4575643	C	21.85375378	0.027241111	0
Santa Clara (SF)	2021 T7 Public Class 8	Aggregate	Aggregate	Diesel	664.7820953	28624.69901	28624.69901	C		5.631034306	0
Santa Clara (SF)	2021 T7 Public Class 8	Aggregate	Aggregate	Natural Gas	2.2761641	115.1922149	115.1922149	C	11.67672183	0.025932599	0

Santa Clara (SF)	2021 T7 Single Concrete/Transit M	1ix Cl Aggregate	Aggregate	Diesel	407.3324501	28422.88674	28422.88674	0	3837.07168	4.932688584	0
Santa Clara (SF)	2021 T7 Single Concrete/Transit M	1ix Cl Aggregate	Aggregate	Natural Gas	24.00395211	1825.541497	1825.541497	0	226.1172289	0.325803229	0
Santa Clara (SF)	2021 T7 Single Dump Class 8	Aggregate	Aggregate	Diesel	640.1766996	40608.21374	40608.21374	0	6030.46451	7.020367498	0
Santa Clara (SF)	2021 T7 Single Dump Class 8	Aggregate	Aggregate	Natural Gas	38.42709938	2671.479405	2671.479405	0	361.9832762	0.494188348	0
Santa Clara (SF)	2021 T7 Single Other Class 8	Aggregate	Aggregate	Diesel	834.3643452	49272.82146	49272.82146	0	7859.712131	8.507855526	0
Santa Clara (SF)	2021 T7 Single Other Class 8	Aggregate	Aggregate	Natural Gas	47.31385162	3069.690178	3069.690178	0	445.6964823	0.564593486	0
Santa Clara (SF)	2021 T7 SWCV Class 8	Aggregate	Aggregate	Diesel	351.7052735	22814.48213	22814.48213	0	1617.844258	9.382079701	0
Santa Clara (SF)	2021 T7 SWCV Class 8	Aggregate	Aggregate	Natural Gas	299.1089674	19341.06305	19341.06305	0	1375.90125	4.5029636	0
Santa Clara (SF)	2021 T7 Tractor Class 8	Aggregate	Aggregate	Diesel	2021.265662	171050.0568	171050.0568	0	29368.99007	28.41810602	0
Santa Clara (SF)	2021 T7 Tractor Class 8	Aggregate	Aggregate	Natural Gas	190.3025413	17326.90504	17326.90504	0	2765.095926	3.065010317	0
Santa Clara (SF)	2021 T7 Utility Class 8	Aggregate	Aggregate	Diesel	67.72773785	3264.863138	3264.863138	0	866.9150444	0.577662395	0
Santa Clara (SF)	2021 T7IS	Aggregate	Aggregate	Gasoline	4.911670528	108.3320922	108.3320922	0	98.27270392	0.032870405	0
Santa Clara (SF)	2021 UBUS	Aggregate	Aggregate	Gasoline	45.67500002	4769.829538	4769.829538	0	182.7000001	0.541359028	0
Santa Clara (SF)	2021 UBUS	Aggregate	Aggregate	Diesel	434.6268787	48602.55774	48602.55774	0	1738.507515	5.266914309	0
Santa Clara (SF)	2021 UBUS	Aggregate	Aggregate	Electricity	5.046756939	199.0027319	0	199.0027319	20.18702775	0	346.910342
Santa Clara (SF)	2021 UBUS	Aggregate	Aggregate	Natural Gas	41.43636456	4737.889242	4737.889242	0	165.7454582	0.784118952	0

Vehicle type		GAS			DSL			NG			ELEC	
venicie type	VMT/day	Gallons/day	Miles/gallon	VMT/day	Gallons/day	Miles/gallon	VMT/day	Gallons/day	Miles/gallon	VMT/day	kWh/day	Miles/kWh
All other buses	0	0	0.00	49,867	5,767	8.65	410	54	7.58	0	0	0.0
LDA	22,726,901	770,216	29.51	56,221	1,299	43.28	0	0	0.00	2,612,147	979,593	2.6
LDT1	1,745,424	70,152	24.88	392	16	24.43	0	0	0.00	8,172	3,062	2.6
LDT2	10,178,109	428,910	23.73	36,937	1,148	32.17	0	0	0.00	79,060	27,151	2.9
LHD1	711,085	74,668	9.52	384,085	24,160	15.90	0	0	0.00	0	0	0.0
LHD2	90,793	10,677	8.50	176,769	13,401	13.19	0	0	0.00	0	0	0.0
MCY	164,895	3,931	41.95	0	0	0.00	0	0	0.00	0	0	0.0
MDV	5,378,872	275,184	19.55	86,834	3,534	24.57	0	0	0.00	61,185	21,848	2.8
MH	22,547	5,107	4.42	9,345	995	9.39	0	0	0.00	0	0	0.0
Motor coach	0	0	0.00	11,779	2,151	5.48	0	0	0.00	0	0	0.0
OBUS	20,830	4,374	4.76	0	0	0.00	0	0	0.00	0	0	0.0
PTO	0	0	0.00	25,406	5,188	4.90	0	0	0.00	12	25	0.48
SBUS	8,309	842	9.86	15,393	1,888	8.15	596	109	5.48	4	4	0.9
T6	70,786	14,992	4.72	431,550	51,225	8.42	4,048	567	7.14	102	109	0.9
17	114	31	3.68	965,883	166,461	5.80	53,296	10,517	5.07	400	730	0.5
UBUS	4,798	517	9.27	48,830	5,294	9.22	4,830	799	6.04	199	347	0.5
Total	41,123,463	1,659,602	24.78	2,299,290	282,527	8.14	63,179	12,046	5.24	2,761,280	1,032,869	2.6
Region Type: Sub-A Region: Santa Clara Calendar Year: 202 Season: Annual Vehicle Classificatio	i (SF) 3 on: EMFAC202x Cate		Energy Consump	tion, tons/day fo	or Emissions, 1000 g.	allons/day for Fuel	Consumption					

EMFAC Fuel Usage: Year 2023

Region Santa Clara (SF)	Calendar Year Vehicle Category 2023 All Other Buses	Model Year Aggregate	Speed Aggregate	Fuel Diesel	Population 787.7498085	Total VMT (49867.13684	49867.13684	EVMT		Fuel Consumptio E 5.767368866	nergy Consumpt
Santa Clara (SF)	2023 All Other Buses	Aggregate	Aggregate	Natural Gas	6.145600435	409.546615	409.546615	0		0.054019102	0
Santa Clara (SF)	2023 LDA	Aggregate	Aggregate	Gasoline	601938.3153	22370251.09	22370251.09	0		758.1523908	0
Santa Clara (SF)	2023 LDA	Aggregate	Aggregate	Diesel	1871.124679	56220.79718	56220.79718	0	8000.531418	1.29892798	0
Santa Clara (SF)	2023 LDA	Aggregate	Aggregate	Electricity	53751.14791	2268185.318	0	2268185.318		0	875706.7364
Santa Clara (SF)	2023 LDA	Aggregate	Aggregate	Plug-in Hybrid	15805.32023	700610.9132	356649.6534	343961.2598		12.06393978	103886.5521
Santa Clara (SF)	2023 LDT1	Aggregate	Aggregate	Gasoline	53782.25287	1744480.187	1744480.187	0		70.12001518	0
Santa Clara (SF) Santa Clara (SF)	2023 LDT1 2023 LDT1	Aggregate	Aggregate Aggregate	Diesel Electricity	26.04713722 194.8940713	391.8698325 7068.184366	391.8698325 0	0 7068.184366		0.016037369 0	0 2728.902534
Santa Clara (SF)	2023 LDT1	Aggregate Aggregate	Aggregate	Plug-in Hybrid	43.27677362	2048.369176	944.157857	1104.211319		0.03210507	333.5047292
Santa Clara (SF)	2023 LDT2	Aggregate	Aggregate	Gasoline	280180.4214	10140966.51	10140966.51	1104.211515		427.6416304	0
Santa Clara (SF)	2023 LDT2	Aggregate	Aggregate	Diesel	978.4966958	36936.87393	36936.87393	0		1.148123535	0
Santa Clara (SF)	2023 LDT2	Aggregate	Aggregate	Electricity	1105.878915	38931.70292	0	38931.70292		0	15030.85053
Santa Clara (SF)	2023 LDT2	Aggregate	Aggregate	Plug-in Hybrid	1696.549844	77270.65796	37142.67878	40127.97918	7015.233604	1.268124945	12119.84572
Santa Clara (SF)	2023 LHD1	Aggregate	Aggregate	Gasoline	19180.96188	711085.4725	711085.4725	0		74.66781372	0
Santa Clara (SF)	2023 LHD1	Aggregate	Aggregate	Diesel	9807.464999	384084.7884	384084.7884	0		24.16048678	0
Santa Clara (SF)	2023 LHD2	Aggregate	Aggregate	Gasoline	2494.382223	90793.03842	90793.03842	0		10.67729528	0
Santa Clara (SF)	2023 LHD2	Aggregate	Aggregate	Diesel	4479.531561	176769.2012	176769.2012	0		13.40074061	0
Santa Clara (SF) Santa Clara (SF)	2023 MCY 2023 MDV	Aggregate	Aggregate	Gasoline Gasoline	27894.49523 153799.1108	164894.5081 5358084.151	164894.5081 5358084.151	0		3.930936692 274.4637038	0
Santa Clara (SF)	2023 MDV 2023 MDV	Aggregate Aggregate	Aggregate Aggregate	Diesel	2374.917965	86834.44186	86834.44186	0		3.53404257	0
Santa Clara (SF)	2023 MDV	Aggregate	Aggregate	Electricity	1130.115411	40073.70084	0	40073.70084		0	15471.75599
Santa Clara (SF)	2023 MDV	Aggregate	Aggregate	Plug-in Hybrid	986.0895201	41899.13712	20787.34912	21111.78799		0.720324533	6376.389206
Santa Clara (SF)	2023 MH	Aggregate	Aggregate	Gasoline	2522.744687	22546.87041	22546.87041	0	252.3753785	5.106865714	0
Santa Clara (SF)	2023 MH	Aggregate	Aggregate	Diesel	959.1578086	9344.849437	9344.849437	0		0.995112486	0
Santa Clara (SF)	2023 Motor Coach	Aggregate	Aggregate	Diesel	82.67107969	11778.52162	11778.52162	0		2.150975826	0
Santa Clara (SF)	2023 OBUS	Aggregate	Aggregate	Gasoline	458.8974004	20830.07544	20830.07544	0		4.374109066	0
Santa Clara (SF)	2023 PTO	Aggregate	Aggregate	Diesel	0	25406.07084	25406.07084	0		5.187764905	0
Santa Clara (SF)	2023 PTO	Aggregate	Aggregate	Electricity	0	11.88456368	0 8309.307836	11.88456368		0	24.61909671
Santa Clara (SF)	2023 SBUS	Aggregate	Aggregate	Gasoline		8309.307836	8309.307836 15392.68347	0		0.842317687 1.88782318	0
Santa Clara (SF) Santa Clara (SF)	2023 SBUS 2023 SBUS	Aggregate	Aggregate Aggregate	Diesel Electricity	667.1184919 0.302373247	15392.68347 3.510494287	15592.08547	3.510494287		1.88782318	3.69814983
Santa Clara (SF)	2023 SBUS	Aggregate	Aggregate	Natural Gas	23.50761997	595.8705457	595.8705457	3.510494287		0.108660666	3.09814983
Santa Clara (SF)	2023 T6 CAIRP Class 4	Aggregate Aggregate	Aggregate	Diesel	3.27664237	216.5646971	216,5646971	0		0.024491717	0
Santa Clara (SF)	2023 T6 CAIRP Class 4	Aggregate	Aggregate	Electricity	0.003916745	0.142403946	0	0.142403946		0.02.4451717	0.154691061
Santa Clara (SF)	2023 T6 CAIRP Class 5	Aggregate	Aggregate	Diesel	4.399091842	297.1175597	297.1175597	0.142400040		0.033555023	0.154051001
Santa Clara (SF)	2023 T6 CAIRP Class 5	Aggregate	Aggregate	Electricity	0.004404624	0.165613928	0	0.165613928		0	0.179903681
Santa Clara (SF)	2023 T6 CAIRP Class 6	Aggregate	Aggregate	Diesel	13.84237926	775.9106329	775.9106329	0		0.086418551	0
Santa Clara (SF)	2023 T6 CAIRP Class 6	Aggregate	Aggregate	Electricity	0.030915016	0.898805074	0	0.898805074		0	0.976357143
Santa Clara (SF)	2023 T6 CAIRP Class 7	Aggregate	Aggregate	Diesel	23.91619133	4869.891794	4869.891794	0	549.5940767	0.509195141	0
Santa Clara (SF)	2023 T6 CAIRP Class 7	Aggregate	Aggregate	Electricity	0.0256923	2.649641922	0	2.649641922	0.59040905	0	2.878262364
Santa Clara (SF)	2023 T6 Instate Delivery Class 4	Aggregate	Aggregate	Diesel	627.4953331	21194.8178	21194.8178	0		2.586051212	0
Santa Clara (SF)	2023 T6 Instate Delivery Class 4	Aggregate	Aggregate	Electricity	0.36598452	6.703723252	0	6.703723252		0	7.161447301
Santa Clara (SF)	2023 T6 Instate Delivery Class 4	Aggregate	Aggregate	Natural Gas	1.809059061	67.83229102	67.83229102	0		0.010183471	0
Santa Clara (SF)	2023 T6 Instate Delivery Class 5	Aggregate	Aggregate	Diesel	705.901652	24475.07202	24475.07202	0		2.995511501	0
Santa Clara (SF)	2023 T6 Instate Delivery Class 5	Aggregate	Aggregate	Electricity	0.356927115	6.512580538	0	6.512580538		0	6.957253539
Santa Clara (SF) Santa Clara (SF)	2023 T6 Instate Delivery Class 5 2023 T6 Instate Delivery Class 6	Aggregate	Aggregate Aggregate	Natural Gas Diesel	1.602172761 1366.158021	60.06699147 46700.99001	60.06699147 46700.99001	0		0.008773071 5.700650365	0
Santa Clara (SF)	2023 T6 Instate Delivery Class 6	Aggregate Aggregate	Aggregate	Electricity	0.978692649	17.87469436	40700.99001	17.87469436		0	19.09516203
Santa Clara (SF)	2023 T6 Instate Delivery Class 6	Aggregate	Aggregate	Natural Gas	2.916219062	108.1007368	108.1007368	17.87405450		0.015713212	0
Santa Clara (SF)	2023 T6 Instate Delivery Class 7	Aggregate	Aggregate	Diesel	177.4021507	9755.82205	9755.82205	0		1.167433756	0
Santa Clara (SF)	2023 T6 Instate Delivery Class 7	Aggregate	Aggregate	Electricity	0.038040266	0.818592732	0	0.818592732		0	0.87448549
Santa Clara (SF)	2023 T6 Instate Delivery Class 7	Aggregate	Aggregate	Natural Gas	3.628580607	203.179689	203.179689	0	51.77984527	0.029616174	0
Santa Clara (SF)	2023 T6 Instate Other Class 4	Aggregate	Aggregate	Diesel	1110.728396	45522.58969	45522.58969	0		5.367891098	0
Santa Clara (SF)	2023 T6 Instate Other Class 4	Aggregate	Aggregate	Electricity	0.111101184	2.308976173	0	2.308976173		0	2.447701971
Santa Clara (SF)	2023 T6 Instate Other Class 4	Aggregate	Aggregate	Natural Gas	2.325008826	107.7639423	107.7639423	0		0.014520043	0
Santa Clara (SF)	2023 T6 Instate Other Class 5	Aggregate	Aggregate	Diesel	2154.06213	94555.62503	94555.62503	0 20.58264926		11.14747034	0
Santa Clara (SF) Santa Clara (SF)	2023 T6 Instate Other Class 5 2023 T6 Instate Other Class 5	Aggregate Aggregate	Aggregate Aggregate	Electricity Natural Gas	0.989647919 4.594202822	20.58264926 202.8063304	0 202.8063304	20.58264926		0 0.026453593	21.81927719 0
Santa Clara (SF)	2023 T6 Instate Other Class 5 2023 T6 Instate Other Class 6	Aggregate	Aggregate	Diesel	2098.165215	89307.26622	89307.26622	0		10.43791702	0
Santa Clara (SF)	2023 T6 Instate Other Class 6	Aggregate	Aggregate	Electricity	1.347868768	28.17793138	0	28.17793138		0.45751702	29.87089212
Santa Clara (SF)	2023 T6 Instate Other Class 6	Aggregate	Aggregate	Natural Gas	4.148606277	180.2177392	180.2177392	0		0.023661747	0
Santa Clara (SF)	2023 T6 Instate Other Class 7	Aggregate	Aggregate	Diesel	774.2349652	37567.50132	37567.50132	0	8950.156198	4.340788217	0
Santa Clara (SF)	2023 T6 Instate Other Class 7	Aggregate	Aggregate	Electricity	0.270807434	8.50081278	0	8.50081278	3.130533935	0	9.011550849
Santa Clara (SF)	2023 T6 Instate Other Class 7	Aggregate	Aggregate	Natural Gas	18.90639883	992.1884528	992.1884528	0	218.5579704	0.128063464	0
Santa Clara (SF)	2023 T6 Instate Tractor Class 6	Aggregate	Aggregate	Diesel	8.639745232	419.9542091	419.9542091	0		0.048377505	0
Santa Clara (SF)	2023 T6 Instate Tractor Class 6	Aggregate	Aggregate	Electricity	0.006054795	0.178395526	0	0.178395526		0	0.189113723
Santa Clara (SF)	2023 T6 Instate Tractor Class 6	Aggregate	Aggregate	Natural Gas	0.01883776	1.266079639	1.266079639	0		0.000158319	0
Santa Clara (SF)	2023 T6 Instate Tractor Class 7	Aggregate	Aggregate	Diesel	242.7709829	15021.29184	15021.29184	0		1.654636241	0
Santa Clara (SF)	2023 T6 Instate Tractor Class 7 2023 T6 Instate Tractor Class 7	Aggregate	Aggregate	Electricity Natural Gas	0.065792281	2.435640077	0 330.6466639	2.435640077		0 0/1720050	2.581975979
Santa Clara (SF)	2023 T6 Instate Tractor Class 7 2023 T6 OOS Class 4	Aggregate	Aggregate	Natural Gas	4.995163126	330.6466639	330.6466639 119.937674	0		0.041739058	0
Santa Clara (SF) Santa Clara (SF)	2023 T6 OOS Class 4 2023 T6 OOS Class 5	Aggregate Aggregate	Aggregate Aggregate	Diesel Diesel	1.830878571 2.447585774	119.937674 164.5329212	119.937674	0		0.013554927 0.018575897	0
Santa Clara (SF)	2023 T6 OOS Class 5 2023 T6 OOS Class 6	Aggregate	Aggregate	Diesel	7.726848604	429.9292303	429.9292303	0		0.018575897	0
Santa Clara (SF)	2023 T6 OOS Class 7	Aggregate	Aggregate	Diesel	12.56357918	3126.120117	3126.120117	0		0.325106036	0
Santa Clara (SF)	2023 T6 Public Class 4	Aggregate	Aggregate	Diesel	140.3730228	4755.755873	4755.755873	0		0.623832732	0
Santa Clara (SF)	2023 T6 Public Class 4	Aggregate	Aggregate	Electricity	0.003788101	0.068675509	0	0.068675509		0.025052752	0.081098947
Santa Clara (SF)	2023 T6 Public Class 4	Aggregate	Aggregate	Natural Gas	6.454176233	273.383003	273.383003	0		0.042266091	0
Santa Clara (SF)	2023 T6 Public Class 5	Aggregate	Aggregate	Diesel	219.493286	8209.379387	8209.379387	0		1.057449763	0
Santa Clara (SF)	2023 T6 Public Class 5	Aggregate	Aggregate	Electricity	0.007565133	0.137152711	0	0.137152711		0	0.161963713
Santa Clara (SF)	2023 T6 Public Class 5	Aggregate	Aggregate	Natural Gas	13.22127145	551.1303779	551.1303779	0		0.083121756	0
Santa Clara (SF)	2023 T6 Public Class 6	Aggregate	Aggregate	Diesel	130.7316917	4459.505024	4459.505024	0		0.590869921	0
Santa Clara (SF)	2023 T6 Public Class 6	Aggregate	Aggregate	Electricity	0.041715719	0.757231603	0	0.757231603	0.214001636	0	0.894215223

Santa Clara (SF)	2023 T6 Public Class 6	Aggregate	Aggregate	Natural Gas	5.321600906	224.625502	224.625502	0	27.29981265	0.033766489	0
Santa Clara (SF)	2023 T6 Public Class 7	Aggregate	Aggregate	Diesel	305.0640365	13628.39037	13628.39037	0	1564.978507	1.769756232	0
Santa Clara (SF)	2023 T6 Public Class 7	Aggregate	Aggregate	Electricity	0.065466326	1.876820077	0	1.876820077	0.335842253	0	2.216337875
Santa Clara (SF)	2023 T6 Public Class 7	Aggregate	Aggregate	Natural Gas	11.71803607	656.4528919	656.4528919	0	60.11352502	0.096732362	0
Santa Clara (SF)	2023 T6 Utility Class 5	Aggregate	Aggregate	Diesel	101.2524935	4121.286864	4121.286864	0	1296.031917	0.468113463	0
Santa Clara (SF)	2023 T6 Utility Class 5	Aggregate	Aggregate	Natural Gas	1.427742328	56.40026347	56.40026347	0	18.2751018	0.007747007	0
Santa Clara (SF)	2023 T6 Utility Class 6	Aggregate	Aggregate	Diesel	19.26028007	778.3047964	778.3047964	0	246.5315849	0.088087194	0
Santa Clara (SF)	2023 T6 Utility Class 6	Aggregate	Aggregate	Natural Gas	0.282829146	11.19350302	11.19350302	0	3.620213065	0.001526655	0
Santa Clara (SF)	2023 T6 Utility Class 7	Aggregate	Aggregate	Diesel	21.81733058	1076.823332	1076.823332	0	279.2618315	0.121381779	0
Santa Clara (SF)	2023 T6 Utility Class 7	Aggregate	Aggregate	Electricity	0.035454452	1.011842165	0	1.011842165	0.453816985	0	1.133327363
Santa Clara (SF)	2023 T6 Utility Class 7	Aggregate	Aggregate	Natural Gas	0.47109173	20.61921379	20.61921379	0	6.029974142	0.002802551	0
Santa Clara (SF)	2023 T6TS	Aggregate	Aggregate	Gasoline	1418.702832	70785.85764	70785.85764	0	28385.40626	14.99216178	0
Santa Clara (SF)	2023 T7 CAIRP Class 8	Aggregate	Aggregate	Diesel	1006.264259	204654.1798	204654.1798	0	23123.95267	33.91272703	0
Santa Clara (SF)	2023 T7 CAIRP Class 8	Aggregate	Aggregate	Electricity	2.191624685	228.629324	0	228.629324	50.36353527	0	417.4602445
Santa Clara (SF)	2023 T7 CAIRP Class 8	Aggregate	Aggregate	Natural Gas	2.18323623	454.417362	454.417362	0	50.17076857	0.08086137	0
Santa Clara (SF)	2023 T7 NNOOS Class 8	Aggregate	Aggregate	Diesel	906.2530019	243798.8163	243798.8163	0	20825.69398	40.03653941	0
Santa Clara (SF)	2023 T7 NOOS Class 8	Aggregate	Aggregate	Diesel	379.4320339	88588.44809	88588.44809	0	8719.348139	14.71130852	0
Santa Clara (SF)	2023 T7 Other Port Class 8	Aggregate	Aggregate	Diesel	101.3433552	19017.96884	19017.96884	0	1657.977291	3.208235074	0
Santa Clara (SF)	2023 T7 Other Port Class 8	Aggregate	Aggregate	Electricity	0.04403981	4.845770497	0	4.845770497	0.720491296	0	8.819143543
Santa Clara (SF)	2023 T7 POAK Class 8	Aggregate	Aggregate	Diesel	663.9991296	66785.41963	66785.41963	0	10863.02576	11.46899232	0
Santa Clara (SF)	2023 T7 POAK Class 8	Aggregate	Aggregate	Electricity	0.405368352	17.11902281	0	17.11902281	6.631826243	0	31.15606065
Santa Clara (SF)	2023 T7 POAK Class 8	Aggregate	Aggregate	Natural Gas	0.276126077	26.82738	26.82738	0	4.517422617	0.004774917	0
Santa Clara (SF)	2023 T7 Public Class 8	Aggregate	Aggregate	Diesel	668.8774141	28897.03584	28897.03584	0	3431.341134	5.573678775	0
Santa Clara (SF)	2023 T7 Public Class 8	Aggregate	Aggregate	Electricity	0.280411926	8.048595439	0	8.048595439	1.438513179	0	15.79603306
Santa Clara (SF)	2023 T7 Public Class 8	Aggregate	Aggregate	Natural Gas	2.685262845	133.1357043	133.1357043	0	13.77539839	0.029193227	0
Santa Clara (SF)	2023 T7 Single Concrete/Transit M	1ix Cl Aggregate	Aggregate	Diesel	400.578244	28685.46454	28685.46454	0	3773.447059	4.911340595	0
Santa Clara (SF)	2023 T7 Single Concrete/Transit M	lix Cl Aggregate	Aggregate	Electricity	0.687105987	26.20855553	0	26.20855553	6.472538399	0	47.7822374
Santa Clara (SF)	2023 T7 Single Concrete/Transit M	lix Cl Aggregate	Aggregate	Natural Gas	25.74231275	1881.302524	1881.302524	0	242.4925862	0.330097562	0
Santa Clara (SF)	2023 T7 Single Dump Class 8	Aggregate	Aggregate	Diesel	659.7426707	41015.02264	41015.02264	0	6214.775958	7.103907708	0
Santa Clara (SF)	2023 T7 Single Dump Class 8	Aggregate	Aggregate	Natural Gas	41.67996919	2757.651654	2757.651654	0	392.6253097	0.507810698	0
Santa Clara (SF)	2023 T7 Single Other Class 8	Aggregate	Aggregate	Diesel	902.636725	50408.84902	50408.84902	0	8502.837949	8.609841957	0
Santa Clara (SF)	2023 T7 Single Other Class 8	Aggregate	Aggregate	Electricity	1.058697412	33.64448269	0	33.64448269	9.972929617	0	61.33907905
Santa Clara (SF)	2023 T7 Single Other Class 8	Aggregate	Aggregate	Natural Gas	54.42547465	3201.760637	3201.760637	0	512.6879712	0.578370881	0
Santa Clara (SF)	2023 T7 SWCV Class 8	Aggregate	Aggregate	Diesel	314.2352098	20392.91624	20392.91624	0	1445.481965	8.326207053	0
Santa Clara (SF)	2023 T7 SWCV Class 8	Aggregate	Aggregate	Electricity	0.193254273	5.225674486	0	5.225674486	0.888969656	0	9.722632351
Santa Clara (SF)	2023 T7 SWCV Class 8	Aggregate	Aggregate	Natural Gas	343.2858777	22194.99079	22194.99079	0	1579.115038	4.954695056	0
Santa Clara (SF)	2023 T7 Tractor Class 8	Aggregate	Aggregate	Diesel	2160.227312	170340.6719	170340.6719	0	31388.10285	28.02806259	0
Santa Clara (SF)	2023 T7 Tractor Class 8	Aggregate	Aggregate	Electricity	1.819731701	75.28742821	0	75.28742821	26.44070162	0	137.0765584
Santa Clara (SF)	2023 T7 Tractor Class 8	Aggregate	Aggregate	Natural Gas	283.4583069	22645.88085	22645.88085	0	4118.649199	4.031580489	0
Santa Clara (SF)	2023 T7 Utility Class 8	Aggregate	Aggregate	Diesel	71.46925856	3298.141477	3298.141477	0	914.8065096	0.570242142	0
Santa Clara (SF)	2023 T7 Utility Class 8	Aggregate	Aggregate	Electricity	0.021476041	0.611944939	0	0.611944939	0.274893321	0	1.152168881
Santa Clara (SF)	2023 T7IS	Aggregate	Aggregate	Gasoline	3.454008773	114.3092811	114.3092811	0	69.10780752	0.031050824	0
Santa Clara (SF)	2023 UBUS	Aggregate	Aggregate	Gasoline	45.94708812	4798.243635	4798.243635	0	183.7883525	0.51741281	0
Santa Clara (SF)	2023 UBUS	Aggregate	Aggregate	Diesel	436.6680996	48829.71129	48829.71129	0	1746.672398	5.293673869	0
Santa Clara (SF)	2023 UBUS	Aggregate	Aggregate	Electricity	5.046756939	199.0027319	0	199.0027319	20.18702775	0	346.910342
Santa Clara (SF)	2023 UBUS	Aggregate	Aggregate	Natural Gas	42.26113832	4829.672688	4829.672688	0	169.0445533	0.799417876	0

EMFAC	Fuel	Usage:		

		GAS			DSL			NG			ELEC	
Vehicle type	VMT/day	Gallons/day	Miles/gallon	VMT/day	Gallons/day	Miles/gallon	VMT/day	Gallons/day	Miles/gallon	VMT/day	kWh/day	Miles/kWh
All other buses	0	0	0.00	50,130	5,754	8.71	469	61	7.68	0	0	0.00
LDA	22,671,912	755,873	29.99	51,573	1,182	43.63	0	0	0.00	2,858,258	1,071,122	2.67
LDT1	1,708,278	67,682	25.24	344	14	24.45	0	0	0.00	9,759	3,621	2.70
LDT2	10,367,135	428,695	24.18	37,944	1,163	32.63	0	0	0.00	105,914	36,657	2.89
LHD1	722,529	74,319	9.72	398,004	24,876	16.00	0	0	0.00	5,111	3,345	1.53
LHD2	91,453	10,569	8.65	183,558	13,776	13.32	0	0	0.00	1,253	808	1.55
MCY	166,022	3,940	42.14	0	0	0.00	0	0	0.00	0	0	0.00
MDV	5,493,355	275,693	19.93	86,293	3,476	24.82	0	0	0.00	86,263	30,985	2.78
MH	22,012	4,984	4.42	9,498	1,012	9.39	0	0	0.00	0	0	0.00
Motor coach	0	0	0.00	11,819	2,149	5.50	0	0	0.00	0	0	0.00
OBUS	19,894	4,131	4.82	0	0	0.00	0	0	0.00	93	102	0.90
PTO	0	0	0.00	25,538	5,159	4.95	0	0	0.00	128	265	0.48
SBUS	8,585	866	9.92	15,345	1,876	8.18	612	111	5.51	64	68	0.95
T6	71,600	14,960	4.79	434,044	51,336	8.45	4,304	601	7.16	1,660	1,841	0.90
T7	115	29	3.93	975,558	165,951	5.88	54,591	10,722	5.09	2,666	4,887	0.55
UBUS	4,812	519	9.28	48,918	5,304	9.22	4,865	805	6.04	235	410	0.57
Total	41,347,705	1,642,259	25.18	2,328,566	283,029	8.23	64,842	12,301	5.27	3,071,404	1,154,111	2.66

iUS tal	4,812 41,347,705	519 1,642,259			5,304 283,029	9.22 8.23	4,865 64,842	805 12,301	6.04 5.27	235 3,071,404	410	
		.,	-	_//			• .,• .=	,		e,e, .e .	.,	
urce: EMFAC20 gion Type: Sub	021 (v1.0.1) Emissions Inventory											
gion Type: Suc gion: Santa Cla												
lendar Year: 20												
ason: Annual												
	ation: EMFAC202x Categories			//								
iits: miles/day	for CVMT and EVMT, trips/day for Trips	, kWh/day fo	or Energy Consu	mption, tons/day	for Emissions, 1000	gallons/day for Fue	I Consumption					
gion	Calendar Year Vehicle Category		Model Year	Speed	Fuel	Population	Total VMT	CVMT	EVMT	Trips	Fuel Consumptio	Energy Consumptio
nta Clara (SF)	2024 All Other Buses		Aggregate	Aggregate	Diesel	808.4286685	50130.33539	50130.33539		7195.01515	5.753841967	
nta Clara (SF)	2024 All Other Buses		Aggregate	Aggregate	Natural Gas	7.057369964	469.3876372	469.3876372		62.81059268	0.061129651	
nta Clara (SF)	2024 LDA		Aggregate	Aggregate	Gasoline	600108.1665	22290343.74	22290343.74			742.9542167	
nta Clara (SF)	2024 LDA 2024 LDA		Aggregate	Aggregate	Diesel	1750.023523	51573.47594 2472767.413	51573.47594 0	0 2472767.413	7442.609511 282732.9828	1.182172407	0546
nta Clara (SF) nta Clara (SF)	2024 LDA 2024 LDA		Aggregate Aggregate	Aggregate Aggregate	Electricity Plug-in Hybrid	57627.40336 17457.09878	767059.2064	381568.6693			12.91853974	
nta Clara (SF)	2024 LDT1		Aggregate	Aggregate	Gasoline	52693.36611	1706864.169	1706864.169	0		67.63364027	
nta Clara (SF)	2024 LDT1		Aggregate	Aggregate	Diesel	23.46232522	343.9307557	343.9307557	0	66.44458855	0.014069193	
nta Clara (SF)	2024 LDT1		Aggregate	Aggregate	Electricity	211.0028132	8008.645616	0			0	
nta Clara (SF)	2024 LDT1		Aggregate	Aggregate	Plug-in Hybrid	67.64577844	3164.460326	1414.302062			0.048157412	
nta Clara (SF)	2024 LDT2		Aggregate	Aggregate	Gasoline	285585.4354	10322758.41	10322758.41		1336438.482 4835.433637	427.1777266	
nta Clara (SF) nta Clara (SF)	2024 LDT2 2024 LDT2		Aggregate Aggregate	Aggregate Aggregate	Diesel Electricity	1015.452853 1597.566708	37944.25501 55532.59168	37944.25501 0			1.162718893	
nta Clara (SF)	2024 LDT2		Aggregate	Aggregate	Plug-in Hybrid	2116.579549	94757.7077	44376.61329		8752.056437	1.517647285	
nta Clara (SF)	2024 LHD1		Aggregate	Aggregate	Gasoline	19314.14241	722529.3133	722529.3133		287751.9438	74.31877246	
nta Clara (SF)	2024 LHD1		Aggregate	Aggregate	Diesel	10107.73681	398004.1011	398004.1011		127142.6136	24.8758044	
nta Clara (SF)	2024 LHD1		Aggregate	Aggregate	Electricity	70.82835563	5110.544281	0	5110.544281	989.4272741	0	3345
nta Clara (SF)	2024 LHD2		Aggregate	Aggregate	Gasoline	2506.905697	91452.57471	91452.57471		37349.15959	10.56883592	
nta Clara (SF)	2024 LHD2		Aggregate	Aggregate	Diesel	4663.455482	183558.3761	183558.3761	0	58660.40334	13.77648219	
nta Clara (SF)	2024 LHD2		Aggregate	Aggregate	Electricity	18.33259331	1253.286273	0			0	
ita Clara (SF) ita Clara (SF)	2024 MCY 2024 MDV		Aggregate Aggregate	Aggregate Aggregate	Gasoline Gasoline	28171.50953 156642.427	166022.3441 5468053.925	166022.3441 5468053.925			3.939891772 274.8145048	
ita Clara (SF)	2024 MDV 2024 MDV		Aggregate	Aggregate	Diesel	2400.614538	86292.68513	86292.68513		11318.82209	3.47644065	
ta Clara (SF)	2024 MDV		Aggregate	Aggregate	Electricity	1678.684452	58660.62986	00252.00515		8578.49571	0	
ta Clara (SF)	2024 MDV		Aggregate	Aggregate	Plug-in Hybrid	1250.857088	52904.03132	25301.52107	27602.51025	5172.294058	0.878127631	
ta Clara (SF)	2024 MH		Aggregate	Aggregate	Gasoline	2420.569841	22012.30271	22012.30271			4.983865157	
ta Clara (SF)	2024 MH		Aggregate	Aggregate	Diesel	977.3606104	9498.302477	9498.302477			1.01191714	
ta Clara (SF)	2024 Motor Coach		Aggregate	Aggregate	Diesel	84.7088877	11818.71536	11818.71536			2.149164979	
ta Clara (SF)	2024 OBUS		Aggregate	Aggregate	Gasoline	443.1467338	19894.31417	19894.31417	0	8866.47985	4.131308494	
ta Clara (SF) ta Clara (SF)	2024 OBUS 2024 PTO		Aggregate	Aggregate Aggregate	Electricity Diesel	1.087481377 0	92.50104822 25537.63759	0 25537.63759		21.7583274 0	0 5.159458023	
a Clara (SF)	2024 PTO		Aggregate Aggregate	Aggregate	Electricity	0	128.0724498	23337.03739			3.135438023	
ta Clara (SF)	2024 FT0 2024 SBUS		Aggregate	Aggregate	Gasoline	172.6947868	8584.865553	8584.865553		690.7791473	0.865530502	
a Clara (SF)	2024 SBUS		Aggregate	Aggregate	Diesel	670.5958444	15345.26177	15345.26177			1.876081188	
a Clara (SF)	2024 SBUS		Aggregate	Aggregate	Electricity	2.064666287	64.35501341	0			0	
ta Clara (SF)	2024 SBUS		Aggregate	Aggregate	Natural Gas	24.39950467	612.0940704	612.0940704		353.3048277	0.111007992	
ta Clara (SF)	2024 T6 CAIRP Class 4		Aggregate	Aggregate	Diesel	3.328145584	217.4041975	217.4041975	0	76.48078551	0.02438361	
ta Clara (SF)	2024 T6 CAIRP Class 4		Aggregate	Aggregate	Electricity	0.017014511	1.246201009	0			0	
ita Clara (SF)	2024 T6 CAIRP Class 5		Aggregate	Aggregate	Diesel	4.442495396	298.458622	298.458622			0.033466402	
ita Clara (SF)	2024 T6 CAIRP Class 5		Aggregate	Aggregate	Electricity	0.019456265	1.490406271	0			0	
ta Clara (SF)	2024 T6 CAIRP Class 6		Aggregate	Aggregate	Diesel	14.48042474	777.4252367	777.4252367			0.085852905	
ta Clara (SF)	2024 T6 CAIRP Class 6		Aggregate	Aggregate	Electricity	0.115434367	6.350155761	0			0	
ta Clara (SF) ta Clara (SF)	2024 T6 CAIRP Class 7 2024 T6 CAIRP Class 7		Aggregate	Aggregate	Diesel Electricity	24.43022825 0.093570193	4898.412741 17.82268187	4898.412741 0		561.4066453 2.150243026	0.505914038	
ta Clara (SF)	2024 T6 Instate Delivery	Class 4	Aggregate Aggregate	Aggregate Aggregate	Diesel	634.4377986	21302.87024	21302.87024		9053.427386	2.586568046	
ta Clara (SF)	2024 T6 Instate Delivery		Aggregate	Aggregate	Electricity	1.874927136	73.99764353	0			0	
ta Clara (SF)	2024 T6 Instate Delivery		Aggregate	Aggregate	Natural Gas	2.195385962	83.21655869	83.21655869		31.32815768	0.01234443	
ta Clara (SF)	2024 T6 Instate Delivery	Class 5	Aggregate	Aggregate	Diesel	718.8192389	24623.62838	24623.62838		10257.55054	3.003350515	
ta Clara (SF)	2024 T6 Instate Delivery		Aggregate	Aggregate	Electricity	1.648008405	64.12022158	0			0	68.49
ta Clara (SF)	2024 T6 Instate Delivery		Aggregate	Aggregate	Natural Gas	1.947737833	73.97759496	73.97759496		27.79421888	0.010730061	
ta Clara (SF)	2024 T6 Instate Delivery		Aggregate	Aggregate	Diesel	1385.299821	46980.44671	46980.44671		19768.22845	5.712124819	
a Clara (SF) a Clara (SF)	2024 T6 Instate Delivery 2024 T6 Instate Delivery		Aggregate Aggregate	Aggregate Aggregate	Electricity Natural Gas	3.385248639 3.631895172	128.5564251 137.8780495	0 137.8780495			0 0.019894948	137.3
a Clara (SF)	2024 T6 Instate Delivery		Aggregate	Aggregate	Diesel	179.1996389	9846.451639	9846.451639			1.177598494	
a Clara (SF)	2024 T6 Instate Delivery		Aggregate	Aggregate	Natural Gas	3.602323031	202.6823025	202.6823025		51.40514966	0.029532356	
a Clara (SF)	2024 T6 Instate Other Cla		Aggregate	Aggregate	Diesel	1110.945399	45768.82709	45768.82709		12842.52882	5.382815782	
a Clara (SF)	2024 T6 Instate Other Cla	ass 4	Aggregate	Aggregate	Electricity	3.108095442	140.6851052	0			0	
a Clara (SF)	2024 T6 Instate Other Cla		Aggregate	Aggregate	Natural Gas	2.853241183	132.3563639	132.3563639		32.98346807	0.017586928	
ta Clara (SF)	2024 T6 Instate Other Cla		Aggregate	Aggregate	Diesel	2184.026866	95221.49311	95221.49311		25247.35057	11.20353279	
ta Clara (SF)	2024 T6 Instate Other Cla		Aggregate	Aggregate	Electricity	3.525688637 5.434173406	161.6745604	0			0	
ta Clara (SF) ta Clara (SF)	2024 T6 Instate Other Cla 2024 T6 Instate Other Cla		Aggregate Aggregate	Aggregate Aggregate	Natural Gas Diesel	5.434173406 2116.183918	245.7668725 89853.22047	245.7668725 89853.22047	0	62.81904457 24463.0861	0.031691189 10.47500015	
a Clara (SF)	2024 T6 Instate Other Cla 2024 T6 Instate Other Cla		Aggregate	Aggregate	Electricity	5.209690621	231.5269381	89853.22047			10.47500015	
ta Clara (SF)	2024 T6 Instate Other Cla		Aggregate	Aggregate	Natural Gas	5.207174141	233.6364843	233.6364843		60.19493307	0.030188569	
ta Clara (SF)	2024 T6 Instate Other Cla		Aggregate	Aggregate	Diesel	799.6658086	37841.60696	37841.60696	0	9244.136748	4.359717031	
ta Clara (SF)	2024 T6 Instate Other Cla		Aggregate	Aggregate	Electricity	1.339815522	92.05562011	0			0	97.58
ta Clara (SF)	2024 T6 Instate Other Cla		Aggregate	Aggregate	Natural Gas	19.23696007	980.3840703	980.3840703		222.3792584	0.126683652	
ta Clara (SF)	2024 T6 Instate Tractor C		Aggregate	Aggregate	Diesel	8.556321888	421.1964875	421.1964875	0	98.91108103	0.048188789	
ta Clara (SF) ta Clara (SF)	2024 T6 Instate Tractor C		Aggregate	Aggregate	Electricity Natural Gas	0.034609066	2.210091761	1 770052095			0 000318813	
ta Clara (SF) ta Clara (SF)	2024 T6 Instate Tractor C 2024 T6 Instate Tractor C		Aggregate Aggregate	Aggregate Aggregate	Natural Gas Diesel	0.026178722 248.9877268	1.770952085 15154.88118	1.770952085 15154.88118	0	0.302626026 2878.298121	0.000218812 1.664762017	
a Clara (SF)	2024 T6 Instate Tractor C		Aggregate	Aggregate	Electricity	0.093356738	7.25809171	0			0	
a Clara (SF)	2024 T6 Instate Tractor C		Aggregate	Aggregate	Natural Gas	5.067853091	329.9235596	329.9235596		58.58438173	0.041658362	
a Clara (SF)	2024 T6 OOS Class 4		Aggregate	Aggregate	Diesel	1.868040823	121.0132021	121.0132021		42.9275781	0.013507047	
a Clara (SF)	2024 T6 OOS Class 5		Aggregate	Aggregate	Diesel	2.481882082	166.0083523	166.0083523	0	57.03365025	0.018539317	
a Clara (SF)	2024 T6 OOS Class 6		Aggregate	Aggregate	Diesel	8.128898212	433.7845741	433.7845741		186.8020809	0.047588773	
a Clara (SF)	2024 T6 OOS Class 7		Aggregate	Aggregate	Diesel	12.75969097	3154.15326	3154.15326		293.2176986	0.323369844	
a Clara (SF)	2024 T6 Public Class 4		Aggregate	Aggregate	Diesel	138.3085514	4742.735974	4742.735974		709.5228687	0.616185918	
ta Clara (SF) ta Clara (SF)	2024 T6 Public Class 4 2024 T6 Public Class 4		Aggregate	Aggregate	Electricity Natural Gas	0.638800924	27.68091726	0 291.1045084	27.68091726 0		0.044829904	
ta Clara (SF) ta Clara (SF)	2024 T6 Public Class 4 2024 T6 Public Class 5		Aggregate Aggregate	Aggregate Aggregate	Natural Gas Diesel	6.928309451 221.5489458	291.1045084 8210.34963	8210.34963		35.54222749 1136.546092	1.052656748	
ta Clara (SF)	2024 T6 Public Class 5 2024 T6 Public Class 5		Aggregate	Aggregate	Electricity	0.843905972	36.46950986	0210.54905			1.032030748	
a Clara (SF)	2024 T6 Public Class 5		Aggregate	Aggregate	Natural Gas	13.82896159	570.1170055	570.1170055		70.94257295	0.08591589	
a Clara (SF)	2024 T6 Public Class 6		Aggregate	Aggregate	Diesel	128.8250087	4447.105972	4447.105972		660.8722947	0.582858165	
ta Clara (SF)	2024 T6 Public Class 6		Aggregate	Aggregate	Electricity	0.6191835	25.70413868	0	25.70413868	3.176411356	0	
ta Clara (SF)	2024 T6 Public Class 6		Aggregate	Aggregate	Natural Gas	5.780531989	242.1791583	242.1791583		29.6541291	0.036311142	
ta Clara (SF)	2024 T6 Public Class 7		Aggregate	Aggregate	Diesel	301.4444364	13590.05173	13590.05173		1546.409959	1.744512156	
ta Clara (SF)	2024 T6 Public Class 7 2024 T6 Public Class 7		Aggregate	Aggregate	Electricity	1.380752514	91.7636359	0			0	
a Clara (SF)			Aggregate	Aggregate	Natural Gas	12.81129542	696.7002652	696.7002652	0	65.72194548	0.102376386	

Santa Clara (SF)	2024 T6 Utility Class 5	Aggregate	Aggregate	Electricity	0.781021381	33.978473	0	33.978473	9.997073675	0	38.05804358
Santa Clara (SF)	2024 T6 Utility Class 5	Aggregate	Aggregate	Natural Gas	1.344532413	52.70809581	52.70809581	0	17.21001488	0.007200102	0
Santa Clara (SF)	2024 T6 Utility Class 6	Aggregate	Aggregate	Diesel	19.23599189	777.7357488	777.7357488	0	246.2206962	0.087639958	0
Santa Clara (SF)	2024 T6 Utility Class 6	Aggregate	Aggregate	Electricity	0.145737857	6.340351169	0	6.340351169	1.865444565	0	7.101595211
Santa Clara (SF)	2024 T6 Utility Class 6	Aggregate	Aggregate	Natural Gas	0.266674953	10.49491273	10.49491273	0	3.4134394	0.001424527	0
Santa Clara (SF)	2024 T6 Utility Class 7	Aggregate	Aggregate	Diesel	21.77302834	1076.488565	1076.488565	0	278.6947628	0.120617494	0
Santa Clara (SF)	2024 T6 Utility Class 7	Aggregate	Aggregate	Electricity	0.174265519	10.33920585	0	10.33920585	2.230598641	0	11.58056593
Santa Clara (SF)	2024 T6 Utility Class 7	Aggregate	Aggregate	Natural Gas	0.431256952	18.68444543	18.68444543	0	5.520088984	0.002528524	0
Santa Clara (SF)	2024 T6TS	Aggregate	Aggregate	Gasoline	1414.551675	71600.35148	71600.35148	0	28302.34992	14.95972983	0
Santa Clara (SF)	2024 T6TS	Aggregate	Aggregate	Electricity	5.86743085	499.0830329	0	499.0830329	117.3955565	0	582.1504206
Santa Clara (SF)	2024 T7 CAIRP Class 8	Aggregate	Aggregate	Diesel	1023.529883	206293.0271	206293.0271	0	23520.71671	33.7732886	0
Santa Clara (SF)	2024 T7 CAIRP Class 8	Aggregate	Aggregate	Electricity	6.238437827	1107.385686	0	1107.385686	143.3593013	0	2022.0044
Santa Clara (SF)	2024 T7 CAIRP Class 8	Aggregate	Aggregate	Natural Gas	2.329348177	474.4702335	474.4702335	0	53.52842111	0.084191057	0
Santa Clara (SF)	2024 T7 NNOOS Class 8	Aggregate	Aggregate	Diesel	921.2314611	246811.7997	246811.7997	0	21169.89898	39.70465453	0
Santa Clara (SF)	2024 T7 NOOS Class 8	Aggregate	Aggregate	Diesel	388.1022222	89683.26687	89683.26687	0	8918.589066	14.66744398	0
Santa Clara (SF)	2024 T7 Other Port Class 8	Aggregate	Aggregate	Diesel	107.2245115	19735.48995	19735.48995	0	1754.193008	3.320312421	0
Santa Clara (SF)	2024 T7 Other Port Class 8	Aggregate	Aggregate	Electricity	0.186127947	39.70313629	0	39.70313629	3.045053206	0	72.25840726
Santa Clara (SF)	2024 T7 POAK Class 8	Aggregate	Aggregate	Diesel	689.4275811	68391.97782	68391.97782	0	11279.03523	11.72171204	0
Santa Clara (SF)	2024 T7 POAK Class 8	Aggregate	Aggregate	Electricity	1.59968582	126.5767064	0	126.5767064	26.17086002	0	230.3654586
Santa Clara (SF)	2024 T7 POAK Class 8	Aggregate	Aggregate	Natural Gas	0.342244758	33.07113049	33.07113049	0	5.599124245	0.005825247	0
Santa Clara (SF)	2024 T7 Public Class 8	Aggregate	Aggregate	Diesel	670.4398094	28942.50982	28942.50982	0	3439.356222	5.533060238	0
Santa Clara (SF)	2024 T7 Public Class 8	Aggregate	Aggregate	Electricity	2.254791911	141.5795849	0	141.5795849	11.56708251	0	277.8616244
Santa Clara (SF)	2024 T7 Public Class 8	Aggregate	Aggregate	Natural Gas	2.870352085	140.7081652	140.7081652	0	14.7249062	0.03057411	0
Santa Clara (SF)	2024 T7 Single Concrete/Transit Mix 0	C Aggregate	Aggregate	Diesel	408.1790286	28702.03899	28702.03899	0	3845.04645	4.867218796	0
Santa Clara (SF)	2024 T7 Single Concrete/Transit Mix 0	C Aggregate	Aggregate	Electricity	3.614491914	256.0499498	0	256.0499498	34.04851383	0	466.8185347
Santa Clara (SF)	2024 T7 Single Concrete/Transit Mix 0	C Aggregate	Aggregate	Natural Gas	26.26248282	1875.457005	1875.457005	0	247.3925881	0.326087263	0
Santa Clara (SF)	2024 T7 Single Dump Class 8	Aggregate	Aggregate	Diesel	679.562021	41217.69999	41217.69999	0	6401.474238	7.139089704	0
Santa Clara (SF)	2024 T7 Single Dump Class 8	Aggregate	Aggregate	Electricity	1.343535761	101.2579346	0	101.2579346	12.65610687	0	184.608826
Santa Clara (SF)	2024 T7 Single Dump Class 8	Aggregate	Aggregate	Natural Gas	43.50263608	2797.926328	2797.926328	0	409.7948319	0.514578791	0
Santa Clara (SF)	2024 T7 Single Other Class 8	Aggregate	Aggregate	Diesel	944.6411268	50775.23976	50775.23976	0	8898.519415	8.637741776	0
Santa Clara (SF)	2024 T7 Single Other Class 8	Aggregate	Aggregate	Electricity	4.593637967	287.6905724	0	287.6905724	43.27206965	0	524.5042678
Santa Clara (SF)	2024 T7 Single Other Class 8	Aggregate	Aggregate	Natural Gas	57.62813317	3244.285374	3244.285374	0	542.8570144	0.5836213	0
Santa Clara (SF)	2024 T7 SWCV Class 8	Aggregate	Aggregate	Diesel	293.9981196	19080.16688	19080.16688	0	1352.39135	7.76723316	0
Santa Clara (SF)	2024 T7 SWCV Class 8	Aggregate	Aggregate	Electricity	1.871813884	112.2231148	0	112.2231148	8.610343864	0	208.7967953
Santa Clara (SF)	2024 T7 SWCV Class 8	Aggregate	Aggregate	Natural Gas	366.0903861	23674.41365	23674.41365	0	1684.015776	5.182716586	0
Santa Clara (SF)	2024 T7 Tractor Class 8	Aggregate	Aggregate	Diesel	2287.042579	172614.4353	172614.4353	0	33230.72867	28.24875256	0
Santa Clara (SF)	2024 T7 Tractor Class 8	Aggregate	Aggregate	Electricity	6.467549417	482.4176479	0	482.4176479	93.97349303	0	878.3425391
Santa Clara (SF)	2024 T7 Tractor Class 8	Aggregate	Aggregate	Natural Gas	295.3753806	22350.93859	22350.93859	0	4291.80428	3.994610798	0
Santa Clara (SF)	2024 T7 Utility Class 8	Aggregate	Aggregate	Diesel	73.3151002	3310.166935	3310.166935	0	938.4332825	0.570166581	0
Santa Clara (SF)	2024 T7 Utility Class 8	Aggregate	Aggregate	Electricity	0.154802559	9.781757825	0	9.781757825	1.981472761	0	18.41707684
Santa Clara (SF)	2024 T7IS	Aggregate	Aggregate	Gasoline	2.588707958	115.1525769	115.1525769	0	51.79486882	0.029295453	0
Santa Clara (SF)	2024 T7IS	Aggregate	Aggregate	Electricity	0.005511144	1.522048574	0	1.522048574	0.110266975	0	3.058303763
Santa Clara (SF)	2024 UBUS	Aggregate	Aggregate	Gasoline	46.08313217	4812.450683	4812.450683	0	184.3325287	0.518830212	0
Santa Clara (SF)	2024 UBUS	Aggregate	Aggregate	Diesel	437.474468	48917.60551	48917.60551	0	1749.897872	5.304044181	0
Santa Clara (SF)	2024 UBUS	Aggregate	Aggregate	Electricity	5.347565451	235.0625504	0	235.0625504	21.3902618	0	409.7714086
Santa Clara (SF)	2024 UBUS	Aggregate	Aggregate	Natural Gas	42.58695876	4865.187143	4865.187143	0	170.347835	0.805345778	0

APPENDIX B: CONSTRUCTION HEALTH RISK ASSESSMENT

.....

1. Health isk Assessment

1.1 COSRCOEA RSASSESSME

Apple Inc. (the project applicant) proposes to redevelop the project site located at 19191 Vallco Parkway in Cupertino, California with a new office building. The proposed project would involve demolishing the existing office building and redeveloping the approximately 7.96-acre site with a four-story, office building with commercial space, and an automobile parking garage with two underground levels. The site is currently developed with an office building operated by the project applicant, with associated surface parking and landscaping. The following provides the background methodology used for the construction health risk assessment for the proposed project.

The latest version of the Bay Area Air Quality Management District (BAAQMD) CEQA Air Quality Guidelines requires projects to evaluate the impacts of construction activities on sensitive receptors (BAAQMD, 2017). Project construction is anticipated to take place starting at the beginning of May 2023 and be completed by November 2024 (approximately 395 workdays). The nearest sensitive receptors to the project site include the multi-family residences to the west. Additional sensitive receptors within 1,000 feet of the site are preschool children at Sunflower Learning Center, approximately 850 feet to the south and Cupertino High School students, approximately 930 feet to the south. The BAAQMD has developed *Screening Tables for Air Toxics Evaluation During Construction* (2017) that evaluate construction-related health risks associated with residential, commercial, and industrial projects. According to the screening tables, the receptors are closer than the distance of 200 meters (656 feet) that would screen out potential health risks and, therefore, could be potentially impacted from the proposed construction activities. As a result, a site-specific construction health risk assessment (HRA) has been prepared for the proposed project. This HRA considers the health impact to off-site sensitive receptors (i.e., children at the nearby residences, preschool, and high school) from construction emissions at the project site, including diesel equipment exhaust (diesel particulate matter or DPM) and particulate matter less than 2.5 microns (PM_{2.5}).

It should be noted that these health impacts are based on conservative (i.e., health protective) assumptions. The United States Environmental Protection Agency (USEPA, 2005) and the Office of Environmental Health Hazard Assessment (OEHHA, 2015) note that conservative assumptions used in a risk assessment are intended to ensure that the estimated risks do not underestimate the actual risks. Therefore, the estimated risks may not necessarily represent actual risks experienced by populations at or near a site. The use of conservative assumptions tends to produce upper-bound estimates of exposure and thus risk.

For residential-based receptors, the following conservative assumptions were used:

• It was assumed that maximum-exposed off-site residential receptors (both children and adults) stood outdoors and are subject to DPM at their residence for 8 hours per day, and approximately 260 construction days per year. In reality, California residents typically will spend on average 2 hours per day

outdoors at their residences (USEPA, 2011). This would result in lower exposures to construction related DPM emissions and lower estimated risk values.

• The calculated risk for infants from third trimester to age 2 is multiplied by a factor of 10 to account for early life exposure and uncertainty in child versus adult exposure impacts (OEHHA, 2015).

For preschool children and high school students, the following conservative assumptions were used:

- It was assumed that maximum exposed receptor (preschool child or high school student) stood outside and are subject to DPM for 8 hours per weekday and approximately 260 construction days per year.
- The calculated risk for children age 2 to age 16 is multiplied by a factor of 3 to account for early life exposure and uncertainty in child versus adult exposure impacts (OEHHA, 2015).

1.2 ME ODO OG A DSG FCA CE RES O DS

For this HRA, the BAAQMD significance thresholds were deemed to be appropriate and the thresholds that were used for this project are shown below:

- Excess cancer risk of more than 10 in a million
- Non-cancer hazard index (chronic or acute) greater than 1.0
- Incremental increase in average annual PM_{2.5} concentration of greater than 0.3 μg/m³

The methodology used in this HRA is consistent with the following BAAQMD and the OEHHA guidance documents:

- BAAQMD, 2017. California Environmental Quality Act (CEQA) Air Quality Guidelines. May 2017.
- BAAQMD, 2016. Planning Healthy Places. May 2016.
- BAAQMD, 2010. Screening Tables for Air Toxics Evaluation During Construction. May 2010.
- BAAQMD, 2012. Recommended Methods for Screening and Modeling Local Risks and Hazards. Version 3.0. May 2012.
- OEHHA. 2015. Air Toxics Hot Spots Program Guidance Manual for the Preparation of Health Risk Assessments. February 2015.

Potential exposures to DPM and $PM_{2.5}$ from proposed project construction were evaluated for off-site sensitive receptors in close proximity to the site. Pollutant concentrations were estimated using an air dispersion model, and excess lifetime cancer risks and chronic non-cancer hazard indexes were calculated. These risks were then compared to the significance thresholds adopted for this HRA.

1.3 COSRCOEMSSOS

Construction emissions were calculated as average daily emissions in pounds per day, using the proposed construction schedule and the latest version of California Emissions Estimation Model, known as CalEEMod Version 2020.4 (CAPCOA, 2021). DPM emissions were based on the CalEEMod construction runs, using annual exhaust PM_{10} construction emissions presented in pounds (lbs) per day. The $PM_{2.5}$ emissions were taken from the CalEEMod output for exhaust $PM_{2.5}$ also presented in lbs per day.

The project was assumed to take place over 18 months (395 workdays) from May 2023 to November 2024. The average daily emission rates from construction equipment used during the proposed project were determined by dividing the annual average emissions for each construction year by the number of construction days per year for each calendar year of construction (i.e., 2023 and 2024). The off-site hauling emission rates were adjusted to evaluate localized emissions from the 0.72-mile haul route within 1,000 feet of the project site. The CalEEMod construction emissions output and emission rate calculations are provided in Appendix A of the HRA.

1.4 D S ERS O MODE G

Air quality modeling was performed using the AERMOD atmospheric dispersion model to assess the impact of emitted compounds on sensitive receptors near the project. The model is a steady state Gaussian plume model and is an approved model by BAAQMD for estimating ground level impacts from point and fugitive sources in simple and complex terrain. The on-site construction emissions for the project were modeled as poly-area sources. The off-site mobile sources were modeled as adjacent line volume sources. The model requires additional input parameters, including chemical emission data and local meteorology. Inputs for the construction emission rates are those described in Section 1.3. Meteorological data obtained from the BAAQMD for the nearest representative meteorological station (Moffett Federal Airfield Airport) with the five latest available years (2009 to 2013) of record were used to represent local weather conditions and prevailing winds.

The modeling analysis also considered the spatial distribution and elevation of each emitting source in relation to the sensitive receptors. To accommodate the model's Cartesian grid format, direction-dependent calculations were obtained by identifying the Universal Transverse Mercator (UTM) coordinates for each source location. In addition, digital elevation model (DEM) data for the area were obtained and included in the model runs to account for complex terrain. An emission release height of 4.15 meters was used as representative of the stack exhaust height for off-road construction equipment and diesel truck traffic, and an initial vertical dispersion parameter of 1.93 m was used, per California Air Resources Board (CARB) guidance (2000).

To determine contaminant impacts during construction hours, the model's Season-Hour-Day (HRDOW) scalar option was invoked to predict flagpole-level concentrations (1.5 m for ground floor receptors; 6.1 m for 2nd floor receptors) for construction emissions generated between the hours of 7:00 AM and 4:00 PM with a 1-hour lunch break. In addition, a scalar factor was applied to the risk calculations to account for the number of days receptors are exposed to construction emissions per year.

A unit emission rate of 1 gram per second was used for all modeling runs. The unit emission rates were proportioned over the poly-area sources for on-site construction emissions and divided between the volume sources for off-site hauling emissions. The maximum modeled concentrations from the output files were then multiplied by the emission rates calculated in Appendix A to obtain the maximum flagpole-level concentrations at the off-site maximum exposed receptors (MER). The air dispersion modeling predicted the off-site MER is a multi-family residence south of the site. The MER location is the receptor location associated with the maximum predicted AERMOD concentrations from the on-site emission source. The calculated on-site emission rates are approximately 3 orders of magnitude higher than the calculated off-site emission sources produce the highest overall ground-level MER concentrations and, consequently, highest calculated health risks.

The air dispersion model output for the emission sources is presented in Appendix B. The model output DPM and $PM_{2.5}$ concentrations from the construction emission sources are provided in Appendix C.

1.5 RS C ARAC ER A O

1.5.1 Carcinogenic Chemical Ris

A threshold of ten in a million $(10x10^{-6})$ has been established as a level posing no significant risk for exposures to carcinogens. Health risks associated with exposure to carcinogenic compounds can be defined in terms of the probability of developing cancer as a result of exposure to a chemical at a given concentration. The cancer risk probability is determined by multiplying the chemical's annual concentration by its cancer potency factor (CPF), a measure of the carcinogenic potential of a chemical when a dose is received through the inhalation pathway. It is an upper-limit estimate of the probability of contracting cancer as a result of continuous exposure to an ambient concentration of one microgram per cubic meter ($\mu g/m^3$) over a lifetime of 70 years.

Recent guidance from OEHHA recommends a refinement to the standard point estimate approach with the use of age-specific breathing rates and age sensitivity factors (ASFs) to assess risk for susceptible subpopulations such as children. For the inhalation pathway, the procedure requires the incorporation of several discrete variates to effectively quantify dose for each age group. Once determined, contaminant dose is multiplied by the cancer potency factor in units of inverse dose expressed in milligrams per kilogram per day (mg/kg/day)⁻¹ to derive the cancer risk estimate. Therefore, to accommodate the unique exposures associated with the sensitive receptors, the following dose algorithm was used.

$$Dose_{AIR,per age group} = (C_{air} \times EF \times [\frac{BR}{BW}] \times A \times CF)$$

Where:

DoseAIR	=	dose by inhalation (mg/kg-day), per age group
Cair	=	concentration of contaminant in air ($\mu g/m^3$)
EF	=	exposure frequency (number of days/365 days)
BR/BW	=	daily breathing rate normalized to body weight (L/kg-day)

The inhalation absorption factor (A) is a unitless factor that is only used if the cancer potency factor included a correction for absorption across the lung. The default value of 1 was used for this assessment. For residential receptors, the exposure frequency (EF) of 0.96 is used to represent 350 days per year to allow for a two-week period away from home each year (OEHHA, 2015). The 95th percentile daily breathing rates (BR/BW), exposure duration (ED), age sensitivity factors (ASFs), and fraction of time at home (FAH) for the various age groups are provided herein:

<u>Age Groups</u>	<u>BR/BW (L/kg-day)</u>	ED	ASF	FAH
Third trimester	361	0.25	10	0.85
0-2 age group	1,090	2	10	0.85
2-9 age group	861	7	3	0.72
2-16 age group	745	14	3	0.72
16-30 age group	335	14	1	0.73
16-70 age group	2 90	54	1	0.73

For construction analysis, the exposure duration spans the length of construction (e.g., 395 work days, approximately 1.5 years). As the length of construction is less than 2 years, only the third trimester and 0-2 age bins apply to the construction analysis for the off-site residential receptors.

To represent the unique characteristics of high school student and preschool populations, the assessment employed the USEPA's guidance to develop viable dose estimates based on reasonable maximum exposure, defined as the "highest exposure that is reasonably expected to occur" for a given receptor population. Lifetime risk values for the population at Sunflower Learning Center were adjusted to account for an exposure of 250 days per year (age 2 to 5 years). In addition, the calculated risk for children is multiplied by an ASF weighting factor of 3 (for children ages 2 to 5) to account for early life sensitivity to pollutant exposures (OEHHA, 2015). Lifetime risk values for the high school student population were adjusted to account for students is multiplied by an ASF weighting factor of 3 (for children factor of 3 (for children ages 2 to 5) to account for an exposure of 180 days per year for 4 years (9th to 12th grade). In addition, the calculated risk for students is multiplied by an ASF weighting factor of 3 (for children ages 2 to 16) to account for early life sensitivity to pollutant exposures (OEHHA, 2015). To calculate the overall cancer risk, the risk for each appropriate age group is calculated per the following equation:

Cancer Risk_{AIR} = Dose_{AIR} × CPF × ASF × FAH ×
$$\frac{\text{ED}}{AT}$$

Where:

Dose _{AIR}	=	dose by inhalation (mg/kg-day), per age group
CPF	=	cancer potency factor, chemical-specific (mg/kg-day)-1
ASF	=	age sensitivity factor, per age group
FAH	=	fraction of time at home, per age group (for residential receptors only)
ED	=	exposure duration (years)
AT	=	averaging time period over which exposure duration is averaged (70 years)

The CPFs used in the assessment were obtained from OEHHA guidance. The excess lifetime cancer risks during the construction period to the maximally exposed resident were calculated based on the factors provided above. The cancer risks for each age group are summed to estimate the total cancer risk for each toxic chemical species. The final step converts the cancer risk in scientific notation to a whole number that expresses the cancer risk in "chances per million" by multiplying the cancer risk by a factor of 1x10⁶ (i.e. 1 million).

The calculated results are provided in Appendix C.

1.5.2 on-Carcinogenic a ards

An evaluation was also conducted of the potential non-cancer effects of chronic chemical exposures. Adverse health effects are evaluated by comparing the annual receptor level (flagpole) concentration of each chemical compound with the appropriate reference exposure limit (REL). Available RELs promulgated by OEHHA were considered in the assessment.

The hazard index approach was used to quantify non-carcinogenic impacts. The hazard index assumes that chronic sub-threshold exposures adversely affect a specific organ or organ system (toxicological endpoint). Target organs presented in regulatory guidance were used for each discrete chemical exposure. To calculate the hazard index, each chemical concentration or dose is divided by the appropriate toxicity value. This ratio is summed for compounds affecting the same toxicological endpoint. A health hazard is presumed to exist where the total equals or exceeds one.

The chronic hazard analysis for DPM is provided in Appendix C. The calculations contain the relevant exposure concentrations and corresponding reference dose values used in the evaluation of non-carcinogenic exposures.

1.5.3 Criteria ollutants

The BAAQMD has recently incorporated $PM_{2.5}$ into the District's CEQA significance thresholds due to recent studies that show adverse health impacts from exposure to this pollutant. An incremental increase of greater than 0.3 µg/m³ for the annual average PM_{2.5} concentration is considered to be a significant impact.

1.6 COSRCORARES S

The calculated results are provided in Appendix C and the results are summarized in Table 1.

Receptor	Cancer Risk (per million)	Chronic Hazards	ΡΜ _{2.5} (μg/m ³)
Maximum xposed eceptor Off site esident	8.6	0.019	0.05
Sunflower Learnin Center Preschool Student	0.3	0.003	0.01
Cupertino Hi h School Student	0.3	0.006	0.01
BAA MD Threshold	10	1.0	0.30
Exceeds hreshold	0	0	0

TABLE 1. CONSTRUCTION RISK SUMMARY - UNMITIGATED

Note: Cancer risk calculated using 2015 OEHHA HRA guidance.

Cancer risk for the residential MER from project-related construction emissions was calculated to be 8.6 in a million, which would not exceed the 10 in a million significance threshold. In accordance with the latest 2015 OEHHA guidance, the calculated total cancer risk conservatively assumes that the risk for the residential MER consists of a pregnant woman in the third trimester that subsequently gives birth to an infant during the approximately 18-month construction period; therefore, all calculated residential risk values were multiplied by a factor of 10. In addition, it was conservatively assumed that the residents were outdoors 8 hours a day, 260-261 construction days per year and exposed to all of the daily construction emissions. In addition, the cancer risk for the maximum exposed preschool and high school receptor was calculated to be 0.3 in a million, for both, which would not exceed the significance threshold.

For non-carcinogenic effects, the chronic hazard index identified for each toxicological endpoint totaled less than one for all the off-site sensitive receptors. Therefore, chronic non-carcinogenic hazards are within acceptable limits. For the residential MER, the maximum annual PM_{2.5} concentration of 0.05 μ g/m³ would not exceed the BAAQMD significance threshold of 0.3 micrograms per cubic meter (μ g/m³). In addition, the preschool and high school receptors' maximum annual PM_{2.5} concentration of 0.01 μ g/m³ each would also not exceed the BAAQMD significance threshold. Therefore, the project would not expose off-site sensitive receptors to substantial concentrations of air pollutant emissions during construction and impacts would be *less than significant*.

2. eferences

Bay Area Air Quality Management District. 2017. California Environmental Quality Act Air Quality Guidelines.

_____. 2016. Planning Healthy Places. Dated May 2016.

- ———. 2012. Recommended Methods for Screening and Modeling Local Risks and Hazards. Version 3.0. Dated May 2012.
- ———. 2010. Screening Tables for Air Toxics Evaluation During Construction. Version 1.0. Dated May 2010.
- . 2009-2013. Meteorological Data Set for Moffett Federal Airfield Airport.
- California Air Pollution Control Officers Association (CAPCOA). 2021. California Emissions Estimator Model (CalEEMod). Version 2020.4. Prepared by: ENVIRON International Corporation and the California Air Districts.
- California Air Resources Board (CARB). 2000. Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles.

——. 2020. Meteorological Files. https://ww2.arb.ca.gov/resources/documents/harp-aermodmeteorological-files

- Office of Environmental Health Hazard Assessment (OEHHA). 2015. Air Toxics Hot Spots Program Guidance Manual for the Preparation of Health Risk Assessments. Dated February 2015.
- United States Environmental Protection Agency (USEPA). 2011. *Exposure Factors Handbook 2011 Edition* (*Final*). EPA/600/R-09/052F, 2011.

__. 2005. Guideline on Air Quality Models (Revised). EPA-450/2-78-027R.



Figure 1 - Project Site and Offsite Receptor Locations

Source: Nearmap, 2021

Appendix A. Emission Rate Calculations

Criteria Air Pollutant Emissions Summary - Construction Unmitigated

Annual emissions divided by total construction duration to obtain average daily emissions. Average construction emissions accounts for the duration of each construction phase and the time ear

	construction equipm	ent is onsite.										
	Total Construction											
	Days	2023	2024					Calendar Days				
	395	175	220					551				
Unmig	ated Run - with Best Cor	ntrol Measures for Fu	gitive Dust									
		average lbs/day		ROG	NOx		SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust
		average 103/ day		NOG	NOA		302	PM10	PM10	Total	PM2.5	PM2.5
	Total			4	23	25		3.00	0.85	4	0.99	0.80
	BAAQMD Threshold			54	54	NA	NA	BMP	82	54	BMP	54
	Exceeds Threshold			No	No	NA	NA	NA	No	No	NA	No

Average Daily Emissions and Emission Rates

Onsite Construction PM10 Exhaust Emissions¹

Onsite Construction PM2.5 Exhaust Emissions²

				Average Daily	Average Daily	
	Average Daily	Average Daily		Emissions	Emissions	Emission Rate
Year	Emissions (lbs/day)	Emissions (lbs/hr)	Emission Rate (g/s)	(Ibs/day)	(lbs/hr)	(g/s)
2023	0.77	9.63E-02	1.21E-02	0.71	8.92E-02	1.12E-02
2024	0.83	1.04E-01	1.31E-02	0.79	9.86E-02	1.24E-02

Offsite Co	nstruction PM10 Exh	aust Emissions ¹			Offsite Construct	tion PM2.5 Exh	aust Emissions ²	
						Hauling		
		Hauling Emissions			Average Daily	Emissions		
	Average Daily	w/in 1,000ft	Emission Rate	Emission Rate	Emissions	w/in 1,000ft	Emission Rate	Emission
Year	Emissions (lbs/day)	(Ibs/day) ³	(lbs/hr)	(g/s)	(lbs/day)	(lbs/day) ³	(lbs/hr)	Rate (g/s)
2023	5.85E-02	2.09E-03	2.62E-04	3.30E-05	5.58E-02	2.00E-03	2.49E-04	3.14E-05
2024	3.22E-02	1.15E-03	1.44E-04	1.81E-05	3.05E-02	1.09E-03	1.37E-04	1.72E-05
2024	3.22E-02	1.136-03	1.44L-04	1.012 05	5.05L 02	1.052 05	1.572 04	1.722 00

			_	Year	Workdays	Risk Scalar ⁵
Hauling Length (miles)	20	miles	-	2023	175	0.67
Haul Length within 1,000 ft of Site (mile) 3	0.72	miles		2024	220	0.84
Hours per work day (7:00 AM to 4:00 PM, 1-hour of	8	hours				
breaks) ⁴						

¹ DPM emissions taken as PM₁₀ exhaust emissions from CalEEMod average daily emissions.

² PM_{2.5} emissions taken as PM_{2.5} exhaust emissions from CalEEMod average daily emissions.

¹ Brissions from CalEEMod offsite average daily emissions, which is based on proportioned haul truck trip distances, are adjusted to evaluate emissions from the 0.72-mile route within 1,000 of the project site.
 ⁴ Work hours applied in By Hour/Day (HRDOW) variable emissions module in air dispersion model (see App B - Air Dispersion Model Output).

⁵ Risk scalars determined for each year of construction to adjust receptor exposures to the exposure durations for each construction year (see App C - Risk Calculations).

Construction Emissions - DPM Input to Risk Tables

	tons/year	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total
Total Unmitigated		0.73	4.59	4.95	0.01	0.59	0.17	0.76	0.19	0.16	0.35
Ŭ											
JNMITIGATED (Onsite)									Fugitive		
	tons/year	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	PM2.5	Exhaust PM2.5	PM2.5 Total
Total Onsite		0.64	3.47	4.07	0.01	0.25	0.16	0.41	0.10	0.15	0.25
Total Offsite		0.09	1.12	0.88	0.01	0.34	0.01	0.35	0.09	0.01	0.10
check		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OR CONSTRUCTION RISK AS	SSESSMENT - Unmitiga	ated Run									
	tons/year	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total
2023 Onsite		0.15	1.50	1.35	0.00	0.25	0.07	0.32	0.10	0.06	0.16
2023 Offsite		0.02	0.64	0.24	0.00	0.10	0.01	0.11	0.03	0.00	0.03
2024 Onsite		0.49	1.97	2.72	0.00	0.00	0.09	0.09	0.00	0.09	0.09
2024 Offsite		0.07	0.48	0.65	0.00	0.24	0.00	0.24	0.07	0.00	0.07
OR CONSTRUCTION REGION	NAL EMISSIONS - Unm	itigated Run									
	tons/year	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total
Total 2023		0.17	2.14	1.59	0.01	0.35	0.07	0.42	0.13	0.07	0.20
Total 2024		0.56	2.45	3.37	0.01	0.24	0.10	0.34	0.07	0.09	0.16
Construction Total		0.73	4.59	4.95	0.01	0.59	0.17	0.76	0.19	0.16	0.35
Check		0.00	0.00	U.U0	0.00	0.00	0.00	0.00	0.00	0.00	U.00
3.2 Demolition (Build	ling + Asphalt) - 2023										
Unmitigated Constru											
		ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total
Category	tons/yr								1 1012.5		
Fugitive Dust	tons/ yr					0.00	0.00	0.00	0.00	0.00	0.00
Offroad Total		0.02	0.21 0.21	0.20	0.00	0.00	0.01 0.01	0.01 0.01	0.00	0.01 0.01	0.01 0.01
Total		0.02	0.21	0.20	0.00	0.00	0.01	0.01	0.00	0.01	0.01
Unmitigated Constru	iction Off-Site	DOC	NO	<u> </u>	600	Fuelds - Ph 44.0	Fulbourst Da 440	DM10 T-+-!	Fugitive	Eulopet D142 E	DM2 5 T-1
Category	tons/yr	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	PM2.5	Exhaust PM2.5	PM2.5 Total
Hauling	(013) (1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Vendor Worker		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.2 Ruilding Domoliti	ion Debris Haul - 2023										
Unmitigated Constru											
		ROG							Eugitium		
Category			NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive	Exhaust PM2.5	PM2.5 Total
	tons/yr		NOx	со	SO2	-			PM2.5		
Fugitive Dust	tons/yr	0.00				Fugitive PM10 0.02	0.00	0.02		0.00	0.00
	tons/yr	0.00 0.00	NOx 0.00 0.00	CO 0.00 0.00	SO2 0.00 0.00	-			PM2.5		
Fugitive Dust Off-Road Total			0.00	0.00	0.00	0.02	0.00 0.00	0.02 0.00	PM2.5 0.00	0.00 0.00	0.00 0.00
Fugitive Dust Off-Road		0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.02	0.00 0.00 0.00	0.02 0.00 0.02	PM2.5 0.00	0.00 0.00 0.00	0.00 0.00 0.00
Fugitive Dust Off-Road Total Unmitigated Construc	iction Off-Site		0.00	0.00	0.00	0.02	0.00 0.00	0.02 0.00	PM2.5 0.00 0.00	0.00 0.00	0.00 0.00
Fugitive Dust Off-Road Total		0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.02	0.00 0.00 0.00	0.02 0.00 0.02	PM2.5 0.00 0.00 Fugitive	0.00 0.00 0.00	0.00 0.00 0.00
Fugitive Dust Off-Road Total Unmitigated Construct Category Hauling Vendor	iction Off-Site	0.00 ROG 0.00 0.00	0.00 0.00 NOx 0.04 0.00	0.00 0.00 CO 0.01 0.00	0.00 0.00 SO2 0.00 0.00	0.02 0.02 Fugitive PM10 0.01 0.00	0.00 0.00 0.00 Exhaust PM10 0.00 0.00	0.02 0.00 0.02 PM10 Total 0.01 0.00	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00	0.00 0.00 0.00 Exhaust PM2.5 0.00 0.00	0.00 0.00 0.00 PM2.5 Total 0.00 0.00
Fugitive Dust Off-Road Total Unmitigated Construc Category Hauling Vendor Worker	iction Off-Site	0.00 ROG 0.00	0.00 0.00 NOx 0.04	0.00 0.00 CO 0.01	0.00 0.00 SO2 0.00	0.02 0.02 Fugitive PM10 0.01	0.00 0.00 0.00 Exhaust PM10 0.00	0.02 0.00 0.02 PM10 Total 0.01	PM2.5 0.00 0.00 Fugitive PM2.5 0.00	0.00 0.00 0.00 Exhaust PM2.5 0.00	0.00 0.00 0.00 PM2.5 Total 0.00
Fugitive Dust Off-Road Total Unmitigated Construct Category Hauling Vendor Worker Total	ton Off-Site	0.00 ROG 0.00 0.00 0.00	0.00 0.00 NOx 0.04 0.00 0.00	0.00 0.00 CO 0.01 0.00 0.00	0.00 0.00 SO2 0.00 0.00 0.00	0.02 0.02 Fugitive PM10 0.01 0.00 0.00	0.00 0.00 0.00 Exhaust PM10 0.00 0.00 0.00	0.02 0.00 0.02 PM10 Total 0.01 0.00 0.00	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00	0.00 0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00	0.00 0.00 0.00 PM2.5 Total 0.00 0.00 0.00
Fugitive Dust Off-Road Total Unmitigated Construc Category Hauling Vendor Worker	tons/yr tons/yr	0.00 ROG 0.00 0.00 0.00	0.00 0.00 NOx 0.04 0.00 0.00	0.00 0.00 CO 0.01 0.00 0.00	0.00 0.00 SO2 0.00 0.00 0.00	0.02 0.02 Fugitive PM10 0.01 0.00 0.00	0.00 0.00 0.00 Exhaust PM10 0.00 0.00 0.00	0.02 0.00 0.02 PM10 Total 0.01 0.00 0.00	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00	0.00 0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00	0.00 0.00 0.00 PM2.5 Total 0.00 0.00 0.00
Fugitive Dust Off-Road Total Unmitigated Construe Category Hauling Vendor Worker Total 3.4 Asphalt Demolitic	tons/yr tons/yr	0.00 ROG 0.00 0.00 0.00	0.00 0.00 NOx 0.04 0.00 0.00	0.00 0.00 CO 0.01 0.00 0.00	0.00 0.00 SO2 0.00 0.00 0.00	0.02 0.02 Fugitive PM10 0.01 0.00 0.00	0.00 0.00 0.00 Exhaust PM10 0.00 0.00 0.00	0.02 0.00 0.02 PM10 Total 0.01 0.00 0.00	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 Fugitive	0.00 0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00	0.00 0.00 0.00 PM2.5 Total 0.00 0.00 0.00
Fugitive Dust Off-Road Total Unmitigated Construe Category Hauling Vendor Worker Total 3.4 Asphalt Demolitic	tons/yr tons/yr on Debris Haul - 2023 uction On-Site	0.00 ROG 0.00 0.00 0.00 0.00	0.00 0.00 NOx 0.04 0.00 0.00 0.00	0.00 0.00 CO 0.01 0.00 0.00 0.01	0.00 0.00 SO2 0.00 0.00 0.00 0.00	0.02 0.02 Fugitive PM10 0.01 0.00 0.00 0.01	0.00 0.00 Exhaust PM10 0.00 0.00 0.00	0.02 0.00 0.02 PM10 Total 0.01 0.00 0.00 0.01	PM2.5 0.00 Fugitive PM2.5 0.00 0.00 0.00	0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 0.00	0.00 0.00 0.00 PM2.5 Total 0.00 0.00 0.00 0.00
Fugitive Dust Off-Road Total Unmitigated Construe Category Hauling Vendor Worker Total 3.4 Asphalt Demolitic Unmitigated Construe Category Fugitive Dust	tons/yr tons/yr	0.00 ROG 0.00 0.00 0.00 0.00	0.00 0.00 NOx 0.04 0.00 0.00 0.00 0.04	0.00 0.00 CO 0.01 0.00 0.01 CO	0.00 0.00 SO2 0.00 0.00 0.00 0.00 SO2	0.02 0.02 Fugitive PM10 0.01 0.00 0.00 0.01	0.00 0.00 Exhaust PM10 0.00 0.00 0.00 Exhaust PM10 0.00	0.02 0.00 0.02 PM10 Total 0.01 0.00 0.00 0.01 PM10 Total 0.05	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 Fugitive	0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 Exhaust PM2.5 0.00	0.00 0.00 0.00 PM2.5 Total 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Fugitive Dust Off-Road Total Unmitigated Construe Category Hauling Vendor Worker Total 3.4 Asphalt Demolitic Unmitigated Construe Category Fugitive Dust Off-Road	tons/yr tons/yr on Debris Haul - 2023 uction On-Site	0.00 ROG 0.00 0.00 0.00 ROG	0.00 0.00 NOx 0.04 0.00 0.00 0.00 0.04 NOx	0.00 0.00 CO 0.01 0.00 0.00 0.01 CO 0.00	0.00 0.00 SO2 0.00 0.00 0.00 0.00 SO2 SO2	0.02 0.02 Fugitive PM10 0.01 0.00 0.01 Fugitive PM10 0.05	0.00 0.00 Exhaust PM10 0.00 0.00 0.00 Exhaust PM10 Exhaust PM10	0.02 0.00 0.02 PM10 Total 0.01 0.00 0.00 0.01 PM10 Total 0.05 0.00	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 Fugitive PM2.5 0.01	0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 Exhaust PM2.5 0.00	0.00 0.00 0.00 PM2.5 Total 0.00 0.00 0.00 0.00 0.00
Fugitive Dust Off-Road Total Unmitigated Construe Category Hauling Vendor Worker Total 3.4 Asphalt Demolitic Unmitigated Construe Category Fugitive Dust Off-Road Total	tons/yr on Debris Haul - 2023 uction On-Site tons/yr	0.00 ROG 0.00 0.00 0.00 0.00	0.00 0.00 NOx 0.04 0.00 0.00 0.00 0.04	0.00 0.00 CO 0.01 0.00 0.01 CO	0.00 0.00 SO2 0.00 0.00 0.00 0.00 SO2	0.02 0.02 Fugitive PM10 0.01 0.00 0.00 0.01 Fugitive PM10	0.00 0.00 Exhaust PM10 0.00 0.00 0.00 Exhaust PM10 0.00	0.02 0.00 0.02 PM10 Total 0.01 0.00 0.00 0.01 PM10 Total 0.05	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 Exhaust PM2.5 0.00	0.00 0.00 0.00 PM2.5 Total 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fugitive Dust Off-Road Total Unmitigated Construe Category Hauling Vendor Worker Total 3.4 Asphalt Demolitic Unmitigated Construe Category Fugitive Dust Off-Road	tons/yr on Debris Haul - 2023 uction On-Site tons/yr	0.00 ROG 0.00 0.00 0.00 ROG 0.00	0.00 0.00 NOx 0.04 0.00 0.00 0.00 0.04 NOx 0.00 0.00	0.00 0.00 CO 0.01 0.00 0.01 CO 0.00 0.00	0.00 0.00 SO2 0.00 0.00 0.00 0.00 SO2 SO2 0.00 0.00	0.02 0.02 Fugitive PM10 0.01 0.00 0.01 Fugitive PM10 0.05 0.05	0.00 0.00 Exhaust PM10 0.00 0.00 0.00 Exhaust PM10 Exhaust PM10	0.02 0.00 0.02 PM10 Total 0.01 0.00 0.01 PM10 Total 0.05 0.00 0.05	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 PM2.5 0.01 0.01	0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 Exhaust PM2.5 0.00 0.00	0.00 0.00 0.00 PM2.5 Total 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Fugitive Dust Off-Road Total Unmitigated Construe Category Hauling Vendor Worker Total 3.4 Asphalt Demolitic Unmitigated Construe Category Fugitive Dust Off-Road Total Unmitigated Construe	tons/yr on Debris Haul - 2023 cution On-Site tons/yr	0.00 ROG 0.00 0.00 0.00 ROG	0.00 0.00 NOx 0.04 0.00 0.00 0.00 0.04 NOx	0.00 0.00 CO 0.01 0.00 0.00 0.01 CO 0.00	0.00 0.00 SO2 0.00 0.00 0.00 0.00 SO2 SO2	0.02 0.02 Fugitive PM10 0.01 0.00 0.01 Fugitive PM10 0.05	0.00 0.00 Exhaust PM10 0.00 0.00 0.00 Exhaust PM10 Exhaust PM10	0.02 0.00 0.02 PM10 Total 0.01 0.00 0.00 0.01 PM10 Total 0.05 0.00	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 Fugitive PM2.5 0.01	0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 Exhaust PM2.5 0.00	0.00 0.00 0.00 PM2.5 Total 0.00 0.00 0.00 0.00 0.00 0.00
Fugitive Dust Off-Road Total Unmitigated Construe Category Hauling Vendor Worker Total 3.4 Asphalt Demolitic Unmitigated Construe Category Fugitive Dust Off-Road Total Unmitigated Construe Category	tons/yr on Debris Haul - 2023 uction On-Site tons/yr	0.00 ROG 0.00 0.00 0.00 ROG ROG	0.00 0.00 NOx 0.04 0.00 0.00 0.04 NOx 0.00 0.00 0.00	0.00 0.00 CO 0.01 0.00 0.01 CO 0.00 0.00 0.00	0.00 0.00 SO2 0.00 0.00 0.00 0.00 SO2 SO2	0.02 0.02 Fugitive PM10 0.01 0.00 0.01 Fugitive PM10 0.05 0.05 Fugitive PM10	0.00 0.00 Exhaust PM10 0.00 0.00 0.00 Exhaust PM10 Exhaust PM10	0.02 0.00 0.02 PM10 Total 0.01 0.00 0.00 0.01 PM10 Total 0.05 0.05 0.05	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00	0.00 0.00 0.00 PM2.5 Total 0.00 0.00 0.00 PM2.5 Total 0.01 0.01 0.01
Fugitive Dust Off-Road Total Unmitigated Construe Category Hauling Vendor Worker Total 3.4 Asphalt Demolitic Unmitigated Construe Category Fugitive Dust Off-Road Total Unmitigated Construe	tons/yr on Debris Haul - 2023 cution On-Site tons/yr	0.00 ROG 0.00 0.00 0.00 ROG 0.00	0.00 0.00 NOx 0.04 0.00 0.00 0.00 0.04 NOx 0.00 0.00	0.00 0.00 CO 0.01 0.00 0.01 CO 0.00 0.00	0.00 0.00 SO2 0.00 0.00 0.00 0.00 SO2 SO2 0.00 0.00	0.02 0.02 Fugitive PM10 0.01 0.00 0.01 Fugitive PM10 0.05 0.05	0.00 0.00 Exhaust PM10 0.00 0.00 0.00 Exhaust PM10 Exhaust PM10	0.02 0.00 0.02 PM10 Total 0.01 0.00 0.01 PM10 Total 0.05 0.00 0.05	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 Exhaust PM2.5 0.00 0.00	0.00 0.00 PM2.5 Total 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Fugitive Dust Off-Road Total Unmitigated Construe Category Hauling Vendor Worker Total 3.4 Asphalt Demolitic Unmitigated Construe Category Fugitive Dust Off-Road Total Unmitigated Construe Category Hauling	tons/yr on Debris Haul - 2023 cution On-Site tons/yr	0.00 ROG 0.00 0.00 0.00 ROG ROG 0.00 0.00	0.00 0.00 NOx 0.04 0.00 0.00 0.04 NOx 0.00 0.00 0.00 NOx 0.02	0.00 0.00 CO 0.01 0.00 0.01 CO 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 SO2 0.00 0.00 0.00 SO2 0.00 0.00 SO2 0.00	0.02 0.02 Fugitive PM10 0.01 0.00 0.01 Fugitive PM10 0.05 0.05 Fugitive PM10 0.05	0.00 0.00 Exhaust PM10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Exhaust PM10 Exhaust PM10 0.00	0.02 0.00 0.02 PM10 Total 0.01 0.00 0.01 PM10 Total 0.05 0.05 0.05 PM10 Total 0.05	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00	0.00 0.00 0.00 PM2.5 Total 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.0

Unmitigated Construe	2023 ction On-Site										
Category	tons/yr	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.
Fugitive Dust	tons/yr					0.02	0.00	0.02	0.01	0.00	0.
Off-Road		0.01	0.07	0.05	0.00		0.00	0.00		0.00	0.
Total		0.01	0.07	0.05	0.00	0.02	0.00	0.02	0.01	0.00	0
Unmitigated Construe	ction Off-Site										
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.
Category Hauling	tons/yr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Vendor		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Worker		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
3.6 Rough Grading - 2	2023										
Unmitigated Construe	ction On-Site								Fugitive		
Catagon	tons/yr	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	PM2.5	Exhaust PM2.5	PM2.
Category Fugitive Dust	tons/yr					0.03	0.00	0.03	0.01	0.00	0
Off-Road		0.02	0.18	0.15	0.00		0.01	0.01		0.01	0
Total		0.02	0.18	0.15	0.00	0.03	0.01	0.04	0.01	0.01	0
Unmitigated Construe	ction Off-Site										
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.
Category Hauling	tons/yr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Vendor		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Worker		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
3.7 Rough Grading So											
Unmitigated Construe	ction Un-site	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive	Exhaust PM2.5	PM2
Category	tons/yr	100	HOX		502	Tugitive Titizo	Exhibits (11110	111120 10131	PM2.5	Exilouse Finizio	
Fugitive Dust						0.00	0.00	0.00	0.00	0.00	0
Off-Road		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Unmitigated Construe	ction Off-Site								Fugitive		
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	PM2.5	Exhaust PM2.5	PM2.
Category Hauling	tons/yr	0.01	0.50	0.12	0.00	0.06	0.00	0.06	0.02	0.00	0
Vendor		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Worker		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.
Total		0.01	0.50	0.12	0.00	0.06	0.00	0.06	0.02	0.00	0
3.8 Fine Grading/Tren											
Unmitigated Construe	ction On-Site	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive	Exhaust PM2.5	PM2.
Category	tons/yr	100	Hox		502	Tugitive Titizo	Exhibits (11110	11110 10101	PM2.5	Exilouse Finizio	
Fugitive Dust		0.00	0.01	0.00	0.00	0.14	0.00	0.14	0.07	0.00	0
Off-Road Total		0.08	0.81 0.81	0.66 0.66	0.00	0.14	0.03	0.03	0.07	0.03	0
Unmitigated Construe	ction Off-Sito										
ommugated construc	cion on-site	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive	Exhaust PM2.5	PM2.
Category	tons/yr								PM2.5		
Hauling		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Vendor Worker		0.00	0.01 0.00	0.00 0.02	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0
Total		0.00	0.01	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0
3.9 Building Construct Unmitigated Construct											
		ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.
Category	tons/yr	0.00	0.00	0.00			0.65	0.01		0.00	-
Off-Road Total		0.03	0.23	0.30 0.30	0.00	0.00	0.01 0.01	0.01 0.01	0.00	0.01 0.01	0
		0.05	0.23	0.50	0.00	0.00	0.01	0.01	0.00	0.01	0
Unmitigated Construe	ction Off-Site	DOC	NO	60	602	Fugial DA 44.2	Eulopet D1440	DM10 T-+	Fugitive	Eulopet Dt 42 -	0140
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	PM2.5	Exhaust PM2.5	PM2.
Category	tonchir										
Category Hauling	tons/yr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Hauling Vendor	tons/yr	0.00	0.05	0.02	0.00	0.01	0.00	0.01	0.00	0.00	0. 0.
Hauling	tons/yr										

3.9 Building Construct	tion - 2024										
Unmitigated Construct	ction On-Site								Fugitive		
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	PM2.5	Exhaust PM2.5	PM2.5 1
Category	tons/yr										
Off-Road		0.10	0.92	1.26	0.00	0.00	0.04	0.04	0.00	0.04	0.04
						0.00		0.04			
Total		0.10	0.92	1.26	0.00	0.00	0.04	0.04	0.00	0.04	0.04
Unmitigated Construc	ction Off-Site										
									Fugitive		
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	PM2.5	Exhaust PM2.5	PM2.5
Category	tons/yr										
Hauling		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Vendor		0.01	0.22	0.07	0.00	0.03	0.00	0.03	0.01	0.00	0.01
Worker		0.03	0.02	0.24	0.00	0.09	0.00	0.09	0.02	0.00	0.0
Total		0.03	0.23	0.31	0.00	0.12	0.00	0.12	0.03	0.00	0.0
3.10 Parking Structure											
Unmitigated Construc	ction On-Site								Fugitive		
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	PM2.5	Exhaust PM2.5	PM2.5
Category	tons/yr										
Off-Road		0.11	0.97	1.34	0.00	0.00	0.05	0.05	0.00	0.04	0.0
Total		0.11	0.97	1.34	0.00	0.00	0.05	0.05	0.00	0.04	0.0
Unmitigated Construc	ction Off-Site										
									Fugitive		
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5
Category	tons/yr										
Hauling		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Vendor		0.01	0.23	0.07	0.00	0.03	0.00	0.03	0.01	0.00	0.0
Worker		0.03	0.02	0.26	0.00	0.09	0.00	0.09	0.02	0.00	0.0
Total		0.03	0.25	0.33	0.00	0.12	0.00	0.12	0.03	0.00	0.0
3.11 Paving - 2024											
Unmitigated Construc	ction On-Site								Fugitius		
						Everitive DM440		D1440 T-+-!	Fugitive		D1 42 5
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	PM2.5	Exhaust PM2.5	PM2.5
Category	tons/yr								PM2.5		
Off-Road	tons/yr	0.00	NOx 0.05	CO 0.07	SO2 0.00	Fugitive PM10 0.00	0.00	0.00		0.00	0.0
Off-Road Paving	tons/yr	0.00 0.00	0.05	0.07	0.00	0.00	0.00 0.00	0.00 0.00	PM2.5 0.00	0.00 0.00	0.0 0.0
Off-Road	tons/yr	0.00					0.00	0.00	PM2.5	0.00	0.0 0.0
Off-Road Paving		0.00 0.00	0.05	0.07	0.00	0.00	0.00 0.00	0.00 0.00	PM2.5 0.00	0.00 0.00	0.0 0.0
Off-Road Paving Total		0.00 0.00 0.01	0.05 0.05	0.07	0.00	0.00	0.00 0.00 0.00	0.00 0.00 0.00	PM2.5 0.00 0.00 Fugitive	0.00 0.00 0.00	0.0 0.0 0.0
Off-Road Paving Total Unmitigated Construct	ction Off-Site	0.00 0.00	0.05	0.07	0.00	0.00	0.00 0.00	0.00 0.00	PM2.5 0.00 0.00	0.00 0.00	0.0 0.0 0.0
Off-Road Paving Total Unmitigated Construct Category		0.00 0.00 0.01 ROG	0.05 0.05 NOx	0.07 0.07 CO	0.00 0.00 SO2	0.00 0.00 Fugitive PM10	0.00 0.00 0.00 Exhaust PM10	0.00 0.00 0.00 PM10 Total	PM2.5 0.00 0.00 Fugitive PM2.5	0.00 0.00 0.00 Exhaust PM2.5	0.0 0.0 0.0 PM2.5
Off-Road Paving Total Unmitigated Construct Category Hauling	ction Off-Site	0.00 0.00 0.01 ROG 0.00	0.05 0.05 NOx 0.00	0.07 0.07 CO 0.00	0.00 0.00 SO2 0.00	0.00 0.00 Fugitive PM10 0.00	0.00 0.00 0.00 Exhaust PM10 0.00	0.00 0.00 0.00 PM10 Total 0.00	PM2.5 0.00 0.00 Fugitive PM2.5 0.00	0.00 0.00 0.00 Exhaust PM2.5 0.00	0.0 0.0 0.0 PM2.5 0.0
Off-Road Paving Total Unmitigated Construct Category Hauling Vendor	ction Off-Site	0.00 0.00 0.01 ROG 0.00	0.05 0.05 NOx 0.00 0.00	0.07 0.07 CO 0.00 0.00	0.00 0.00 SO2 0.00 0.00	0.00 0.00 Fugitive PM10 0.00 0.00	0.00 0.00 0.00 Exhaust PM10 0.00 0.00	0.00 0.00 0.00 PM10 Total 0.00 0.00	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00	0.00 0.00 0.00 Exhaust PM2.5 0.00 0.00	0.0 0.0 PM2.5 0.0 0.0
Off-Road Paving Total Unmitigated Construct Category Hauling	ction Off-Site	0.00 0.00 0.01 ROG 0.00	0.05 0.05 NOx 0.00	0.07 0.07 CO 0.00	0.00 0.00 SO2 0.00	0.00 0.00 Fugitive PM10 0.00	0.00 0.00 0.00 Exhaust PM10 0.00	0.00 0.00 0.00 PM10 Total 0.00	PM2.5 0.00 0.00 Fugitive PM2.5 0.00	0.00 0.00 0.00 Exhaust PM2.5 0.00	0.0 0.0 PM2.5 0.0 0.0 0.0
Off-Road Paving Total Unmitigated Construct Category Hauling Vendor Worker Total	tion Off-Site	0.00 0.01 ROG 0.00 0.00 0.00	0.05 0.05 NOx 0.00 0.00 0.00	0.07 0.07 CO 0.00 0.00 0.00	0.00 0.00 SO2 0.00 0.00 0.00	0.00 0.00 Fugitive PM10 0.00 0.00 0.00	0.00 0.00 0.00 Exhaust PM10 0.00 0.00 0.00	0.00 0.00 0.00 PM10 Total 0.00 0.00 0.00	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00	0.00 0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00	0.0 0.0 PM2.5 0.0 0.0 0.0
Off-Road Paving Total Unmitigated Construct Category Hauling Vendor Worker	tion Off-Site tons/yr	0.00 0.01 ROG 0.00 0.00 0.00	0.05 0.05 NOx 0.00 0.00 0.00	0.07 0.07 CO 0.00 0.00 0.00	0.00 0.00 SO2 0.00 0.00 0.00	0.00 0.00 Fugitive PM10 0.00 0.00 0.00	0.00 0.00 0.00 Exhaust PM10 0.00 0.00 0.00	0.00 0.00 0.00 PM10 Total 0.00 0.00 0.00	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00	0.00 0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00	0.0 0.0 PM2.5 0.0 0.0 0.0
Off-Road Paving Total Unmitigated Construct Category Hauling Vendor Worker Total 3.12 Architectural Coo	tion Off-Site tons/yr	0.00 0.01 ROG 0.00 0.00 0.00	0.05 0.05 NOx 0.00 0.00 0.00	0.07 0.07 CO 0.00 0.00 0.00	0.00 0.00 SO2 0.00 0.00 0.00	0.00 0.00 Fugitive PM10 0.00 0.00 0.00	0.00 0.00 0.00 Exhaust PM10 0.00 0.00 0.00	0.00 0.00 0.00 PM10 Total 0.00 0.00 0.00	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00	0.0 0.0 PM2.5 0.0 0.0 0.0
Off-Road Paving Total Unmitigated Construct Category Hauling Vendor Worker Total 3.12 Architectural Cor Unmitigated Construct	tion Off-Site tons/yr ating - 2024 tion On-Site	0.00 0.01 ROG 0.00 0.00 0.00 0.00	0.05 0.05 NOx 0.00 0.00 0.00 0.00	0.07 0.07 CO 0.00 0.00 0.00 0.00	0.00 0.00 SO2 0.00 0.00 0.00 0.00	0.00 0.00 Fugitive PM10 0.00 0.00 0.00 0.00	0.00 0.00 Exhaust PM10 0.00 0.00 0.00	0.00 0.00 0.00 PM10 Total 0.00 0.00 0.00 0.00	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00	0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 0.00	0.0 0.0 0.0 PM2.5 0.0 0.0 0.0 0.0
Off-Road Paving Total Unmitigated Construct Category Hauling Vendor Worker Total 3.12 Architectural Coo	tion Off-Site tons/yr	0.00 0.01 ROG 0.00 0.00 0.00 0.00	0.05 0.05 NOx 0.00 0.00 0.00 0.00	0.07 0.07 CO 0.00 0.00 0.00 0.00	0.00 0.00 SO2 0.00 0.00 0.00 0.00	0.00 0.00 Fugitive PM10 0.00 0.00 0.00 0.00	0.00 0.00 Exhaust PM10 0.00 0.00 0.00	0.00 0.00 0.00 PM10 Total 0.00 0.00 0.00 0.00	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 0.00	0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 0.00	0.0 0.0 0.0 PM2.5 0.0 0.0 0.0 0.0 PM2.5
Off-Road Paving Total Unmitigated Construct Category Hauling Vendor Worker Total 3.12 Architectural Cor Unmitigated Construct Category	tion Off-Site tons/yr ating - 2024 tion On-Site	0.00 0.00 0.01 ROG 0.00 0.00 0.00 0.00	0.05 0.05 NOx 0.00 0.00 0.00 0.00 0.00	0.07 0.07 CO 0.00 0.00 0.00 0.00	0.00 0.00 SO2 0.00 0.00 0.00 0.00 SO2	0.00 0.00 Fugitive PM10 0.00 0.00 0.00 0.00 Fugitive PM10	0.00 0.00 Exhaust PM10 0.00 0.00 0.00 Exhaust PM10 0.00	0.00 0.00 PM10 Total 0.00 0.00 0.00 0.00 PM10 Total 0.00 0.00	PM2.5 0.00 Fugitive PM2.5 0.00 0.00 0.00 PM2.5 0.00 0.00 0.00	0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 0.00 Exhaust PM2.5	0.0 0.0 0.0 PM2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Off-Road Paving Total Unmitigated Construct Category Hauling Voendor Worker Total 3.12 Architectural Coa Unmitigated Construct Category Architectural Coating	tion Off-Site tons/yr ating - 2024 tion On-Site	0.00 0.00 0.01 ROG 0.00 0.00 0.00 0.00 ROG 0.27	0.05 0.05 NOx 0.00 0.00 0.00 0.00	0.07 0.07 CO 0.00 0.00 0.00 0.00 CO	0.00 0.00 SO2 0.00 0.00 0.00 0.00 SO2	0.00 0.00 Fugitive PM10 0.00 0.00 0.00 Fugitive PM10 0.00	0.00 0.00 Exhaust PM10 0.00 0.00 0.00 Exhaust PM10 Exhaust PM10 0.00	0.00 0.00 0.00 PM10 Total 0.00 0.00 0.00 PM10 Total 0.00	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 PM2.5 0.00	0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 Exhaust PM2.5 0.00	0.0 0.0 0.0 PM2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Off-Road Paving Total Unmitigated Construct Category Hauling Vendor Worker Total 3.12 Architectural Coa Unmitigated Construct Category Architectural Coating Off Road	tion Off-Site tons/yr ating - 2024 ction On-Site tons/yr	0.00 0.00 0.01 ROG 0.00 0.00 0.00 0.00 0.00 ROG 0.27 0.00	0.05 0.05 NOx 0.00 0.00 0.00 0.00 0.00	0.07 0.07 CO 0.00 0.00 0.00 0.00 0.00 CO	0.00 0.00 SO2 0.00 0.00 0.00 0.00 SO2	0.00 0.00 Fugitive PM10 0.00 0.00 Fugitive PM10 0.00 0.00	0.00 0.00 Exhaust PM10 0.00 0.00 0.00 Exhaust PM10 0.00	0.00 0.00 PM10 Total 0.00 0.00 0.00 0.00 PM10 Total 0.00 0.00	PM2.5 0.00 Fugitive PM2.5 0.00 0.00 0.00 PM2.5 0.00 0.00 0.00	0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 Exhaust PM2.5 0.00	0.0 0.0 0.0 PM2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Off-Road Paving Total Unmitigated Construct Category Hauling Voendor Worker Total 3.12 Architectural Cos Unmitigated Construct Category Architectural Coating Off Road Total	tion Off-Site tons/yr ating - 2024 ction On-Site tons/yr	0.00 0.00 0.01 ROG 0.00 0.00 0.00 0.00 0.00 ROG 0.27 0.00	0.05 0.05 NOx 0.00 0.00 0.00 0.00 0.00	0.07 0.07 CO 0.00 0.00 0.00 0.00 0.00 CO	0.00 0.00 SO2 0.00 0.00 0.00 0.00 SO2	0.00 0.00 Fugitive PM10 0.00 0.00 Fugitive PM10 0.00 0.00	0.00 0.00 Exhaust PM10 0.00 0.00 0.00 Exhaust PM10 0.00	0.00 0.00 PM10 Total 0.00 0.00 0.00 0.00 PM10 Total 0.00 0.00	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 Exhaust PM2.5 0.00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Off-Road Paving Total Unmitigated Construct Category Hauling Vendor Worker Total 3.12 Architectural Coa Unmitigated Construct Category Architectural Coating Off Road Total Unmitigated Construct	tion Off-Site tons/yr ating - 2024 ction On-Site tons/yr	0.00 0.01 ROG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.05 0.05 NOx 0.00 0.00 0.00 0.00 0.00 NOx 0.01 0.01	0.07 0.07 CO 0.00 0.00 0.00 0.00 0.00 CO 0.02 0.02	0.00 0.00 SO2 0.00 0.00 0.00 SO2 SO2	0.00 0.00 Fugitive PM10 0.00 0.00 0.00 Fugitive PM10 0.00 0.00	0.00 0.00 Exhaust PM10 0.00 0.00 0.00 Exhaust PM10 0.00 0.00	0.00 0.00 PM10 Total 0.00 0.00 0.00 PM10 Total 0.00 0.00	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 PM2.5 0.00 0.00 0.00	0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 Exhaust PM2.5 0.00 0.00	0.0 0.0 0.0 PM2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Off-Road Paving Total Unmitigated Construct Category Hauling Vendor Worker Total 3.12 Architectural Coa Unmitigated Construct Category Architectural Coating Off Road Total Unmitigated Construct Category	tion Off-Site tons/yr ating - 2024 ction On-Site tons/yr	0.00 0.01 ROG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.05 0.05 NOx 0.00 0.00 0.00 0.00 NOx 0.01 0.01 0.01 NOx	0.07 0.07 CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.00 SO2 0.00 0.00 0.00 SO2 SO2	0.00 0.00 Fugitive PM10 0.00 0.00 0.00 Fugitive PM10 0.00 0.00 Fugitive PM10	0.00 0.00 Exhaust PM10 0.00 0.00 0.00 Exhaust PM10 Exhaust PM10	0.00 0.00 PM10 Total 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Off-Road Paving Total Unmitigated Construct Category Hauling Vondor Worker Total 3.12 Architectural Coo Unmitigated Construct Category Architectural Coating Off Road Total Unmitigated Construct Category Hauling	tion Off-Site tons/yr ating - 2024 ction On-Site tons/yr	0.00 0.00 0.01 ROG 0.00 0.00 0.00 0.00 0.00 ROG 0.27 0.00 0.27 0.00 0.27 ROG 0.27	0.05 0.05 NOx 0.00 0.00 0.00 0.00 NOx 0.01 0.01 0.01 0.01 0.01	0.07 0.07 CO 0.00 0.00 0.00 0.00 0.00 CO 0.02 0.02 CO 0.02	0.00 0.00 SO2 0.00 0.00 0.00 SO2 0.00 SO2 0.00	0.00 0.00 Fugitive PM10 0.00 0.00 0.00 Fugitive PM10 0.00 0.00 0.00 0.00	0.00 0.00 Exhaust PM10 0.00 0.00 0.00 Exhaust PM10 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 PM10 Total 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.0 0.0 0.0 PM2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Off-Road Paving Total Unmitigated Construct Category Hauling Vendor Worker Total 3.12 Architectural Coa Unmitigated Construct Category Architectural Coating Off Road Total Unmitigated Construct Category	tion Off-Site tons/yr ating - 2024 ction On-Site tons/yr	0.00 0.01 ROG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.05 0.05 NOx 0.00 0.00 0.00 0.00 NOx 0.01 0.01 0.01 NOx	0.07 0.07 CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.00 SO2 0.00 0.00 0.00 SO2 SO2	0.00 0.00 Fugitive PM10 0.00 0.00 0.00 Fugitive PM10 0.00 0.00 Fugitive PM10	0.00 0.00 Exhaust PM10 0.00 0.00 0.00 Exhaust PM10 Exhaust PM10	0.00 0.00 PM10 Total 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.00 Exhaust PM2.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	PM2.5 ⁻¹ 0.00 0.00 0.00 PM2.5 ⁻¹ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.

3.13 Finishing/Lands	caping - 2024										
Unmitigated Constru	uction On-Site										
		ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total
Category	tons/yr										
Off-Road		0.00	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.00	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Unmitigated Constru	uction Off-Site										
		ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total
Category	tons/yr										
Hauling		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Vendor		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Worker		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Appendix B. Air Dispersion Model Output

*** AERMOD - VERSION 19191 *** *** COCU-21 Construction HRA *** AERMET - VERSION 14134 *** *** Cupertino	* * * * * *	7/2
*** MODELOPTS: RegDFAULT CONC ELEV FLGPOL URBAN		PAGE 1
*** MODEL SETUP OPTIONS SUMMARY ***		
**Model Is Setup For Calculation of Average CONCentration Values.		
DEPOSITION LOGIC **NO GAS DEPOSITION Data Provided. **NO PARTICLE DEPOSITION Data Provided. **Model Uses NO DRY DEPLETION. DRYDPLT = F **Model Uses NO WET DEPLETION. WETDPLT = F		
<pre>**Model Uses URBAN Dispersion Algorithm for the SBL for 53 Source(s), for Total of 1 Urban Area(s): Urban Population = 1928000.0; Urban Roughness Length = 1.000 m</pre>		
<pre>**Model Uses Regulatory DEFAULT Options: 1. Stack-tip Downwash. 2. Model Accounts for ELEVated Terrain Effects. 3. Use Calms Processing Routine. 4. Use Missing Data Processing Routine. 5. No Exponential Decay. 6. Urban Roughness Length of 1.0 Meter Assumed.</pre>		
**Other Options Specified: CCVR_Sub - Meteorological data includes CCVR substitutions TEMP_Sub - Meteorological data includes TEMP substitutions		
**Model Accepts FLAGPOLE Receptor Heights.		
**The User Specified a Pollutant Type of: OTHER		
**Model Calculates PERIOD Averages Only		
**This Run Includes: 53 Source(s); 2 Source Group(s); and 384 Receptor(s)		
<pre>with: 0 POINT(s), including 0 POINTCAP(s) and 0 POINTHOR(s) and: 52 VOLUME source(s) and: 1 AREA type source(s) and: 0 LINE source(s) and: 0 RLINE/RLINEXT source(s) and: 0 OPENPIT source(s) and: 0 BUOYANT LINE source(s) with 0 line(s)</pre>		

**Model Set To Continue RUNning After the Setup Testing.

Unit Emission Rates (1 g/s) **Model Output**

**The AERMET Input Meteorological Data Version Date: 14134

**Output Options Selected: Model Outputs Tables of PERIOD Averages by Receptor Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword) Model Outputs Separate Summary File of High Ranked Values (SUMMFILE Keyword)

The Following Flags May Appear Following CONC Values: c for Calm Hours m for Missing Hours b for Both Calm and Missing Hours * *NOTE :

0.0 11.90 ; Decay Coef. = 0.000 ; Rot. Angle =
 ; Emission Rate Unit Factor = 0.10000E+07 **Misc. Inputs: Base Elev. for Pot. Temp. Profile (m MSL) = Emission Units = GRAMS/SEC = MICROGRAMS/M**3 Output Units

3.6 MB of RAM. **Approximate Storage Requirements of Model =

aermod.inp aermod.out **Input Runstream File: **Output Print File:

COCU-21.err COCU-21.sum **Detailed Error/Message File: **File for Summary of Results:

*** Cupertino ***	*** AERMOD - VERSION 19191 ***	*** COCU-21 Construction HRA	* * *	11/07/2
PAGE	*** AERMET - VERSION 14134 ***		* * *	23:35:5
				PAGE

*** MODELOPTs: RegDFAULT CONC ELEV FLGPOL URBAN

*** VOLUME SOURCE DATA ***

	EMISSION RATE SCALAR VARY BY		HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW
	URBAN SOURCE	1	XES	XES	YES	YES	XES	YES	YES	XES	YES	YES	XES	XES	XES	YES	YES	YES	XES	XES	XES	YES	XES	XES	XES	YES	YES	YES	YES	YES	YES	YES	XES	XES	YES	YES	YES	YES	XES	YES
	INIT. SZ (METERS)	I.	∼.	~.	~.	~.	~.	3.26	~.	\sim	~.	~.	~.	\sim	\sim	~.	~.	~.	~.	~.	∼.	∼.	\sim	\sim	~.	∼.	∼.	∼.	~.	∼.	\sim	∼.	∼.	3.26	∼.	∼.	3.26	\sim	3.26	∼.
* * *	нУЫ	 	4	4.	10.40	10.40	4.	10.40	10.40	10.40	10.40	10.40	0.4	10.40	0.4	10.40	\circ	10.40	10.40	0.4	0.4	4.	0.4	4.	0.4	0.4	0.4	0.4	0.4	0.4	0.4	10.40	4.		4.	4.	10.40	4.	10.40	10.40
SOURCE DATA	EAS GHT TER	I.	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15		4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15
VOLUME SC	ASE LEV ETE	 	50.7		50.9	51.1	÷	51.5	52.3	53.0	54.2	55.5	56.8	58.1	59.3	57.5	53.5	53.7	56.1	59.8	58.5	58.2	57.0	55.8	54.9	54.3	53.9	54.0	54.0	54.1	54.1	4	4	54.2	54.4	54.4	54.4	4	54.6	54.7
, * * *	Y TER	I I	31870	31	4131825.7	4131803.4	4131781.1	4131758.7	4131736.4	714	4131691.7	4131669.3	4131647.0	4131624.6	4131602.6	4131581.4	4131560.2	4131539.0	4131517.7	4131496.5	4131475.3	4131454.0	4131431.6	4131409.3	4131386.9	4131364.6	4131342.2	3131	31316	316	31316.	31	315.	31	4131323.0	4131334.4	34	313	368.	4131379.9
	(METE	 	3076.1	075.6	3075.1	3074.6	3074.1	3073.6	3073.1	3072.6	3072.1	071.6		070.6	068.1	588061.1	054.1	047.1	ч.	033.1	6.1	019.7	019.7	3019.7	3019.7	019.7	3019.7	3019.7	000.6	87978.2	955.9	87933.5	87911.2	87888.8	87868.6	87849.4	830.2	87810.9	7791.7	87772.4
	EMISSION RATE (GRAMS/SEC)	 	.19231E-	.19231E-	0.19231E-01	.19231E-	0.19231E-01	0.19231E-01	0.19231E-01	.19231E-	0.19231E-01	.19231E-	.19231E-	.19231E-	.19231E-	0.19231E-01	.19231E-	0.19231E-01	.19231E-	9231E-	.19231E-	9231E-	.19231E-	.19231E-	 [+]	.19231E-	0.19231E-01	І БЭ	0.19231E-01	0.19231E-01	0.19231E-01	Ч.	9231E-	0.19231E-01						
	ш қ н	 	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	SOURCE ID	 	L000001	L000002	L000003	L000004	L000005	L0000006	L000007	L000008	L0000009	L0000010	L000011	L000012	L0000013	L0000014	L0000015	L0000016		L000018	L000019	L000020	L000021		L000023	L000024	L0000025	L000026	L0000027	L000028	L000029	L0000030	L000031	L000032	L000033		L000035	L000036	L000037	L000038

7/21 5:55 2

11/07/21 23:35:55	0													11/07/21 23:35:55			
HRDOW HRDOW ***			EMISSION RATE SCALAR VARY BY		HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW	HRDOW HRDOW	HRDOW	HRDOW	* * * * *			N EMISSION RATE DE SCALAR VARY BY
YES YES			URBAN F SOURCE	0 5	XES YES	YES	N E V A E V	XES	YES	YES	YES YES	л ИЕС И	YES				URBAN SOURCE
3.26 3.26			INIT. SZ (METERS)		3.26	3.26	3.26	3.26	3.26	3.26	3.26		3.26				INIT. SZ (METERS)
10.40 10.40		* * *	INIT. SY (METERS)		10.40	10.40	10.40	10.40	10.40	10.40	10.40	10.40	10.40			* * *	NUMBER OF VERTS.
4.15 4.15		SOURCE DATA	RELEASE HEIGHT (METERS)		4.15	Ч.	4.10 1.15		Ч.		4.15					SOURCE DATA	RELEASE HEIGHT (METERS)
54.8 54.9 ction HRA		*** VOLUME SOU	BASE F ELEV. F (METERS)	с ц ц	55.0	55.2	55.4	55.4	55.4	55.4	55.5 55.7	00. 00.	55.9	Construction HRA 10	F	AREAPOLY SOU	BASE Elev. (Meters)
587753.2 4131391.2 54. 587734.0 4131402.6 54. *** COCU-21 Construction *** Cupertino	ELEV FLGPOL URBAN	∑ *** *	X Y (METERS) (METERS) (08/003.9 4131440.2 587632.0 4131444.9				587543.7 4131452.6 587521 4 4131451 7			*** COCU-21 Construc *** Cupertino	ELEV FLGPOL URBAN	*** ARE	LOCATION OF AREA X Y (METERS) (METERS)
0.19231E-01 0.19231E-01 19191 *** 14134 ***	RegDFAULT CONC		EMISSION RATE (GRAMS/SEC)			- / -	0.19231E-01 5	/	- /	- /	0.19231E-01 5			19191 *** * 14134 *** *	RegDFAULT CONC		EMISSION RATE (GRAMS/SEC /METER**2)
0 0 VERSION VERSION	s: Rec		NUMBER PART. CATS.		00	0 0		0	0	0		0	0	VERSION VERSION			NUMBER PART. CATS.
L0000039 L0000040 *** AERMOD - *** AERMET -	*** MODELOPTS		SOURCE		L0000042	L0000043	T.0000045	L0000046	L0000047	L0000048	T.0000049	L0000051	L0000052	*** AERMOD - *** AERMET -	*** MODELOPTs:		SOURCE ID ID

YES HRDOW

1.93

13

4.15

53.8

0.33139E-04 587803.8 4131377.5

0

	(1 g/s)
Model Output	Jnit Emission Rates

11/07/21	23:35:55	PAGE 5	
* * *	* * *		
*** *** COCU-21 Construction HRA	*** *** Cupertino		CONC ELEV FIGPOL URBAN
*** AERMOD - VERSION 19191 ***	*** AERMET - VERSION 14134		*** MODELOPTs: RegDFAULT

*** SOURCE IDS DEFINING SOURCE GROUPS ***

		L0000008 L0000016 L0000024 L0000032 L0000032 L0000040 L000048	11
			* * * * * *
		L0000015 L0000015 L0000023 L0000031 L0000039 L0000039	
		L0000066 L0000014 L0000022 L000030 L000038 L0000038	
IDs 		L000005 L0000013 L0000021 L0000029 L0000037 L0000037	
SOURCE		L0000012 L0000012 L0000020 L000028 L0000036 L0000036 L0000044	truction HRA
		<pre>L0000003 L0000011 L0000019 L0000027 L0000035 L0000043</pre>	* COCU-21 Construction HRA * Cupertino
		<pre>L0000002 L0000010 L0000018 L0000026 L0000034 L0000034 L0000042</pre>	19191 *** *** 14134 *** ***
ΑΙ	, ci	L0000001 L0000009 L0000017 L0000017 L0000033 L0000033 L0000041 L0000049	AERMOD - VERSION AERMET - VERSION
SRCGROUP I	ONSITE	OFFSITE	*** AERMOD *** AERMET

. . . .

*** MODELOPTs: RegDFAULT CONC ELEV FLGPOL URBAN

*** SOURCE IDS DEFINED AS URBAN SOURCES ***

SOURCE IDS

URBAN POP

URBAN ID

11/07/21 23:35:55 PAGE 6

	-					
, L0000006	, L0000015	, L0000023	, L0000031	, L0000039	, L0000047	
, L0000005	, L000014	, L0000022	, L0000030	, L0000038	, L0000046	
, L0000004	, L0000013	, L0000021	, L0000029	, L0000037	, L0000045	
, L0000003	, L0000012	, L0000020	, L0000028	, L0000036	, L0000044	, L0000052
, L0000002	, L0000011	, L0000019	, L0000027	, L0000035	, L0000043	, L0000051
, L0000001	, L000010	, L0000018	, L0000026	, L0000034	, L0000042	, L0000050
1	, L0000009	, L0000017	, L0000025	, L0000033	, L0000041	, L0000049
1928000.	L000008	L000016	L000024	L0000032	L000040	L0000048
L0000007						

	(1 g/s)
Model Output	Unit Emission Rates

11/07/21	23:35:55	PAGE 7	
* * *	* * *		
*** COCU-21 Construction HRA	*** Cupertino		ELEV FLGPOL URBAN
*** AERMOD - VERSION 19191 ***	*** AERMET - VERSION 14134 ***		*** MODELOPTs: RegDFAULT CONC

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE	SOURCE ID = 1 HOUR SCALAR	HOUR	; SOURCE TYPE R SCALAR HOUR	CE TYPE HOUR	PE = AREAPOLY R SCALAR	Y : HOUR	SCALAR	HOUR	SCALAR	HOUR		HOUR	SCALAR	HOUR	SCALAR
 	 			, 1 1	DAY	 OF WE			 	 		 	 	 	
	.0000E+00	2	.0000E+00	С	.0000E+00	4	.0000E+00	Ŋ	.0000E+00	9	.0000E+00	6	.00000E+00	8	.1000E+01
0	.1000E+01	10	.1000E+01	11	.1000E+01	12	.0000E+00	13	.1000E+01	14	.1000E+01	15	.1000E+01	16	.1000E+01
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.00000E+00	22	.00005+00	23	.00000E+00	24	.0000E+00
					DAY		OF WEEK = SATURDAY	DAY							
	.0000E+00	0	.0000E+00	m	.0000E+00	4	.0000E+00	ŋ	.0000E+00	9	.00000日+00	7	.00000E+00	ω	.0000E+00
<i></i> б	.0000E+00	10	.0000E+00	11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.00000日+00	15	.0000E+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.00005+00	23	.00005+00	24	.0000E+00
					DAY		OF WEEK = SUNDAY	Х							
	.0000E+00	C	.0000E+00	m	.0000E+00	4	.000000+000	IJ	.000000+000	9	.00005+00	L	.00000E+00	8	.0000E+00
0	.0000E+00	10	.0000E+00	11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.00005+00	15	.0000日+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
*** AE	*** AERMOD - VERSION	RSION	19191 ***	* * *	COCU-21 Construction HRA	nstruc	tion HRA						* * *		11/07/21
*** AE	AERMET - VEI	VERSION	14134 ***	* * *	Cupertino								* * *		23:35:55
															PAGE 8
)W ***	*** MODELOPTS:	Rec	RegDFAULT CONC ELEV	IC EI	EV FLGPOL	URBAN									
		*	* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW)	ION F	ATE SCALARS	WHICH	VARY DIUR	NALLY	AND BY DAY	OF WI	3EK (HRDOW)	*			
	100.T = UT 5	10000	SOUNDER IN = I 0000001 + hrowingh I 0000053			F T V D F	· SOUDCE TYDE = MOLINE								
うくつつつ		+>>>>	CILLOUGIL TOU	10001											

AR -	-01	-01	-00		-00	-00	-00		-00	+00	00-
SCALAR	.1000E+01	.1000E+01	.0000E+00		.0000E+00	.0000E+00	.0000E+00		.0000E+00	.0000E+00	.0000E+00
HOUR	00	16	24		œ	16	24		œ	16	24
SCALAR	.0000E+00	.1000E+01	.0000E+00		.0000E+00	.0000E+00	.0000E+00		.00005+00	.0000E+00	.0000E+00
HOUR	Ľ	15	23		L	15	23		7	15	23
SCALAR	.0000E+00	.1000E+01	.0000E+00		.0000E+00	.0000E+00	.0000E+00		.000000+00	.0000E+00	.0000E+00
HOUR	9	14	22		9	14	22		9	14	22
SCALAR	.0000日+00	.1000E+01	.0000E+00		.0000E+00	.00005+00	.00005+00		.00005+00	.0000E+00	.0000E+00
HOUR	AY 5	13	21	DAY	IJ	13	21	X	IJ	13	21
; SOURCE TYPE = VOLUME CALAR HOUR SCALAR	DAY OF WEEK = WEEKDAY 0000E+00 4 .0000E+00 5	12 .0000E+00 13	.0000E+00 21	DAY OF WEEK = SATURDAY	0000E+00 4 .0000E+00 5	12 .0000E+00	.0000日+00	OF WEEK = SUNDAY	4 .0000E+00	12 .0000E+00	.0000E+00
E TYPE HOUR	OF WE	12	20	OF WE	4		20		4	12	20
; SOURCE SCALAR 	DAY .0000E+00	.1000E+01	.0000日+00	DAY	.0000日+00	.00000年00	.0000E+00	DAY	.0000日+00	.00005+00	.0000E+00
00052 HOUR	m I	11	19		m	11	19		m	11	19
LD = L0000001 through L0000052 SCALAR HOUR SCALAR HOUR	2 .0000E+00	.1000E+01	.0000E+00		.0000E+00	.0000E+00	.0000E+00		.0000E+00	.0000E+00	.0000E+00
0001 . HOUR	0	10	18		\sim	10	18		CI	10	18
SOURCE ID = L0000001 through L0000052 HOUR SCALAR HOUR SCALAR HOUR	.0000E+00	.1000E+01	.000000+000		.0000日+00	.000000+000	.000000+000		.000000+000	.000000+000	.0000E+00
SOURCE I HOUR		9	17			9	17			9	17

11/07/21 23:35:55 PAGE 60	
* * * * *	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
	5 5 5 5 5 5 5 5 5 5 5 5 5 5
* 0	<pre>6 4131374.7, 6 4131374.7, 6 4131374.7, 6 4131374.7, 6 4131190.8, 7 4131193.9, 7 4131193.9, 7 4131290.8, 7 4131290.8, 7 4131290.8, 7 4131290.8, 7 4131290.8, 7 4131290.8, 7 4131290.8, 7 4131300.4, 6 41313000.4, 6 4131310.8, 7 4131395.7, 1 4131095.7, 1 4131095.7, 6 4131331.3, 6 4131331.4, 6 41313344.9, 6 41313344.9, 6 41313344.9, 6 41313344.9, 6 41313344.9, 6 41313344.9, 6 41313344.9, 6 41313344.9, 6 41313344.9, 6 4131344.9, 6 4131344.9, 7 4131394.9, 6 4131344.9, 6 4131344.9, 6 4131344.9, 6 4131344.9, 6 4131344.9, 7 4131394.9, 6 4131344.9, 7 4131395.7, 7 4131395.7, 7 4131395.7, 7 4131395.7, 7 4131395.7, 7 4131395.7, 7 4131395.7, 7 4131334.9, 8 4131334.9, 8 4131334.9, 9 4131344.9, 9 4131344.9, 7 4131334.9, 8 4131334.9, 8 4131334.9, 9 6 4131334.9, 9 7 4131334.0, 9 7 4131334.0, 9 7 4131334.0, 9 7 4131334.0, 9 7 4131334.0</pre>
RECEPTORS ***	 587495.6 587495.6 587545.6 587543.8 587533.1 5875533.1 5875533.2 5875533.2 5875533.2 5875533.2 5875533.2 5875533.2 5875533.2 5875533.2 5875533.2 5877523.2 5877523.6 58775755.6 5877625.6 5877625.6 5877625.6 5877625.6 5877625.6 5877625.6 58776425.6 58775455.6 58776425.6 58776425.6 58775435.6 58776425.6 58775435.6 58776425.6 58775435.6 58775435.6 58776425.6 58775435.6 58775435.6 58775443.8 58775435.6
21 Construction HRA tino JGPOL URBAN *** DISCRETE CARTESIAN F (X-COORD, Y-COORD, ZELEV, (METERS)	
COCU-21 Cons Cupertino V FLGPOL U *** D1 (X-COORI	<pre></pre>
*** *** CU *** *** CU CONC ELEV	и и и и и и и и и и и и и и и и и и и
VERSION 19191 VERSION 14134 :: RegDFAULT	4131374.7, 4131374.7, 4131394.7, 4131394.7, 4131394.7, 4131290.8, 4131210.8, 4131210.8, 4131250.8, 4131250.8, 4131250.8, 4131250.8, 4131250.8, 4131250.8, 4131250.8, 4131250.8, 4131250.8, 4131250.8, 4131250.8, 4131250.8, 4131250.8, 4131250.8, 4131250.8, 4131250.8, 4131230.6, 41313374.7, 41313344.9, 41313344.0, 41313344.0, 41313344.0, 41313344.0, 41313344.0, 4131334.0, 4131344.0, 4131334.0, 41314.0, 4131334.0, 4131334.0, 41314.0, 4131334.0, 4131334.0, 4131334.0, 41314.0, 41314.0, 41314.0, 41314.0, 41314.0, 41314.0, 41314.0, 41314.0, 41314.0, 4131334.0, 4131334.0, 4131334.0, 41314.0, 41314.0
*** AERMOD - VE *** AERMET - VE *** MODELOPTS:	 58747556 5875556 58755556 58755556 58755556 587553322 5875533212 58875533212 58875533212 58875533212 58875533215 58875533215 5887553326 5887553326 5887553326 5887553326 5887553326 5887553326 588755556 588756609 58875656 58876609 58875656 58876609 58875656 58876609 58876609 58876609 588766566 588766566 588766566 588766566

6.1);

58.0,

58.0,

(587539.1, 4131193.9,

6.1);

58.2,

58.2,

(587523.2, 4131193.9,

| AGE
AGE | | 6.1): | 6.1); | 6.1); | 6.1); | 6.1); | (T.0); | 6.1); | 6.1); | 6.1); | 6.1);
 | 6.1); | 6.1); | 6.1); | 6.1); | 6.1); | 6.1);
 | 6.1); | 6.1); | 6.1); | 6.1);
0.1); | 9.1); | 9.11)
0.11) | 9.1);
 | 9.1); | 9.1); | 9.1); | 9.1); | 9.1); | 9.1);
 | ر ⊤ . ۵
۲ . ۲ | 3 T T T | 9.1);
11.0 | 9.1);
1/1 | 9.1);
0.1). | 1. T | 3. ⊥);

 | × (۲۰ |
|----------------|-----------------------------------|---|--|--|--|--|--|--|--|--
---|--|--|--|---
--|--|---|--|--|---
--|--|--|---|--
--	---	--	--	--	--
		00			
 | م | .0 | 0 | <u>с</u> | ف |
 | 0 | 0 | | 0 | | |
7
 | 4. | 4. | 0 | വ | 0 |
 | 0 U | | т ц | | 0 0 | | 0 0
 | α |
| | | 20
20 | 58.7, | 58.2, | 58.2, | .00.00,
0,00,00,00,00,00,00,00,00,00,00,00,0 | νο./ο
ιου | 55.4. | 55.6, | 56.4, | 56.3,
 | 55.9, | 56.4, | 56.3, | 55.8, | 56.4, | 55.9,
 | 56.3, | 56.6, | 56.3, | 56.0, | 53.6 , | 10.00
1 | 54.7,
 | 54.5, | 54.5, | 56.4, | 55.7, | 56.3, | .1.00

 | 200.7 , | , | , | | 00.0 7 | 1 · 0 · · · | ,0.00

 | Ja.J, |
| | | 31230. | 31250. | 31270. | 31270. | 31290. | 31310.
31310 | 31327. | 31327. | 31080. | 31080.
 | 31080. | 31095. | 31095. | 31095. | 31111. | 31111.
 | 31131. | 31131. | 31146. | 31146. | 31374. | 31374. | 31414.
 | 31 | 31414. | 31344. | 31344. | 131364. | 13135/.
 | 31384. | 01004. | 01404.
01404. | 01404. | 101100 | 31193. | 31143.
 | 31210. |
| | RECEPTORS ***
, ZHILL, ZFLAG) | 87539. | 87523. | 87503. | 87539. | 87523. | 0/400.
07500 | 87483. | 87523. | 87931. | 87971.
 | 88011. | 87932. | 87972. | 88012. | 87931. | 87991.
 | 87914. | 87951. | 87931.
67671 | 87971. | 87495.
07525 | 0/000.
07575 | 87475.
 | 87515. | 87555. | 87625. | 87665. | 87625. | 8 / 644.
 | . CZ0/ 8 | 0/000.00 | 0/0/2.
076/E | 01040. | 0/440.
0/1/00 | | 0/100%.
 | 8/408. |
| BAN | CRETE CART
Y-COORD,
(MF | 6_1): | 6.1); | 6.1); | 6.1); | 6.1); | (T-0); | 6.1); | 6.1); | 6.1); | 6.1);
 | 6.1); | 6.1); | 6.1); | 6.1); | 6.1); | 6.1);
 | 6.1); | 6.1); | 6.1); | 6.1); | 9.T); | 9.11.
0 11. | 9.1);
 | 9.1); | 9.1); | 9.1); | 9.1); | 9.1); | 9.T);
 | ч.т); | 9. T); | 9. T); | 9.1); | 9.1);
0.1/. | 9. T) |
 | У.Т.); |
| FLGPOL UR | *** DIS
(X-COORD, | 00 | | | | | 0 0 | | | | .0
 | .0 | .0 | | 6 | 0 | 0 I
 | س | 0 | 0 | 0 | n c | |

 | 4. | 4. | 4. | 0 | ч.
ч. |
 | י ע | оц | | ОЦ | n o | 0 0 | o c
 | |
| CONC ELEV | | u. | w | ω | ω | ωu | υυ | יו כ | · Ľ) | ц) | w.
 | w. | w. | w. | w. | w v | 9
 | י (ם | w ' | w v | w (| ·) (' | 0.0 |) (')
 | N' | N' | N' | w. | V. 1 | · (L
 | 1. 6 | 9 1 | 0.0 | | 0 | υι | υυ
 | 0 |
| RegDFAULT | | 131210 | 131250 | 31250 | 131270 | 131290 | 121210 | 131310 | 131327 | 131327 | 131080
 | 131080 | 131095. | 131095. | 131095. | 131111. | 131111.
 | 131111. | 131131. | 131133. | 131146. | 131374. | 131374 | 131394.
 | 31414. | 131414. | 131414 | 131344 | 131364 | 131345
 | 131384 | 100101 | 101104 | 101404
101404 | 101404 | 101100 | 101121
 | 0TZT&T |
| *** MODELOPTs: | | 87539. | 87503.2, | 87539. | 87523.2, | 87483.2,
07520 1 | 0/239.1 7 | 87539.1. | 87503.7, | 87539.6, | 87951.5,
 | 87991.5, | 87915.3, | 87952.1, | 87992.1, | 87914.3, | 87951.2,
 | 88011.2, | 87931.2, | 87970.9, | 87951.5 ,
27351.5, | 8/4/5.6 ,
07515 6 | 0.010.0 ,
87555 6 | 87575.6,
 | 87495.6, | 87535.6, | 87575.6, | 87645.6, | 87609.7, | 8/610.9 ,
 | 8/00%./ , | 0/07010/10 | 0.000.0 | 0.070/0 | 0.000.0 | 0/400.
01500 |
 | α/44α. |
| | ** MODELOPTS: RegDFAULT CONC ELEV | ** MODELOPTs: RegDFAULT CONC ELEV FLGPOL URBAN
*** DISCRETE CARTESIAN RECEPTORS ***
(X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG)
(METERS) | <pre>** MODELOPTs: RegDFAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESIAN RECEPTORS ***</pre> | <pre>** MODELOPTs: RegDFAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESIAN RECEPTORS ***</pre> | <pre>** MODELOFTs: RegDFAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESIAN RECEPTORS ***</pre> | <pre>** MODELOPTs: RegDFAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESIAN RECEPTORS ***</pre> | <pre>** MODELOPTs: RegDFAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (587539.1, 4131210.8, 58.2, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 58.2, 6.1); (587539.2, 4131250.8, 58.2, 58.2, 6.1); (587533.2, 4131270.8, 58.2, 58.2, 6.1); (587483.2, 4131290.8, 58.0, 6.1); (587483.2, 4131290.8, 58.0, 6.1); (587483.2, 4131290.8, 58.0, 6.1); (587483.2, 4131290.8, 58.0, 6.1); (587483.2, 4131290.8, 58.2, 6.1); (587483.2, 4131290.8, 58.2, 6.1); (587483.2, 4131290.8, 58.2, 6.1); (587483.2, 4131290.8, 58.2, 6.1); (587483.2, 4131290.8, 58.2, 6.1); (587483.2, 4131290.8, 58.2, 6.1); (587483.2, 4131290.8, 58.2, 6.1); (587483.2, 4131290.8, 58.2, 6.1); (587533.2, 4131290.8, 58.2, 6.1); (587533.2, 4131290.8, 58.2, 6.1); (58763.2, 4131290.8, 58.2, 6.1); (58763.2, 4131290.8, 58.2, 6.1); (58763.2, 4131290.8, 58.2, 6.1); (58763.2, 4131290.8, 58.2, 6.1); (58763.2, 4131290.8, 58.2, 6.1); (58763.2, 4131290.8, 58.2, 6.1); (58763.2, 4131290.8, 58.2, 6.1); (58763.2, 4131290.8, 58.2, 6.1); (58763.2, 4131290.8, 58.2, 6.1); (58763.2, 4131290.8, 58.2, 6.1); (58763.2, 4131290.8, 58.2, 6.1); (58763.2, 4131290.8, 58.2, 6.1); (58763.2, 4131290.8, 58.2, 6.1); (58763.2, 4131290.8, 58.8, 6.1); (58763.2, 4131290.8, 58.8, 6.1); (58763.2, 4131290.8, 58.8, 6.1); (58763.2, 4131290.8, 58.8, 6.1); (58763.2, 4131290.8, 58.8, 6.1); (58763.2, 4131290.8, 58.8, 6.1); (58763.2, 4131290.8, 58.8, 6.1); (58763.2, 4131290.8, 58.8, 6.1); (58763.2, 4131290.8, 58.8, 6.1); (58763.2, 4131290.8, 58.8, 6.1); (58763.2, 4131290.8, 58.8, 6.1); (58763.2, 4131290.8, 58.8, 6.1); (58763.2, 4131290.8, 58.8, 6.1); (58763.2, 4131290.8, 58.8, 6.1); (58763.2, 4131290.8, 58.8, 6.1); (58763.2, 4131290.8, 58.8, 6.1); (58763.2, 4131290.8, 58.8, 6.1); (58763.2, 4131290.8, 58.8, 6.1); (58763.2, 4131290.8, 58.8, 6.1); (58763.2, 4131290.8, 58.8</pre> | <pre>** MODELOPTs: RegDFAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (587539.1, 4131210.8, 58.2, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.</pre> | <pre>** MODELOPTs: RegDFAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (S87539.1, 4131210.8, 58.2, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 6.1); (587539.1, 4131220.8, 58.2, 6.1); (587539.1, 4131220.8, 58.2, 6.1); (587539.1, 4131220.8, 58.2, 6.1); (587539.1, 4131220.8, 58.2, 6.1); (587539.1, 4131200.8, 58.2, 6.1); (587539.1, 4131200.8, 58.2, 6.1); (587539.1, 4131210.8, 58.2, 6.1); (587539.1, 4131210.8, 58.2, 6.1); (587539.1, 4131210.8, 58.2, 6.1); (587539.1, 4131210.8, 58.2, 6.1); (587539.1, 4131210.8, 58.2, 6.1); (587539.1, 4131210.8, 58.2, 6.1); (587539.1, 4131210.8, 58.2, 6.1); (587539.1, 4131210.8, 58.2, 6.1); (587539.1, 4131210.8, 58.2, 6.1); (587539.1, 4131210.8, 58.2, 6.1); (587539.1, 4131210.8, 58.2, 6.1); (587539.1, 4131210.8, 58.2, 6.1); (587539.1, 4131210.8, 58.2, 6.1); (587539.1, 4131210.8, 58.2, 6.1); (587539.1, 4131310.8, 57.6, 6.1); (587539.1, 4131310.8, 58.2, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 57.6, 57.6, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 58.1, 6.1); (587539.1, 4131310.8, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 57.</pre> | <pre>** MODELOPTs: RegDFAULT CONC ELEV FLGFOL URBAN *** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (587539.1, 4131210.8, 58.2, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 58.0, 6.1); (587539.1, 4131250.8, 58.2, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 58.2, 6.1); (587539.1, 4131270.8, 58.2, 58.2, 6.1); (587539.1, 4131270.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131290.8, 58.2, 58.2, 6.1); (587539.1, 4131210.8, 57.6, 57.6, 6.1); (587539.2, 4131310.8, 57.6, 57.6, 6.1); (587539.2, 4131310.8, 57.6, 57.6, 6.1); (587539.2, 4131310.8, 57.6, 57.6, 6.1); (587539.2, 4131310.8, 57.6, 57.6, 6.1); (587539.2, 4131310.8, 57.6, 57.6, 6.1); (587539.2, 4131310.8, 57.6, 57.6, 6.1); (587533.2, 4131310.8, 57.6, 57.6, 6.1); (587533.2, 4131310.8, 57.6, 57.6, 6.1); (587533.2, 4131310.8, 58.2, 58.8, 6.1); (587533.2, 4131310.8, 57.6, 57.6, 57.6, 57.6, 57.6, 58.8, 6.1); (587533.2, 4131310.8, 57.6, 57.6, 57.6, 57.6, 57.6, 57.6, 58.8, 6.1); (587533.7, 4131327.2, 55.4, 58.8, 6.1); (587533.7, 4131327.2, 55.4, 58.8, 6.1); (587533.7, 4131327.2, 55.4, 58.8, 6.1); (587533.7, 4131327.2, 55.4, 58.8, 6.1); (587533.7, 4131327.2, 55.4, 58.8, 6.1); (587533.7, 4131327.2, 55.4, 58.8, 6.1); (587533.7, 4131327.2, 55.4, 58.8, 6.1); (587533.7, 4131327.2, 55.4, 58.8, 6.1); (587533.7, 4131327.2, 55.4, 58.8, 6.1); (587533.7, 4131327.2, 55.4, 58.8, 6.1); (587533.7, 4131327.2, 55.4, 58.8, 6.1); (587533.7, 4131327.2, 55.4, 58.8, 6.1); (587533.7, 4131327.2, 55.4, 58.8, 6.1); (587533.7, 4131327.2, 55.4, 58.8, 6.1); (587533.7, 4131327.2, 55.4, 58.8, 6.1); (587533.7, 4131327.2, 55.4, 58.8, 6.1); (587533.7, 4131327.2, 55.4, 58.8, 6.1); (587533.7, 4131327.2, 55.8, 6.1); (587533.7, 4131327.2, 55.8, 6</pre> | <pre>** MODELOPTs: RegDFAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) ((METERS) (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131250:8, 58.2, 66.1); (587539:1, 4131250:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 4131220:8, 58.2, 66.1); (587539:1, 413120:8, 58.2, 66.1); (587539:1, 413120:8, 58.2, 66.1); (587539:1, 413120:8, 58.2, 66.1); (587539:1, 413120:8, 58.2, 66.1); (587539:1, 413120:8, 58.2, 66.1); (587539:1, 413120:8, 58.2, 66.1); (587539:1, 413120:8, 58.2, 66.1); (587539:1, 4131320:8, 58.2, 66.1); (587539:1, 413132712, 55.6, 58.8, 66.1); (587539:1, 413132712, 55.6, 58.8, 66.1); (587539:1, 413132712, 55.6, 58.8, 66.1); (587539:1, 413132712, 55.6, 58.8, 66.1); (587539:1, 413132712, 55.6, 58.8, 66.1); (587539:1, 413132712, 55.6, 58.8, 66.1); (587539:1, 413132712, 55.6, 58.8, 66.1); (587539:1, 413132712, 55.6, 58.8, 66.1); (587539:1, 413132712, 55.6, 58.8, 66.1); (587539:1, 413132712, 55.6, 58.8, 66.1); (587539:1, 413132712, 55.6, 58.8, 66.1); (587539:1, 413132712, 55.6, 58.8, 66.1); (587539:1, 413132712, 55.6, 58.8, 66.1); (587539:1, 413132712, 55.6, 58.8, 66.1); (587539:1, 413132712, 55.6, 56.4, 56.4,</pre> | <pre>** MODELOPTS: RegDFAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESIAN RECEPTORS *** (X=COORD, Y=COORD, ZELEV, ZHILL, ZFLAG) (X=COORD, Y=COORD, ZELEV, ZHILL, ZFLAG) (N=TERS) (N=TERS) (N=TERS) (N=TERS) (S=7539.1, 4131210.8, 58.2, 58.2, 61.1); (587539.2, 4131230.8, 58.2, 58.2, 61.1); (587539.2, 4131230.8, 58.2, 61.1); (587539.2, 4131230.8, 58.2, 61.1); (587539.2, 4131230.8, 58.2, 61.1); (587539.2, 4131230.8, 58.2, 61.1); (587539.1, 4131290.8, 58.2, 58.2, 61.1); (587539.1, 4131290.8, 58.2, 61.1); (587539.1, 4131290.8, 58.2, 61.1); (587539.1, 4131290.8, 58.2, 58.2, 61.1); (587539.2, 4131310.8, 58.2, 58.2, 61.1); (587539.2, 4131310.8, 58.2, 58.2, 61.1); (587539.2, 4131310.8, 58.2, 58.8, 61.1); (587539.2, 4131310.8, 58.2, 58.8, 61.1); (587539.2, 4131310.8, 58.1, 58.1, 58.1, 61.1); (587539.2, 4131310.8, 58.1, 58.2, 61.1); (587539.2, 4131310.8, 58.1, 58.1, 58.1, 61.1); (587539.2, 4131310.8, 58.1, 58.2, 58.8, 61.1); (587539.2, 4131310.8, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 58.1, 5</pre> | <pre>** MODELOPTS: RegPEAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESIAN RECEPTORS ***</pre> | <pre>** MODELOPTs: RegDFAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (METERS) (S57539:1, 41312210.8, 58.2, 58.2, 6.1); (587539:1, 4131250.8, 58.2, 58.2, 6.1); (587539:1, 4131250.8, 58.2, 58.2, 6.1); (587539:1, 4131220.8, 58.2, 58.2, 6.1); (587539:1, 4131220.8, 58.2, 58.2, 6.1); (587539:1, 4131200.8, 58.2, 58.2, 6.1); (587539:1, 4131200.8, 58.2, 58.2, 6.1); (587539:1, 4131200.8, 58.2, 58.2, 6.1); (587539:1, 4131200.8, 58.2, 58.2, 6.1); (587539:1, 4131200.8, 58.2, 58.2, 6.1); (587539:1, 4131200.8, 58.2, 58.2, 6.1); (587539:1, 4131200.8, 58.2, 58.2, 6.1); (587539:1, 4131200.8, 58.2, 58.2, 6.1); (587539:1, 4131200.8, 58.2, 58.2, 6.1); (587539:1, 4131201.8, 57.6, 57.6, 57.6, 57.6, 6.1); (587539:6, 4131227.2, 55.4, 58.8, 6.1); (587539:6, 4131227.2, 55.4, 56.3, 6.1); (5879915.5, 4131208.4, 56.3, 6.1); (5879915.5, 4131208.4, 56.3, 6.1); (5879915.5, 4131208.4, 56.3, 6.1); (5879915.4, 4131208.4, 56.3, 6.1); (5879915.4, 4131208.4, 56.3, 6.1); (5879915.4, 4131208.4, 56.3, 6.1); (5879915.4, 4131208.4, 56.3, 56.1, 6.1); (5879915.4, 4131208.4, 56.3, 56.1, 6.1); (5879915.4, 4131208.4, 56.3, 56.1, 6.1); (5879915.4, 4131208.4, 56.3, 56.1, 6.1); (5879915.4, 4131208.4, 56.3, 56.1, 6.1); (5879915.4, 4131208.4, 56.3, 56.1, 6.1); (5879915.4, 4131208.4, 56.3, 56.1, 6.1); (5879915.4, 4131208.4, 56.3, 56.3, 6.1); (5879915.4, 413108.4, 56.3, 56.3, 6.1); (5879915.4, 413108.4, 56.3, 56.3, 6.1); (5879915.4, 413108.4, 56.3, 56.3, 6.1); (5879915.4, 413108.4, 56.3, 56.3, 6.1); (5879915.4, 413108.4, 56.3, 56.3, 6.1); (5879915.4, 413108.4, 56.3, 56.3, 6.1); (5879915.4, 413108.4, 56.4, 6.1); (5879915.4, 413108.4, 56.3, 55.4, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.</pre> | <pre>** MODELOPTs: RegPFAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESTAN RECEPTORS *** (X-COORD, Y-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (* 587539:1, 4131220:8, 58.2, 58.2, 6.1); (587539:1, 4131220:8, 58.2, 58.2, 6.1); (587539:1, 4131220:8, 58.2, 58.2, 6.1); (587539:1, 4131220:8, 58.2, 58.2, 6.1); (587539:1, 4131220:8, 58.2, 58.2, 6.1); (587539:1, 4131220:8, 58.2, 58.2, 6.1); (587539:1, 4131220:8, 58.2, 58.2, 6.1); (587539:1, 4131220:8, 58.2, 58.2, 6.1); (587539:1, 4131220:8, 58.2, 58.2, 6.1); (587539:1, 4131220:8, 58.2, 58.2, 6.1); (587539:1, 4131220:8, 58.2, 58.2, 6.1); (587539:1, 4131220:8, 58.2, 58.2, 6.1); (587539:1, 4131220:8, 58.2, 58.2, 6.1); (587539:1, 4131220:8, 58.2, 58.2, 6.1); (587539:1, 413120:8, 58.2, 58.2, 6.1); (587539:1, 413120:8, 58.2, 58.2, 6.1); (587539:1, 413120:8, 58.2, 58.2, 6.1); (587539:1, 413120:8, 58.2, 58.2, 6.1); (587539:1, 413120:8, 58.2, 58.2, 6.1); (587539:1, 413120:8, 58.2, 58.2, 6.1); (587539:1, 413120:8, 58.2, 58.2, 6.1); (587539:1, 413120:8, 58.2, 58.2, 6.1); (587539:1, 413120:8, 58.2, 58.2, 6.1); (587539:1, 413120:8, 58.2, 58.2, 6.1); (587599:5, 4131108:4, 56.3, 56.3, 6.1); (587991:5, 4131080:4, 56.3, 56.3, 6.1); (587991:5, 4131080:4, 56.3, 56.3, 6.1); (587991:5, 4131080:4, 56.3, 56.3, 6.1); (587991:5, 4131080:4, 56.3, 56.3, 6.1); (587991:5, 4131080:4, 56.3, 56.3, 6.1); (587991:5, 4131080:4, 56.3, 56.3, 6.1); (587991:5, 4131080:4, 56.3, 56.3, 6.1); (587991:5, 4131080:4, 56.3, 56.3, 6.1); (587991:5, 4131095.7, 56.3, 56.3, 6.1); (587991:5, 4131095.7, 56.3, 56.3, 6.1); (587991:5, 4131095.7, 56.3, 56.3, 6.1); (587991:5, 4131095.7, 56.3, 56.3, 6.1); (587991:5, 4131095.7, 56.3, 56.3, 6.1); (587991:5, 4131095.7, 56.3, 56.3, 6.1); (587991:5, 4131095.7, 56.3, 56.3, 56.3, 6.1); (587991:5, 4131095.7, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3,</pre> | <pre>** MODELOPTS: RegDFAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (S57539.1, 4131220.8, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 58.2, 6.1); (587539.1, 4131250.8, 58.2, 58.2, 6.1); (587539.1, 4131220.8, 58.2, 6.1); (587539.1, 4131220.8, 58.2, 58.2, 6.1); (587539.1, 4131220.8, 58.2, 58.2, 6.1); (587539.1, 4131220.8, 58.2, 58.2, 6.1); (587539.1, 4131220.8, 58.2, 58.2, 6.1); (587539.1, 4131220.8, 58.2, 58.2, 6.1); (587539.1, 4131220.8, 58.2, 58.2, 6.1); (587539.1, 4131220.8, 58.2, 58.2, 6.1); (587539.1, 4131220.8, 58.2, 58.8, 6.1); (587539.1, 4131220.8, 58.8, 6.1); (587539.1, 4131220.8, 58.8, 6.1); (587539.1, 4131220.8, 58.8, 6.1); (587539.1, 4131220.8, 58.8, 6.1); (587539.1, 4131220.8, 58.8, 6.1); (587539.1, 41312270.8, 58.8, 6.1); (587539.1, 41312270.8, 58.8, 6.1); (587539.1, 41312270.8, 58.8, 6.1); (587539.1, 41312270.8, 58.8, 6.1); (587539.1, 41312270.8, 58.8, 6.1); (587539.1, 41312270.8, 58.8, 6.1); (587539.1, 41312270.8, 58.8, 6.1); (587539.1, 41312270.8, 58.8, 6.1); (587539.1, 41312270.8, 58.8, 6.1); (587539.1, 41312270.8, 58.8, 6.1); (587539.1, 4131080.4, 56.4, 56.1, 6.1); (587530.1, 4131080.4, 56.4, 56.1, 6.1); (587530.1, 4131080.4, 56.4, 56.1, 6.1); (587530.1, 4131095.7, 56.3, 56.3, 66.1); (587911.5, 4131095.7, 56.3, 56.3, 66.1); (587912.1, 4131095.7, 56.3, 56.3, 66.1); (587912.1, 4131095.7, 56.3, 56.3, 66.1); (587912.1, 4131095.7, 56.3, 56.3, 66.1); (587912.1, 4131095.7, 56.3, 56.3, 66.1); (587912.1, 4131095.7, 56.3, 56.3, 66.1); (587992.1, 4131095.7, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56</pre> | <pre>** MODELOPTS: RegDFAULT CONC ELEV FLGPOL URBAN *** MODELOPTS: RegDFAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (S87539.1, 4131250.8, 58.2, 58.2, 6.1]; (587539.1, 4131250.8, 58.2, 58.2, 6.1]; (587539.1, 4131250.8, 58.2, 58.2, 6.1]; (587539.1, 4131290.8, 58.2, 58.2, 6.1]; (587539.1, 4131290.8, 58.2, 58.2, 6.1]; (587539.1, 4131290.8, 58.2, 58.2, 6.1]; (587539.1, 4131290.8, 58.2, 58.2, 6.1]; (587539.1, 4131290.8, 58.2, 58.2, 6.1]; (587539.1, 4131290.8, 58.2, 58.2, 6.1]; (587539.1, 4131290.8, 58.2, 58.2, 6.1]; (587539.1, 4131290.8, 58.2, 58.2, 6.1]; (587539.1, 4131290.8, 58.2, 58.8, 6.1]; (587539.1, 4131310.8, 55.4, 56.1, 58753.7, 41313270.8, 58.1, 6.1]; (587539.1, 4131310.8, 55.4, 56.1, 6.1]; (587539.1, 4131327.2, 55.4, 56.1, 6.1]; (587539.1, 4131327.2, 55.4, 56.3, 6.1]; (587539.1, 4131327.2, 55.4, 56.3, 6.1]; (587539.1, 4131327.2, 55.4, 56.3, 6.1]; (587539.1, 4131327.2, 55.4, 56.3, 6.1]; (587539.1, 4131327.2, 55.4, 56.3, 6.1]; (587539.1, 4131300.4, 56.3, 56.3, 6.1]; (587537.1, 413100.4, 56.3, 56.3, 6.1]; (587931.5, 413100.4, 56.3, 56.3, 6.1]; (587931.5, 413100.4, 56.3, 56.3, 6.1]; (587931.5, 413100.4, 56.3, 56.3, 6.1]; (587931.5, 413100.4, 56.3, 56.3, 6.1]; (587931.5, 413100.4, 56.3, 56.3, 6.1]; (587931.2, 413100.4, 56.3, 56.3, 6.1]; (587931.2, 413100.4, 56.3, 56.3, 6.1]; (587931.2, 413100.4, 56.3, 56.3, 6.1]; (587931.2, 413100.4, 56.3, 56.3, 6.1]; (587931.2, 413100.5,7, 56.3, 56.3, 6.1]; (587931.2, 4131005.7, 56.3, 56.3, 6.1]; (587931.2, 4131005.7, 56.3, 56.3, 6.1]; (587931.2, 4131005.7, 56.3, 56.3, 6.1]; (587931.2, 4131005.7, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4,</pre> | <pre>** MODELOPTS: RegPEAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (NETERS) (587539:1, 4131250.8) 58.2, 58.2, 6.1); (587539:1, 4131250.8) 58.2, 6.1); (587539:1, 4131200.8) 58.2, 6.1); (587539:1, 4131200.8) 58.2, 6.1); (587539:1, 4131200.8) 58.2, 6.1); (587539:1, 4131200.8) 58.2, 6.1); (587539:1, 4131200.8) 58.2, 6.1); (587539:1, 4131200.8) 58.2, 6.1); (587539:1, 4131200.8) 58.2, 6.1); (587539:1, 4131200.8) 58.2, 6.1); (587539:1, 4131200.8) 58.2, 6.1); (587539:1, 4131200.8) 58.2, 6.1); (587539:1, 4131200.8) 58.2, 6.1); (587539:1, 4131200.8) 58.2, 6.1); (587539:1, 4131300.8) 58.2, 6.1); (587539:1, 4131300.8) 58.2, 6.1); (587539:1, 4131300.8) 58.2, 6.1); (587539:1, 4131300.8) 58.2, 6.1); (587539:1, 4131300.8) 58.2, 6.1); (587539:1, 4131300.8) 58.2, 6.1); (587539:1, 4131300.8) 58.2, 6.1); (587539:1, 4131300.8) 58.2, 6.1); (587539:1, 4131300.8) 58.2, 6.1); (587539:1, 4131300.8) 58.2, 6.1); (587539:1, 4131300.8) 56.3, 56.1, 6.1); (587931.5, 4131300.8) 56.3, 56.1, 6.1); (587931.5, 4131300.8) 56.3, 56.1, 6.1); (587931.5, 4131300.8) 56.3, 56.1, 6.1); (587931.5, 4131080.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4,</pre> | <pre>** MODELOPTS: RegDFAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESTAN RECEPTORS *** (x-cooRD, Y=CORD, Y=CAFOL URBAN</pre> | <pre>** MODELOPTS: RegDFAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESIAN RECEPTORS *** (x-COORD, Y=CORD, ZELEV, ZHILL, ZFLAG) (x-COORD, ZELEV, ZHILL, ZFLAG) (x=COORD, ZELEV, ZHILL, ZELAG) (x=COORD, Y=CORD, ZELEV, ZHILL, ZELAG) (x=COORD, ZELEV, ZHILL, ZELAG) (x=COORD, ZELEV, ZHILL, ZELAG) (x=COORD, ZELEV, ZHILL, ZELAG) (x=COORD, ZELEV, COND, ZELEV, ZHILL, ZELAG) (z=075391; 4131220.8; 58.2; 6.1); (s=07533.2; 413120.8; 58.3; 6.1); (s=075391; 4131220.8; 58.2; 6.1); (s=07533.2; 413120.8; 58.2; 6.1); (s=075391; 4131220.8; 58.2; 6.1); (s=07533.2; 413120.8; 58.2; 6.1); (s=075391; 4131220.8; 58.2; 6.1); (s=07533.2; 4131310.8; 58.2; 6.1); (s=075391; 4131220.2; 55.4; 58.1; 6.1); (s=07533.2; 4131310.8; 58.1; 6.1); (s=075391; 4131227.2; 55.4; 58.1; 6.1); (s=07733.2; 4131310.8; 58.1; 6.1); (s=075391; 4131270.2; 55.4; 58.1; 6.1); (s=0773.2; 4131310.8; 58.1; 6.1); (s=07591; 413120.2; 55.4; 58.1; 6.1); (s=0773.2; 4131310.8; 58.1; 6.1); (s=07991; 5, 4131300.4; 56.5; 56.5; 6.1); (s=0772.3; 4131310.8; 58.1; 6.1); (s=07991; 5, 4131300.4; 56.3; 56.3; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4; 56.4;</pre> | <pre>** MODELOFTS: RegPEAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESIAN RECEPTORs *** (X-COORD, Y-COORD, ZELLEV, ZHILL, ZELAG)</pre> | <pre>** MODELLOFTS: RegDFAULT CONC ELEV FLGFOL URBAN *** MODELLOFTS: RegDFAULT CONC ELEV FLGFOL URBAN *** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (METERS) (METERS) (S97533.2, 4131200.8, 58.2, 58.2, 6.1); (587533.2, 4131200.8, 58.3, 58.3, 58.3, 6.1); (587533.2, 4131200.8, 58.2, 58.8, 6.1); (587533.1, 4131200.8, 58.2, 58.8, 6.1); (587533.2, 4131200.8, 58.2, 58.8, 6.1); (587533.2, 4131200.8, 58.2, 58.2, 6.1); (587533.2, 4131200.8, 58.2, 58.8, 6.1); (587533.2, 4131200.8, 58.2, 6.1); (587533.2, 4131200.8, 58.2, 58.8, 6.1); (587533.2, 4131200.8, 58.2, 58.8, 6.1); (587533.2, 4131200.8, 58.2, 58.8, 6.1); (587533.2, 4131200.8, 58.2, 58.8, 6.1); (587533.2, 4131200.8, 58.2, 6.1); (587533.2, 4131300.8, 58.2, 58.8, 6.1); (587533.2, 4131300.8, 58.2, 58.8, 6.1); (587533.2, 4131300.8, 58.8, 6.1); (587533.2, 4131300.8, 58.2, 58.8, 6.1); (587533.2, 4131300.8, 58.8, 6.1); (587533.2, 4131300.8, 58.2, 58.8, 6.1); (587533.2, 4131300.8, 58.8, 6.1); (587533.2, 4131300.8, 58.8, 6.1); (587533.2, 4131300.8, 58.8, 6.1); (587533.2, 4131300.8, 58.8, 6.1); (587533.2, 4131300.8, 58.8, 6.1); (587753.2, 4131300.8, 56.4, 56.4, 6.1); (587753.1, 4131000.4, 56.4, 56.4, 6.1); (587753.1, 413100.4, 56.3, 56.4, 6.1); (587753.1, 413100.4, 56.3, 56.4, 6.1); (587792.1, 413100.4, 56.3, 56.4, 6.1); (587792.1, 413100.4, 56.3, 56.4, 6.1); (587792.1, 413100.4, 56.3, 56.4, 6.1); (587792.1, 413100.4, 56.3, 56.4, 6.1); (587792.1, 413100.4, 56.3, 56.4, 6.1); (587792.1, 413100.4, 56.3, 56.4, 6.1); (587792.1, 413100.4, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56.3, 56</pre> | <pre>** MODELOPTS: RegDFAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESIAN RECEPTORs *** (X=CORD, Y=CORD, ZELEV, ZHILL, ZFLAG) (METERS) (067539-1, 4131210-8, 58.2, 58.2, 6.11); (587539-1, 4131270-8, 58.2, 58.2, 6.11); (587539-1, 4131270-8, 58.2, 6.11); (587539-1, 4131270-8, 58.2, 6.11); (587539-1, 4131270-8, 58.2, 6.11); (587539-1, 4131270-8, 58.2, 6.11); (587539-1, 4131270-8, 58.2, 6.11); (587539-1, 4131270-8, 58.2, 6.11); (587539-1, 4131270-8, 58.2, 6.11); (587539-1, 4131270-8, 58.2, 6.11); (587539-1, 4131270-8, 58.2, 6.11); (587539-1, 4131270-8, 58.2, 6.11); (587539-1, 4131270-8, 58.2, 6.11); (587539-1, 4131270-8, 58.2, 6.11); (587539-1, 4131270-8, 58.2, 6.11); (587539-1, 4131270-8, 58.2, 6.11); (587539-1, 4131270-8, 58.2, 6.11); (587539-1, 413120-8, 55.4, 56.1, 6.11); (587539-4, 4131270-8, 58.8, 6.11); (587539-4, 4131272-2, 55.4, 58.8, 6.11); (587539-4, 4131272-2, 55.4, 56.1, 6.11); (587539-4, 413120-8, 55.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.</pre> | <pre>** MODELOPTS: RegDFAULT CONC ELEV FLGPOL URBAN *** INCDELOPTS: RegDFAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESIAN RECEPTORS *** (X-CORD, ZELEV, ZHILL, ZFLAG) (G57539-1, 4131210-8, 58-2, 58-2, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131210-8, 58-2, 4131110-8, 58-2, 4131210-8, 58-2, 4131110-8, 58-2, 58-8, 4131110-8, 58-4, 58-1, 581327-1, 41312927-2, 58-4, 58-4, 58-1, 587932-1, 4131095-7, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 56-4, 5</pre> | <pre>** MODELOPTHS: RegPENDIT CONC ELEV FLEOL URBAN *** DISCRETE CARTESIAN RECEPTORS *** (*-COORD, YELEV, ZHILL, ZFLAG) *** DISCRETE CARTESIAN RECEPTORS *** (*-COORD, YELEV, ZHILL, ZFLAG) *** DISCRETE CARTESIAN RECEPTORS *** (*-COORD, YELEV, ZHILL, ZFLAG) *** DISCRETE CARTESIAN RECERTORS *** (*-COORD, YELEV, ZHILL, ZFLAG) *** DISCRETE CARTESIAN RECERTORS *** (*-COORD, YELEV, ZHILL, ZFLAG) *** DISCRETE CARTESIAN RECERTORS *** (*-COORD, YELEV, ZHILL, ZFLAG) *** DISCRETE CARTESIAN RECERTORS *** (*********************************</pre> | <pre>** MODELOPTS: RegrEAUT CONC ELEV FLGPL URAM *** DISCREPT CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZHILL, ZTLAG) (S 587399.1 4131210.8, 58.2, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.4, 58.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 56.4, 5</pre> | <pre>** MODELOPTS: RegrEAULT CONC ELEV FIGED URAM *** DISCRET CARTESIAN RECEPTORS *** (Y-COORD, Y-COORD, YELLA) (S 973331, 41312010.8, 58.2, 58.0, 58.1, 58.1, 58.3, 58.3, 58.3, 58.3, 58.1, 58.3, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.</pre> | <pre>** MODELOPTS: RegERANLT CONC ELEV FIGPOL URAN
*** DISCRETE CATTESIAN RECEPTORS *** (C-COORD, Y-COORD, ZELMA), FILID, FELAG) (C-COORD, Y-COORD, ZELMA), FILID, FILID,</pre> | <pre>** MODELIDPTS: RegPEAULT CONC ELEV FLOED URBAN *** DISCRETE CARTESIAN RECEPTORS *** (*** DISCRETE CARTESIAN RECEPTORS *** (*** DISCRETE CARTESIAN RECEPTORS *** (**** DISCRETE CARTESIAN RECEPTORS *** (*********************************</pre> | <pre>*** MODELOPTS: Regretur CONC ELEV FLORD URAN *** DISCRETE CARTESIAN RECEPTORS *** (7-0008b, Y-0008b, ELEV 2711, FLAS) *** DISCRETE CARTESIAN RECEPTORS *** (7-008b, Y-008b, ELEV (7) (5897533.2, 4131250.8, 58.2, 58.2, 58.2, 58.2, 4131250.8, 58.3, 59.3, 59</pre> | •• MODELOPPS: RedPFAULT CONC ELEV FLOFOL URBAN ••••• DISCRETE CARTESIAN RECEPTOR •••• INILL, ZFLAG) INILL, ZFLAG) ••••• DISCRETE CARTESIAN RECEPTOR •••• (#~000B), Y*C00B), ZELEV, ZHILL, ZFLAG) INILL, ZFLAG) ••••• DISCRETE CARTESIAN RECEPTOR •••• (#~000B), Y*C00B), ZELEV, ZHILL, ZFLAG) INILL, ZFLAG) (#~000B), Y*C00B), Y*C00B), Y*C00B), ZELEV, ZHILL, ZFLAG) INILL, ZFLAG) INILL, ZFLAG) (#~000B), Y*C00B), Y*C00B), Y*C00B), ZELEV, ZHILL, ZFLAG) INILL, ZFLAG) INILL, ZFLAG) (#753911) INILL, ZFLAG) INILL, ZFLAG) INILL, ZFLAG) (#753912) INILL, ZFLAG) INILL, ZFLAG) INILL, ZFLAG) (#753912) INILL, ZFLAG) INILL, ZFLAG) INILL, ZFLAG) (#753912) INILL, ZFLAG) INILL, ZFLAG) INILL, ZFLAG) (#75312) INILL, ZFLAG) INILL, ZFLAG) INILL, ZFLAG) (#75312) INILL, ZFLAG) INILL, ZFLAG) INILL, ZFLAG) (#75312) INILL, ZFLAG) INILL, ZFLAG) INILL, ZFLAG) (#77512) INILL, ZFLAG) INILL, ZFLAG) INILL, ZFLAG) (#77514) INILL, ZFLAG) INILL, ZFLAG) INILL, ZFLAG) (#77514) INILL, ZFLAG) | •• MODELDDPS: ReDFAILT CONC ELEV FLACID UNBAN •••• NUDELDPS: ReGPFAILT CONC ELEV FLACID UNBAN ••••• DISCRETE CARTESTIN RECEPTORS •••• (F-COORD, FLEW, INTLL, ZFLAG) ••••• DISCRETE CARTESTIN RECEPTORS •••• (F-COORD, FCLORD, ELEV, INTLL, ZFLAG) ••••• DISCRETE CARTESTIN RECEPTORS •••• (F-COORD, FCLORD, FCLORD, ELEV, INTLL, ZFLAG) (F-COORD, FCLORD, FCLORD, ELEV, INTLL, ZFLAG) (F-COORD, FCLORD, FCCLORD, FCLORD, FCLORD, FCLORD, FCCLORD, FCLORD, FCCLORD, FCLORD, FCLORD, FCLORD, FCLORD, FCLORD, FCLORD, FCLORD, FCLORD, FCCLORD, FCLORD, F | •• MODELIDPES: ReGPAILT CONC ELEV FLACOL URAN •••• DISCRATE CARTERIAN RECEPTING •••• IFLIA, ZELACI •••• DISCRATE CARTERIAN RECERTING •••• IFLIA, ZELACI (F-0000A), Y-000AD IFLIA, ZELACI (F-000AD), Y-00AD IFLIA, ZELACI (F-000AD), ZELACI IFLIA, ZELACI (F-000AD), ZELACI IFLIA, ZELACI (F-00AD), ZELACI IFLIA (F-00AD), ZELA IFLIA (F-00AD), ZELA IFLIA (F-00AD), ZELA IFLIA (F-00AD), ZELA | MOREJOPTE: ReDEAUUT CONC ELEV LIGEOL URAN *** DISCRETE CARTESIAN RECEPTORS *** (*** DISCRETE CARTESIAN RECEPTORS **** (*** DISCRETE CARTESIAN RECEPTORS **** (*** DISCRETE CARTESIAN RECEPTORS ************************************ | NOOZLODY: Regretaria Transmission Transmission | NOTELLOPT: Regression Regression Research Research | Nonzacoma: Regranting Condition Targetter Condition Second (1) Second (1) | MORELOTTE: Regression and secretarial Recentral Recentra |

9.1); 9.1); 9.1); 9.1); 9.1); 9.1); 11/07/21 23:35:555 PAGE 62		9.1); 9.1); (1.0	(1.000 (1.000 (1.000	(1.0 (1.0 (1.0 (1.0 (1.0)	9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.5 1.5
* * * * * * * * * * * * * * * * * * *		∽ ∞ ∞	ກິດ0.4, ຊີ້			
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		L ∞ 10	ר שיט שיט ה שיט אי ס א שיט אי		ອັດດັບດີດ ສຸດທິດ ສຸດທິດ ເຊິ່ງ ເ ເ ເ ເ ເ เ เ เ เ เ เ เ เ เ เ เ เ เ เ	ма ма ма ма ма ма ма ма ма ма ма ма ма м
4131210.8, 4131230.8, 4131250.8, 4131270.8, 4131270.8, 4131290.8, 4131290.8,		31310. 31310. 31327.	4131327.2, 4131080.4, 4131080.4, 4131080.4,	31095. 31095. 31095. 31095. 31111.	4131111.6, 4131131.3, 4131131.6, 4131146.0, 4131146.0, 4131072.1, 4131072.1, 4131072.1,	31025 31734. 31734. 31736. 31769. 31769. 31050. 31050. 31060. 31060. 31060. 31060. 31060. 31060.
(587523.2, 587523.2, 587523.2, 587523.2, 587533.2, 587539.1, (587539.1,	RECEPTORS *** ZHILL, ZFLAG)	8748 8752 8748	(587931.5, (587931.5, (587971.5, (588011.5,	87932. 87972. 88012. 87931.	<pre>(587991.2, (587914.3, (587951.2, (587931.5, (588089.7, (588236.2, (588236.2,</pre>	88280 88280 88280 88367 88365 88365 88280 88365 88309 883343 883343 883343 883343 883343 883343 883343 883343 883343 883343 883343 883365 883343 883365 88356565 88356565 88356565 88356565 8835656565 883565656565 8835656565656565656565656565656565656565
9.1); 9.1); 9.1); 9.1); 9.1); 9.1); struction HRA URBAN	CRETE CARTESIAN Y-COORD, ZELEV, (METERS)		(1.9000 (1.0000) (1.0000)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
58.0, 58.2, 58.2, 58.2, 58.2, 58.8, 58.0, 58.0, cocu-21 cons cupertino V FLGPOL UI	*** DIS((X-COORD,	58.2, 58.8, 57.6,	58.3 58.7, 56.5,	00.00,00,00,00,00,00,00,00,00,00,00,00,0	0.00,00,00,00,00,00,00,00,00,00,00,00,00	00000000000000000000000000000000000000
58.0, 58.2, 58.2, 58.2, 58.2, 58.2, 58.2, 58.0, 58.0, *** CO *** CO		~ ~ ~ ~			00000404	00000000000000000000000000000000000000
1131210.8, 11312210.8, 11312250.8, 1131250.8, 1131220.8, 1131220.8, 1131290.8, 1131290.8, 1131290.8, STON 19191 STON 14134 RegDFAULT		31290. 31310. 31310.	4131327.2, 4131327.2, 4131080.4, 4131080.4,	131095. 131095. 131095. 1311095.		13102 13169 13169 13176 13176 13173 13173 13107 13173 13173 13173 13173 13173 13173 13173 13104 13104 13104 13104
<pre>(587503.2; (587539.1; (587503.2; (587539.1; (587539.1; (587533.2; (587533.2; (587533.2; (587533.2; (587483.2; (587483.2; (587483.2; (587483.2; (587483.2; (587483.2; (587483.2; (587483.2; (587787877 - VER *** AERMET - VER *** MODELOPTS:</pre>		87539. 87503. 87539.	(587539.6, (587539.6, (587951.5, (587991.5,	87915. 87952. 87992. 87992.		88294 88294 8343 8344 8343 8343 8343 88150 88150 882360 882360 882360 8367 7572 7570 7551

41310/02, 57.8, 57.8, 1.5); (587603.0, 4131060.3, 58.2, 58.2, 4131048.4, 57.8, 57.4, 57.1, (587603.0, 4131053.9, 58.2, 58.2, 4131047.8, 57.4, 57.4, 6.1); (587650.3, 4131053.9, 58.2, 57.6, 57.3, 57				C L	([[Ĺ			c L	([Ţ
<pre>4131048.4, 58.1, 58.1, 6.1); (557603.0, 4131053.9, 58.2, 58.2, 4131048.8, 57.4, 57.4, 6.1); (557657.4, 4131060.1, 58.2, 58.2, 4131067.8, 57.4, 6.1); (557657.4, 4131060.1, 58.2, 57.9, 4131070.5, 57.8, 57.9, 6.1); (55767.4, 4130993.3, 59.0, 4130993.3, 58.6, 58.8, 1.5); (587667.4, 4130993.3, 58.9, 58.9, 4130993.3, 58.8, 1.5); (587667.4, 4130993.3, 58.9, 58.9, 4130993.3, 58.7, 1.5); (587667.4, 4130993.3, 58.9, 58.9, 4131093.3, 58.7, 58.7, 1.5); (587667.4, 4130993.3, 58.9, 58.9, 4131093.3, 58.7, 58.7, 1.5); (587667.4, 4130993.3, 58.9, 58.9, 4131093.3, 58.7, 58.7, 1.5); (587667.4, 4131013.3, 58.5, 58.9, 58.9, 4131013.3, 58.7, 58.7, 1.5); (587667.4, 4131013.3, 58.5, 58.9, 58.9, 4131013.3, 58.7, 58.7, 1.5); (587667.4, 4131013.3, 58.5, 58.5, 58.5, 4131013.3, 58.4, 58.4, 1.5); (587647.4, 4131013.3, 58.3, 58.5, 58.5, 58.5, 58.5, 58.5, 58.5, 58.5, 58.6, 59.1, 28.5, 58.5, 58.5, 58.5, 58.5, 58.5, 58.5, 58.5, 58.7, 58.7, 58.7, 58.7, 58.3, 4131013.3, 58.4, 57.5, 57.3, 57.3, 4130051.1, 57.5, 57.3, 57.3, 57.3, 4130051.1, 57.2, 57.3, 57.3, 57.3, 4130051.1, 57.2, 57.3, 57.</pre>		(c.880/8c)		, 8.74	, 8 . / C	1.5);	(587,562.3 ,	4131060.3,	.0.85	58.U ,	6.1);
<pre>4131048.8, 57.8, 57.8, 6.1); (587650.4, 4131060.1, 58.2, 58.2, 4131047.8, 57.4, 57.4, 6.1); (587588.7, 4131070.5, 57.9, 57.9, 4131070.5, 57.8, 57.8, 6.1); (58767.4, 4131070.5, 57.9, 58.9, 4130993.3, 59.1, 59.1, 1.5); (587677.4, 4130933.3, 58.9, 58.9, 4130993.3, 58.8, 1.5); (587677.4, 4130933.3, 58.9, 58.9, 4130993.3, 58.8, 1.5); (587677.4, 4131013.3, 58.9, 58.9, 4130993.3, 58.8, 1.5); (587607.4, 4131013.3, 58.9, 58.9, 4130993.3, 58.8, 1.5); (587607.4, 4131013.3, 58.5, 4130993.3, 58.8, 1.5); (587607.4, 4131013.3, 58.5, 4130993.3, 58.8, 1.5); (587607.4, 4131013.3, 58.5, 4130993.3, 58.8, 1.5); (587607.4, 4131013.3, 58.5, 58.7, 58.5, 4130993.3, 58.8, 58.7, 1.5); (587607.4, 4131013.3, 58.5, 413093.3, 58.4, 58.4, 1.5); (587647.4, 4131013.3, 58.3, 58.3, 4131013.3, 58.4, 58.4, 1.5); (587913.0, 4130013.3, 58.3, 58.3, 4130051.1, 57.5, 57.3, 1.5); (587933.0, 4130051.1, 57.3, 57.3, 4130051.1, 57.5, 57.3, 1.5); (587933.0, 4130051.1, 57.3, 57.3, 4130051.1, 57.2, 57.3, 1.5); (587933.0, 4130051.1, 57.2, 57.3, 4130051.1, 57.2, 57.3, 77.2, 57.3, 57.3, 57.3, 4130051.1, 57.2, 57.3, 77.2, 57.3,</pre>		(587572.8,		58.1,	58.1,	6.1);	(587603.0,	4131053.9,	58.2,	58.2,	6.1);
<pre> 413106718, 57.4, 57.4, 6.1); (587588.7, 4131066.8, 57.6, 57.6, 57.6, 57.9, 57.9, 57.9, 57.9, 57.9, 57.9, 57.9, 57.9, 57.9, 57.9, 57.9, 57.9, 57.9, 57.9, 57.9, 57.9, 59.0, 4131010.5, 57.8, 57.1, 1.5); (587667.4, 4131003.3, 58.9, 58.9, 58.7, 4131033.3, 58.8, 7, 1.5); (587667.4, 4131013.3, 58.9, 58.7, 58.3, 58.3, 58.3, 58.4, 59.1, 1.5); (587647.4, 4131013.3, 58.3, 58.3, 58.3, 58.3, 4130013.3, 58.4, 58.4, 1.5); (587647.4, 4131013.3, 58.3, 58.3, 58.3, 58.3, 58.4, 59.1, 1.5); (587933.0, 4130951.1, 57.3, 58.3, 57.3, 5</pre>		(587626.7,		57.8,	57.8,	6.1);	(587650.4,	4131060.1,	58.2,	58.2,	6.1);
<pre>4131044.8, 58.6, 58.6, 6.1); (587618.5, 4131070.5, 57.9, 57.9, 57.9, 4131070.5, 57.8, 5.1); (587677.4, 4130933.3, 58.9, 58.9, 4131013.3, 58.7, 58.7, 1.5); (587677.4, 4130093.3, 58.7, 58.9, 4131013.3, 58.7, 58.7, 1.5); (587677.4, 4131013.3, 58.5, 58.9, 4131013.3, 58.7, 58.7, 1.5); (587677.4, 4131013.3, 58.5, 58.7, 4131013.3, 58.7, 58.7, 1.5); (587677.4, 4131013.3, 58.5, 58.7, 4131013.3, 58.7, 58.7, 1.5); (587677.4, 4131013.3, 58.5, 58.7, 4131013.3, 58.7, 58.7, 1.5); (587677.4, 4131013.3, 58.5, 58.5, 4131013.3, 58.7, 58.7, 1.5); (587677.4, 4131013.3, 58.5, 58.5, 4131013.3, 58.4, 58.4, 1.5); (587677.4, 4131013.3, 58.3, 58.3, 58.5, *** brickere cartestan receptors ** (x-coorb, Y-ccorb, ztheV, zth1L, zfLaG) (metres)</pre>		(587570.8,		57.4,	57.4,	6.1);	(587588.7,	4131066.8,	57.6,	57.6,	6.1);
 4131070.5, 57.8, 57.8, 6.1); (587567.4, 4130933.3, 59.0, 59.0, 4130933.3, 59.1, 59.1, 1.5); (587507.4, 4130933.3, 58.9, 58.9, 58.9, 58.9, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.7, 58.5, 55.5, 57.5, 57.5, 57.5, 57.5, 57.3, 57.		(587551.4,		58.6,	58.6,	6.1);	(587618.5,	4131070.5,	57.9,	57.9,	6.1);
<pre> 4130093.3, 59.1, 59.1, 1.5); (587607.4, 4130993.3, 58.9, 58.9, 58.7, 58.5, 413013.3, 58.4, 4131013.3, 58.5, *** ERSION 14134 ** *** COULT CONSTRUCTION HRA ERSION 1413013.3, 58.4, 1.5); (587953.0, 4130951.1, 57.3, 57.2</pre>		(587638.5,		57.8,	57.8,	6.1);	(587567.4,	4130993.3,	59.0,	59.0,	1.5);
<pre> 4130993.3, 58.8, 58.8, 1.5); (587647.4, 413093.3, 58.7, 58.5, 4131013.3, 58.7, 58.7, 1.5); (587607.4, 4131013.3, 58.5, 58.5, ERSION 19191 *** *** COCU-21 CONStruction HRA ERSION 14134 *** *** CUCU-21 CONStruction HRA ERSION 14134 *** *** COCU-21 CONSTRUCTION HRA ERSION 14134 *** (UPERTINO RegDFAULT CONC ELEV FLGPOL URBAN (*** DISCRETE CARTESIAN RECEPTORS *** (x-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (METERS) (*131013.3, 58.4, 1.5); (587913.0, 4131013.3, 58.3, 57.2, 57.2,</pre>		(587587.4,		59.1,	59.1,	1.5);	(587607.4,	4130993.3,	58.9,	58.9,	1.5);
<pre>, 4131013.3, 58.7, 58.7, 1.5); (587607.4, 4131013.3, 58.5, 58.5, 58.5, 58.5, 58.5, 58.5) ERSION 19191 *** *** COU-21 Construction HRA ERSION 14134 *** *** CUPERTINO ERSION 14134 *** *** CUPERTINO RegDFAULT CONC ELEV FLGPOL URBAN RegDFAULT CONC ELEV FLGPOL URBAN (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (METERS) (15); (5879313.0; 4130013.3; 58.3; 57.3; 57.3; 57.3; 57.3; 57.2;</pre>		(587627.4,		58.8,	58.8,	1.5);	(587647.4,	4130993.3,	58.7,	58.7,	1.5);
ERSION 19191 *** *** COCU-21 Construction HRA ERSION 14134 *** *** CUPERTINO RegDFAULT CONC ELEV FLGPOL URBAN RegDFAULT CONC ELEV FLGPOL URBAN (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (METERS)		(587587.4,	4131013.3,	58.7,	58.7,	1.5);	(587607.4,	4131013.3,	58.5,	58.5,	1.5);
ERSION 14134 *** Cupertino RegDFAULT CONC ELEV FLGPOL URBAN RegDFAULT CONC ELEV FLGPOL URBAN *** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (METERS) (METERS) (METERS) (METERS) (METERS) (METERS) (1.5); (587647.4, 4131013.3, 58.3, 58.3, 51.5, 57.5, 57.5, 57.5, 57.5, 57.5, 57.5, 57.5, 57.3, 57.3, 57.3, 57.3, 57.3, 57.3, 57.3, 57.3, 57.3, 57.3, 57.2,	* * *			* * *	CU-21 Const	ruction HRA				* * *	11/07/21
RegDFAULT CONC ELEV FLGFOL URBAN *** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (X-1013.3, 58.4, 15); (S8.3, 58.3, 58.3, 58.3, 58.3, 58.3, 58.3, 59.1; (METERS) (METERS) (METERS) (METERS) (METERS) (A131013.3, 59.1, 59.1, 1.5); (S87913.0, 413013.3, 58.3, 58.3, 58.3, 57.2, 57.2,	* * *			*** ***	upertino					* * *	23:35:55
RegDFAULT CONC ELEV ELEN					4						PAGE 63
*** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (A131013.3, 58.4, 58.4, 1.5); (BETERS) (MATERS) (MATERS) <td>***</td> <td>MODELOPTs:</td> <td>RegDFAULT</td> <td></td> <td></td> <td>BAN</td> <td></td> <td></td> <td></td> <td></td> <td></td>	***	MODELOPTs:	RegDFAULT			BAN					
*** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (K-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (METERS) (131013.3, 58.4, 58.4, 1.5); (5, 59.1, 59.1, 59.1, 1.5); (6, 59.1, 57.5, 1.5); (7.2, 57.5, 1.5); (7.3, 57.3, 57.3, 4130951.1, 57.3, 57.3, 57.3, 4130951.1, 57.3, 57.3, 4130951.1, 57.3, 57.3, 57.3, 4130951.1, 57.3, 57.3, 57.3, 4130951.1, 57.3, 57.3, 57.3, 4130951.1, 57.3, 57.3, 57.3, 57.3, 57.3, 57.3, 57.3, 57.3, 57.3, 57.2, 57											
4131013.3, 58.4, 58.4, 1.5); (587647.4, 4131013.3, 58.3, 58.3, 58.3, 4131029.6; 59.1, 57.5, 57.5; 57.5, 57.5, 57.5, 57.5, 57.5, 57.5, 57.5, 57.5, 57.5, 57.5, 57.5, 57.5, 57.5, 57.5, 57.3, 4130951.1, 57.3, 57.3, 57.3, 4130951.1, 57.3, 57.3, 57.3, 4130951.1, 57.3, 57.3, 57.3, 4130951.1, 57.3, 57.3, 57.3, 4130951.1, 57.3, 57.3, 57.3, 4130951.1, 57.3, 57.3, 57.3, 4130951.1, 57.3, 57.3, 57.3, 57.3, 57.3, 57.3, 57.3, 57.3, 57.3, 57.3, 57.3, 57.3, 57.3, 57.3, 57.2, 5					*** DIS (X-COORD,	The cartesian Y-Coord, Zelev	щ				
4131013.3, 58.4, 58.4, 1.5); (587647.4, 4131013.3, 58.3, 58.3, 58.3, 4131029.6, 59.1, 57.5, 57.5, 57.5, 57.5, 57.5, 57.5, 57.5, 57.5, 57.5, 57.5, 57.3, 57.2,						(NATITIN)					
4131029.6, 59.1, 59.1, 1.5); (587913.0, 4130951.1, 57.5, 57.5, 4130951.1, 57.5, 57.5, 1.5); (587953.0, 4130951.1, 57.3, 57.3, 4130951.1, 57.2, 57.2, 1.5); (587993.0, 4130951.1, 57.1, 57.1, 4130951.1, 57.2, 57.2, 1.5); (587993.0, 4130951.1, 57.1, 57.1, 4130951.1, 56.8, 56.8, 1.5); (587993.0, 4130971.1, 57.3, 57.3, 4130951.1, 57.3, 57.3, 1.5); (587953.0, 4130971.1, 57.2, 57.2, 4130971.1, 57.3, 57.3, (587953.0, 4130971.1, 57.2, 57.2,		(587627.4,	4131013.3,	58.4,	58.4,	1.5);	(587647.4,	4131013.3,	58.3,	58.3,	1.5);
4130951.1, 57.5, 57.5, 1.5); (587953.0, 4130951.1, 57.3, 57.3, 4130951.1, 57.2, 57.2, 1.5); (587993.0, 4130951.1, 57.1, 57.1, 4130951.1, 56.8, 56.8, 1.5); (587913.0, 4130971.1, 57.3, 57.3, 4130951.1, 56.8, 56.8, 1.5); (587913.0, 4130971.1, 57.3, 57.3, 4130971.1, 57.3, 57.3, 1.5); (587953.0, 4130971.1, 57.2, 57.2,		(587544.2,		59.1,	59.1,	1.5);	(587913.0,	4130951.1,	57.5,	57.5,	1.5);
4130951.1, 57.2, 57.2, 1.5); (587993.0, 4130951.1, 57.1, 57.1, 4130951.1, 56.8, 56.8, 1.5); (587913.0, 4130971.1, 57.3, 57.3, 4130971.1, 57.3, 57.3, 1.5); (587953.0, 4130971.1, 57.2, 57.2,		(587933.0,		57.5,	57.5,	1.5);	(587953.0,	4130951.1,	57.3,	57.3,	1.5);
4130951.1, 56.8, 56.8, 1.5); (587913.0, 4130971.1, 57.3, 57.3, 4130971.1, 57.3, 57.3, 1.5); (587953.0, 4130971.1, 57.2, 57.2,		(587973.0,	4130951.1,	57.2,	57.2,	1.5);	(587993.0,	4130951.1,	57.1,	57.1,	1.5);
4130971.1, 57.3, 57.3, 1.5); (587953.0, 4130971.1, 57.2,		(588013.0,	4130951.1,	56.8,	56.8,	1.5);	(587913.0,	4130971.1,	57.3,	57.3,	1.5);
		(587933.0,		57.3,	57.3,	1.5);	(587953.0,	4130971.1,	57.2,	57.2,	1.5);

55.0 57.0 56.9 56.9 57.0 56.5 57.0 4130971.1, 4130991.1, 4131015.9, 4131015.9, 4131031.1, 4131031.1, 4131031.1, 4131051.1, 4131051.1, 4131027.7, 4131027.7, 4131027.1, 41310260.9, 4131050.3, 4131050.3, 4131050.3, 4131050.3, 4131050.3, 4131055.3, 4131055.3, 4131725.3, 4131725.3, , о , б 4131736.(4131785.3 4131734. 5587993.0, 5587993.0, 5587993.0, 5587993.0, 5587993.0, 5587993.0, 5587973.0, 5588013.0, 5588013.0, 5588013.0, 5588013.0, 5588049.4, 5588049.4, 5588049.4, 5588143.0, 5588145.0, 5588145.0, 5588236.5, 5588236.5, 5588236.1, 588234.2, 588187.2, 588301.5, 588259.0, 588231.8, 588187.2, e is the indicate indicate indicate indicate indicate indicate indicate indicate 587973.0, 587973.0, 587913.0, 588013.0, 5879513.0, 587952.4, 587993.0, 5887952.4, 5887993.0, 5887993.0, 5887993.0, 5887993.0, 5887993.0, 588194.6, 588194.6, 5881988.3, 588188.3, 588274.4, 588236.9, 588187.2, 588187.2, 588187.2, 588282.1, 588282.1, 588187.2, 588187.2, 588187.2, 588187.2,

Unit Emission Rates (1 g/s) Model Output

1.5); 1.5);	1.5);	1.5);	1.5);	1.5);	1.5);	1.5);	1.5);	1.5);	1.5);	1.5);	11/07/21	23:35:55	PAGE 64				1.5);	1.5);	1.5);	1.5);	1.5);	1.5);	1.5);	1.5);	6.1);	6.1);	6.1);	6.1);
50.7, 50.5,	50.5,	50.5,	50.4,	50.2,	50.0,	58.9,	58.8,	59.0,	59.0,	58.6,	* * *	* * *					58.6,	∞	8	58.2,	4.		58.2,		8		58.1,	58.3,
50.7 , 50.5,	50.5,	50.5,	50.4,	50.2,	50.0,	58.9,	58.8,	59.0,	59.0,	58.6,							58.6,	58.6,	58.5,	58.2,	54.3,	58.2,	58.2,	57.8,	58.6,	58.6,	58.1,	58.3,
4131783 4131780	, 4131825.3,	4131823	4131820	4131865	4131863	4130952	4130952	4130972	4130996	, 4130992.3,					* (U			, 4131016.4,					, 4130991.5,					
(588259.5 (588232.8	(588187.2,	(588259.5	(588232.8	(588187.2	(588259.5	(587793.1	(587833.1	(587748.4	(587710.5	(587793.1					N RECEPTORS *** /, ZHILL, ZFLAG)		87833	8773(87770	87813	88280	87882	(587882.3,	87879	87859	87859	87859	
1.5); 1.5);	1.5);	1.5);	1.5);	1.5);	1.5);	1.5);	1.5);	1.5);	1.5);	1.5);	ruction HRA			URBAN	*** DISCRETE CARTESIAN (X-COORD, Y-COORD, ZELEV,	(METERS)	1.5);	1.5);	1.5);	1.5);	1.5);	1.5);	1.5);	1.5);	1.5);	6.1);	6.1);	6.1);
50.7 , 50.7 ,	50.6,	50.5,	50.4,	50.3,	50.2,	50.0,	58.8,	59.0,	58.9,	58.7,	COCU-21 Construction	Cupertino		FLGPOL UR	*** DIS (X-COORD,		58.6,	58.7,	58.6,	58.3,	57.1,	58.6,	58.6,	58.1,	58.3,	58.2,	58.2,	57.8,
50.7 , 50.7 ,	0	0	$^{\circ}$	0	0	0	∞	σ	00	∞		*** *** Cn		CONC ELEV			∞	∞	∞	∞	\sim	∞	58.6,	∞	∞	∞	∞	\sim
4131760.3, 4131805.3,	4131803.0,	800	4131845.3,	843	4131840.3,	4131860.3,	4130952.3,	4130972.0,	4130972.0,	4130996.1,	VERSION 19191	VERSION 14134		RegDFAULT			4130992.3,	4131016.4,	Q	4131012.3,	m	4130955.6,	4130975.6,	31012	954.	4130971.5,	4130991.5,	4131012.8,
(588232.8, (588187.2,	(588259.5,	88232.	(588187.2,	(588259.5,	(588232.8,	(588232.8,	(587813.1,	(587728.4,	(587768.4,	(587763.3,	*** AERMOD - VEH	*** AERMET - VEH		*** MODELOPTs:			(587813.1,	(587710.5,	(587750.5,	(587793.1,	(587778.3,	878	878	. 60	(587881.6,	87882.	(587882.3,	(587879.8,

*** AER *** AER	AERMOD - VERSION AERMET - VERSION		19191 *** 14134 ***		*** CO(*** COCU-21 Co *** Cupertino	*** COCU-21 Construction HRA *** Cupertino	* * * * *	11/07/21 23:35:55 5765 65
4 MOD	*** MODELOPTs:	RegDFAULT		CONC	ELEV	FLGPOL *** 1	ELEV FLGPOL URBAN *** METFOROLOGICAL DAYS SELECTED FOR PROCESSING ***		

** METEOROLOGICAL DAYS SELECTED FOR PROCESSING ** (1=YES; 0=NO)

			\leftarrow	\leftarrow	\leftarrow		
			-		\leftarrow		
					-		
	\vdash	\vdash				\vdash	
-				-	н,		
	1 1	Ч	Ч	\leftarrow	Ч	Ч	
		\leftarrow	Ч		Ч	\leftarrow	
Ч	Ч	Ч	Ч	Ч	Ч	Ч	
Ч	\leftarrow	\leftarrow	\leftarrow	Ч	Ч	\leftarrow	
	\vdash	\vdash	\leftarrow		\leftarrow	\vdash	
		\vdash		\vdash		\vdash	
ч	\vdash	\vdash				\vdash	
	\vdash	\vdash				\vdash	
	\vdash	\vdash				\vdash	
	\vdash	\vdash	\vdash		\vdash	\vdash	
	\leftarrow		\leftarrow	\vdash	\leftarrow		
		\vdash		\vdash	н,	\vdash	
1 1		1	-	1	1		
	μ		Ч			\vdash	
Ч	Ч	Ч	Ч	Ч	Ч	Ч	
Ч	Ч	Ч	Ч	Ч	Ч	Ч	
	Ч	Ч	Ч	Ч	Ч	Ч	
-	Ч	Ч	-	\vdash	\vdash	Ч	
	Ч					Ч	
Ч	\vdash	\vdash				\vdash	
	\vdash	\vdash	\leftarrow	\leftarrow	\leftarrow	\vdash	
	\vdash	\vdash				\vdash	
-	\vdash	\vdash				\vdash	
	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	
	\vdash	\vdash				\vdash	
	\vdash	\vdash				\vdash	
		\leftarrow	\leftarrow	\vdash			-
-				-	-		-
 	 	 	 	 	 	, , , ,	
		-		-			-
Ч	-	-	-	-	Ч	-	-
	\vdash	\vdash					
	Ч	-	-	-	-	\vdash	
-	Ч	Ч		Ч	Ч	Ч	
-	Ч	Ч	Ч	Ч	Ч	Ч	
			Ч				
	\vdash	\vdash	-	\vdash	\vdash	\vdash	-
				-	-		
	\vdash	\vdash		\vdash	\vdash	\vdash	-
\leftarrow	\leftarrow						
-1 -1	1	н Н		-		-	

NOTE: METEOROLOGICAL DATA ACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT IS INCLUDED IN THE DATA FILE.

*** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES *** (METERS/SEC)

1.54, 3.09, 5.14, 8.23, 10.80,

11/07/21 23:35:55 PAGE 66		14134	LH	000000000000000000000000000000000000000
* * * * * *		Met Version:	HT REF TA 	00000000000000000000000000000000000000
			- DM -	201 201 201 201 201 201 201 201 201 201
	* * *		REF WS	000000000000000000000000000000000000
	AL DATA	0 /wso_ap	ALBEDO 	
	METEOROLOGICAL	23230 2812AND/W 2009	BOWEN A	
	Гщ	on no.: Name: Year:	0 2	<i>илии</i> инии 00000000000000000000000000000000
ion HRA	24 HOURS O	air statio	M-0 LEN	
Construction o L URBAN	FIRST	Upper :	ZIMCH	
U-21 Con ertino FLGPOL	O THE	90.SFC 90.PFL	ZICNV	
Cup EV EV	* UP T	9m\74509 9m\74509	DT/DZ 	\circ
<pre>CONC EL </pre>	* *		* M 	I ののののののののののののののののののののの
191 * 134 * ULT		t data - t data - 23244 UNKNOWN 2009	data U*	\circ
g DF		···\me FREE FREE FREE FREE no.: Name: Year:	scalar H0 	
TS: VE		ile: ile: ormat: tation	rs of HR 	00000000000000000000000000000000000000
AERMOD AERMET MODELOP		00000	л 1 Д 1 Д 1 Д	
*** AI *** AI *** M(Surfac Profil Surfac Surfac	rst MO	0 0

First hour of profile data YR MO DY HR HEIGHT F WDIR WSPD AMB_TMP sigmaA sigmaW 09 01 01 01 10.0 1 1. 2.86 282.6 99.0 -99.00 -99.00

F indicates top of profile (=1) or below (=0)

	1 g/s)
Model Output	Unit Emission Rates (

*** 11/07/21	*** 23:35:55	PAGE 67	
*** COCU-21 Construction HRA	*** Cupertino		ELEV FLGPOL URBAN
*** AERMOD - VERSION 19191 ***	*** AERMET - VERSION 14134 ***		*** MODELOPTs: RegDFAULT CONC

*** THE PERIOD (43872 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ONSITE INCLUDING SOURCE(S): 1 , ,

*** DISCRETE CARTESIAN RECEPTOR POINTS ***

* *	CONC		.0691	•	.0249	0.03484	.0448	0.02777	.038	0.04277	.0379	.0341	.0424	.03	.0336	•	.0392	.0482	2.25543	.5321	.5290	.4930	.7839	.7471	.7604	.0978	.911	.0467	•	0.07541	.052	0.06674	0.08639	0.08671	Ч.	.0965	0	0.11128
	Y-COORD (M)		131374	31374.6	31190.8	1193.8	1193.8		4131210.81	31230.8	31250	31270.8	31270.8	31290.8	31310.8	131	31327.2	1327	31080.4	31080	31080.4	1095.7	31095.7	31095	31111.6	1111.6	31131.3	31374.6	4131374.67	4131374.67	1414	1414.	4131414.67	4131344.92	31344.9	3136	31357.7	4131384.92
IN MICROGRAMS/M**3	X-COORD (M)	 587495.6	87535.6	57	87448.8	503.2	87539.1	87468.8	87523.2	587539.13	87523.2	87503.2	87539.1	87523.2	87483.2	87523.2	87483.7	87523.7	87931.	87971.5	88011.5	87932.1	87972.1	88012.1	87931.1	87991.1	87914.3	87495.6	87535.6	8757	87475.6	87515.6	87555.6	8762	665.5	87625.	87644.6	587625.58
** CONC OF OTHER	CONC		.061	.078	.1038	0.02806	.0398	.0247	0.03426	.0437	.0338	.0423	.038	.031	0.04331	.03	.0455	.0433	.052	.4235	.5679	.2927	.6715	.8094	.5331	.9592	.0119	.0420	.0521	.0660	Õ.	.059	.0756	0.10001		.0881	\sim	.1016
	OORD (M)	4131374.6	31374.	31374.6	31394.6	31190.	31193.8	31210.	31210.8	31210.8	31250.8	31250.8	31270.8	31290.8	31290.8	31310.8	31310.8	31327.2	31327.	31080.4	31080.4	31095.3	31095.7	5.7	31111.3	31111.6	31111.6	131374.6	131374.6		131394.6	131414.6	131414.6	4131414.67	131344.9	131364.9	13134.	1384.9
	X-COORD (M)	75.	87515.	87555.	87575.	87468.	87523.	87448.	87503.	87539.	87503.	87539.	87523.	87483.	87539.	87503.	87539.	87503.	87539.	87951.	87991.	87915.	87952.	87992.	87914.	87951.	88011.	87475.	87515.	87555.	87575.	87495.	87535.	87575.	87645.	87609.	8761	87609.

11/07/21 23:35:55 7277 60		* *				, 1 1 1 1																							
0.16050 0.11926 0.15826 ***		SOURCE GROUP: ONSITE		* *	CONC		0.03300	.042	.0263	.0367	0.04036	•	.0323	.0399	.0367	0.03150	.0385	.0341	.04	.1754	2.46359	4719	2.40090	.7041	9.		.0136	S	∼.
4131384.92 4131404.92 4131404.92		VALUES FOR SO	*** SLN		Y-COORD (M)	4131190.81	31193	31193	°°.	31210	31230	312	31270.8	31270	31290.8	31310.8	31310.8	31327.2	31327.2	31080.4	4131080.40	3108	4131095.70	31095.7	31095.7	1111.6	31111.6	311	4131131.63
587665.58 587609.66 587645.58 HRA		AVERAGE CONCENTRATION 1 ,	CARTESIAN RECEPTOR POINTS	IN MICROGRAMS/M**3	X-COORD (M)	587448.82	87503.2	87539.1	87468.8	587523.21	87539.1	587523.21	87503.2	87539.1	523.2	87483.2	87523.2		87523.7	Ľ. 5	87971.5	88011.5	932.1	87972.1	88012.1	931.1	87991.	87914.3	7951.1
0.13531 0.19981 0.13202 *** CoCU-21 Construction *** Cupertino	ELEV FLGPOL URBAN	THE PERIOD (43872 HRS) AV INCLUDING SOURCE(S): 1	*** DISCRETE CA	** CONC OF OTHER	CONC	0 	.0266	.0376	0.02357	.0324	0.04125	0.03200	•	0.03602	.0299	406	.034	.042	.0376	.0460	ς.	<u>ں</u>	2.19813	.5835	2.73763	2.42267	.8550	348	•
4131386.96 4131384.92 4131404.92 0N 19191 *** 0N 14134 ***	egDFAULT CONC	* * *			Y-COORD (M)	I	31190.	31193.8	131210.	31210.8	4131210.81	31250.	31250.8	270.	31290.8	31290.8	31310.8	310.8	31327.2	31327.2	4131080.40	31080.4	4131095.39	131095	31095.7	31111.3	131111.6	31111.	31131.6
587646.09 587685.58 587625.58 *** AERMOD - VERSION *** AERMET - VERSION	*** MODELOPTs: R				X-COORD (M)	 87665.5	87468.	87523.2	87448.8	87503.2	87539.1	87503.2	87539.1	87523.2	87483.2	87539.1	87503.2	87539.1	87503.7	87539.6	87951.5	87991.5	87915.2	879	87992.1	87914.3	951.1	88011.1	87931.1

I

Residential MER

3.38183

4131145.99

587931.50

0.04360 0.05439 0.06982 0.04881 0.04881 0.06158 0.07937 0.08140 0.11630

4131145.99 4131374.67 4131374.67 4131374.67 4131314.67 4131414.67 4131314.67 4131344.92 4131344.92 4131344.92

587971.50 587575.63 587575.63 587575.63 587475.63 587475.63 587575.63 587555.63 587625.58

3.45880 3.63226 0.038932 0.06132 0.06132 0.05470 0.05974 0.05964

4131133.82 4131145.99 4131374.67 4131374.67 4131374.67 41313394.67 41313141.67 4131414.67 4131414.67 41313144.92

587970.88 587951.50 587475.63 587515.63 587555.63 587555.63 587555.63 587575.63 587575.63 587575.63 587575.63

						11/07/21	23:35:55	PAGE 69
0.08972	0.10120	0.10238	0.14616	0.10892	0.14352	* * *	* * *	
4131364.92	4131357.78	4131384.92	4131384.92	4131404.92	4131404.92			
587625.58	587644.68	587625.58	587665.58	587609.66	587645.58			
0.08186	0.07451	0.09345	0.12377	0.18063	0.12035	*** COCU-21 Construction HRA	*** Cupertino	
4131364.92	4131345.04	4131384.92	4131386.96	4131384.92	4131404.92	19191 ***	14134 ***	
587609.66	587610.91	587609.66	587646.09	587685.58	587625.58	*** AERMOD - VERSION 19191 ***	*** AERMET - VERSION	

*** MODELOPTs: RegDFAULT CONC ELEV FLGPOL URBAN

* * * *** THE PERIOD (43872 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ONSITE INCLUDING SOURCE(s): 1 ,

*** DISCRETE CARTESIAN RECEPTOR POINTS ***

	* *	CONC	0.02298	0.03181	0.04072	0.02549	0.03539	0.03880	0.03449	0.03110	0.03836	0.03535	0.03024	0.03691	0.03259	0.03990	.1045	•	.4112	.3188	2.62427	2.61128	2.55571	.9253	.660	.1489	.2400	3.62352	0.90444	1.68331	0.60770	0.88442	0.08430
		Y-COORD (M)	4131190.81	4131193.87	4131193.87	4131210.81	4131210.81	4131230.81	4131250.81	4131270.81	4131270.81	4131290.81	4131310.81	4131310.81	31327	4131327.24	4131080.40	4131080.40	4131080.40	4131095.70	4131095.70	4131095.70	4131111.63	111.6	131.3	4131131.63	31145.9	145.9	4131072.12	4131050.25	07	4131025.64	4131734.27
CANTEGIAN NECELION FOI	IN MICROGRAMS/M**3	X-COORD (M)	587448.82	7503.2	587539.13	587468.82		87539.1		∞	87539.1	587523.21	587483.21		87483.7	587523.72	87931.5	87971.5	88011.5	∞	87972.1	88012.1	7931.1	587991.19	87914.3	∞	87931.5		588185.54	588089.65	8823	∞	588280.72
TTOCKETE	** CONC OF OTHER	CONC	0.17436	0.02577	0.03628	0.02279	0.03128	0.03967	0.03083	0.03834	0.03464	0.02883	0.03901	0.03318	.04	0.03588	0.04373	2.27747	4.	.11	2.50069	. 60	2.32976	2.75731	. 85	2.92219	.338	.488	0.89272	1.15055	.59	1.54364	0.09934
		Y-COOR	41	190.	193.	210.	21	210.	250.	31250.	270.	31290.	31290.	31310.	31310.	4131327.24	31327.	080.	3108	095.	095.	095.	4131111.32	111.	111.	131.6	31133.8	4131145.99	100.	50.	31100.	31023.	4131692.70
		0	587665.58	87468.8	87523.2	87448.8	87	87539.1	87503.2	87539.1	87523.2	87483.2	87539.1	87503.2	87539.1	87503.7	87539.6	87951.5	87991.5	87915.2	87952.1	87992.1	87914.3	87951.1	88011.1	87931.1	87970.8	87951.5	88188.7	88150.6	88238.3	88089.4	Ŀ.

									11/07/21	23:35:55	PAGE 70
0.05765	0.06300	0.07176	0.86291	1.64076	1.50840	0.09771	0.06883	0.06464	* * *	* * *	
4131813.21	4131769.36	4131736.28	4131072.12	4131050.25	4131023.52	4131692.70	4131768.68	4131768.01			
588309.06	588367.08	588365.28	588185.54	588089.65	588089.41	588294.76	588302.99	588347.52			
0.06979	0.06531	0.07385	0.84649	1.10835	0.57649	0.85058	0.08295	0.05696	*** COCU-21 Construction HRA	*** Cupertino	
4131768.68	4131768.01	4131738.76	4131100.64	4131050.99	4131072.12	4131025.64	4131734.27	4131813.21	1 19191 ***	14134 ***	
588302.99	588347.52	588343.91	588188.71	588150.68	588236.25	588183.43	588280.72	588309.06	*** AERMOD - VERSION 19191 ***	*** AERMET - VERSION	

*** MODELOPTS: RegDFAULT CONC ELEV FLGPOL URBAN

*** *** THE PERIOD (43872 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ONSITE INCLUDING SOURCE(S): 1 ,

*** DISCRETE CARTESIAN RECEPTOR POINTS ***

* *	CONC	0.07299	0.06771	0.09618	0.14758	0.08438	0.10948	0.06396	0.09098	0.13930	0.07965	0.10333	0.07471	0.10209	0.14131	0.10200	0.14302	1.03657	1.21626	1.32971	1.13782	1.33707	1.45680	1.47743	1.60280	1.38762	1.81236	1.69563	1.91212
	Y-COORD (M)	4131738.76	4131060.30	4131053.87	4131060.08	4131066.76	4131070.48	4131060.30	4131053.87	4131060.08	4131066.76	4131070.48	4130993.34	4130993.34	4130993.34	4131013.34	4131013.34	4130951.09	4130951.09	4130951.09	4130971.09	4130971.09	4130971.09	4130991.09	4130991.09	4131011.09	4131015.90	31	4131031.09
IN MICROGRAMS/M**3	X-COORD (M)	588343.91	587562.30	587602.98	587650.37	587588.74	587618.52	587562.30	587602.98	00	587588.74	587618.52	587567.41	587607.41	587647.41	587607.41	587647.41	587913.01	587953.01	587993.01	587913.01	587953.01	587993.01	587953.01	587993.01	587913.01	587993.01	793	587973.01
** CONC OF OTHER	CONC	0.06242	0.07103	0.07480	0.11955	0.07240	0.06281	0.13207	0.07077	0.11307	0.06831	0.05945	0.12457	0.08709	0.11989	0.08652	0.12056	0.06015	1.13383	1.28378	1.35203	1.24643	1.40893	1.25276	1.55505	1.61709	1.76515	429	1.77736
	Y-COORD (M)	4131769.36	4131736.28	4131048.45	4131048.79	31067.7	4131044.80	31070.4	4131048.45	4131048.79	4131067.77	4131044.80	4131070.48	4130993.34	4130993.34	4131013.34	4131013.34	4131029.58	30951.0	4130951.09	4130951.09	4130971.09	30971.0	4130991.09	4130991.09	4130991.09	4131015.90	31031.	4131026.80
	X-COORD (M)	588367.08	588365.28	87572	587626.70	570	587551.38	87638	587572.82	87626	87570	587551.38	87638.5	587587.41	87627.	87587.	87627	587544.18	587933.01	∞	588013.01	587933.01	587973.01	587913.01	587973.01	588013.01	587973.01	879	587952.43

1.95731 1.90108 2.13724 2.15407 1.81111 1.49451 1.49451 1.15241 1.02241	1.01033 0.60749 0.46323
4131031.09 4131051.09 4131051.09 4131051.09 4131027.68 4131027.68 4130977.82 413030.15 4130976.58	4130960.92 4131050.35 4131067.65
588013.01 587933.01 587973.01 588013.01 588049.44 588049.44 588049.14 588145.04 588145.04	588142.98 588236.53 588272.79
1.95885 1.72661 1.98863 2.17912 1.96303 1.62463 1.62463 1.09682 0.8535	0.81673 0.82029 0.46162
4131031.09 4131051.09 4131051.09 4131046.80 4131046.86 41310046.86 4131002.96 4131002.35 4131002.37	4130984.41 4130960.92 4131050.76
587993.01 587913.01 587952.43 588049.88 588049.88 588049.85 588144.63 588144.63	588188.31 588182.13 588274.44

Model Output	it Emission Rates (1 g/s)
	Unit E

11/07/21	23:35:55	PAGE 71		* * *
* **	* * *			VALUES FOR SOURCE GROUP: ONSITE
*** AERMOD - VERSION 19191 *** *** COCU-21 Construction HRA	*** AERMET - VERSION 14134 *** *** Cupertino		*** MODELOPTS: RegDFAULT CONC ELEV FLGPOL URBAN	*** THE PERIOD (43872 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ONSITE INCLUDING SOURCE(S): 1 ,

*** DISCRETE CARTESIAN RECEPTOR POINTS ***

																													High School			
* *	CONC		0.10919	0.11607	0.10478	0.08118	0.08754	0.09117	769		0.07359	0.06413	0.05896	0.06167	0.05427			0.61841	0.32262	0.24218	0.50917	0.72065	0.30225	0.44386	0.65668	0.42085	0.95078	1.04208	1.13752	258	Γ.	0.93148
	Y-COORD (M)	4131033.04	4131688.71	4131688.78	(')	4131734.38	4131734.56	4131736.04	4131785.32	4131783.05	4131780.29	4131825.32	з.0	4131820.29	4131865.32	0.0	2.2	4130952.26	4130971.97	4130996.42	4130992.26	4130992.26	6.4	6.4	4131012.26	122.	4130971.55	4130991.55	4131012.81	30955.	30975.	4131012.81
IN MICROGRAMS/M**3	OOR	588271.97	588261.34	588234.20	88187	588301.45	588258.98	588231.84	588187.18	588259.45	88232.7	87.1	59.4	588232.79	87.1	60	587793.14	587833.14	587748.39	587710.47	587793.14	33.1	587730.47	587770.47	587813.14	1 58828	587882.33	587882.33	587879.81	87859.	87859.	587859.81
** CONC OF OTHER		0.60471	0.13198	0.11731	•	0.07828	0.09407	•	0.07655	•	0.07010	0.06412	0.06725	0.05889	0	0.05673	.0523	0.52855	•	0.38454	0.39240	0.60800	•	.365	0.54499		0.75984	•	10	.8756	.9114	0.99753
	OORD (M)	030.57	31685.3	705.3	31763.	735.2	31745.3	765.3	4131763.05	760.2			800.2	845.3	•	840.	860.2	952.2	971.9	971.9	30996.1	992.2	4.	016.	4131012.26	1103.	0955.	0975.5	4131012.81	30954.0	130971.5	4130991.55
	OOR		88187.1	88187.1	88282.1	88319.6	88187.	88187.1	88259.4	88232.7	88187.1	88259.4	88232.7	88187.1	88259.4	88232.7	88232.7	87813.1	87728.3	87768.3	87763.3	87813.1	87710.4	87750.4	87793.1	87778.	87859.3	878	87859.8	7881.	87882.3	587882.33

0.84026

587881.56 4130954.00

1.08657

4131012.81

587879.81

11/07/21 23:35:55 PAGE 72	TE *** L000005 L0000013 L000021																																
* * * * * *	CE GROUP: OFFSI , L0000004 , L0000012 , L0000020 , L000020		* *	NC		.9933	.2795	0.25192	5652	.3439	.5542	0.72774 0.72774	.7193	.9609	.0098	0.81635	•	• •	•	1.29178		1.40115	•	.4505	.5559	1.58315 2.02250	• •	98086	•	•	53	2.28431 2.64281	
	VALUES FOR SOURCE , L0000003 , L0000011 , L0000019	* * * * *		-COOR	-	31374.	31374.6	4131190.81 4131193 87	131193	31210.8	131210.8	4131250.81 4131250.81	131270.8	ω.	31290.8	131310.8	413131U.81 4131377 24	31327.2	31080.4	31080	4131080.40 /131095 70	31095	Γ.		31111	4131131.32	31374	131374	1414	4131414.67	31414.6	4131344.92 4131344.92	•
	CONCENTRATION 1 , L0000002 9 , L0000010 7 , L0000018 5 , L0000026	RECEPTOR POINTS	MI CROGRAMS / M* * 3	OORD (M)	587495.63	87535	87575.6	87503 2	7539	87468.8	87523.2	587523.21	87503.2	587539.13	87523	m	12.226/86 587483 72	87523	87931	587971.50	65079 11088	587972.13	88012.1	87931.1	87991.1	587914.32 507405 62	87535	87575.6	87475.6	87515.6	87555.6	587625.58 587665.58	•
ion HRA	AVERAGE L000000 L000000 L0000001 L000001	E CARTESIAN	IN		 																												
COCU-21 Construction Cupertino V FLGPOL URBAN	ERIOD (43872 HRS) DING SOURCE(S): , L0000008 , L0000016	*** DISCRETE	** CONC OF OTHER	NC		.7046	•	4.33577 0 30941	• •	.2737	.4780	9.62034 0.62034	.8218	•	•	•	1.03063 1.39143	. ~	•	1.26164		1.36737		4	4	1.56337	.4880	.8842	.7923	.9075	.51	4.62937 2.44223	•
ON 19191 *** *** (ON 14134 *** *** (RegDFAULT CONC ELEV	*** THE P INCLU 6 , L0000015 4 , L0000015 2 , L0000015			OORD (M)	4131374.67	4.	31374.6	4131394.67 4131190 81	31193.8	31210.8	31210.8	4131250.81 4131250.81	31250.8	31270.8	31290.8	31290.8	4131310.81 4131310 81	31327.2	31327.2	31080	4131080.40 /131095 30	31095.	131095.7	31111.3	31111.6	4131111.63 /12127/ 67	31374.	131374.	131	4131414.67	131414.	4131414.67 4131344.92	• • • • • • • • • • • • • • • • • • •
*** AERMOD - VERSION *** AERMET - VERSION *** MODELOPTs: Regi	L000000 L000001 L000002			X-COORD (M) Y	= = = = = = = = = = = = = = = = = = =	87515.63	87555.63	87468 87	523.21	87448.82	503.21	87503.21	87539.13	87523.21	87483.21	87539.13	87539 13	87503.72	87539.64	87951.50	8/991.50 87015 26	952.13	87992.13	87914.32	87951.19		87515.63	555.63	87575.63	87495.63	87535.63	587575.63 2 587645.58 2	· · · · · · · · · · · · · · · · · · ·

2.77098 2.75185	3.41820	3.95144	4.34599	4.63613
4131364.92 4131357.78	4131384.92	4131384.92	4131404.92	4131404.92
587625.58 587644.68	587625.58	587665.58	587609.66	587645.58
2.76444 2.26557	3.44395	3.74825	4.49149	4.31549
4131364.92 4131345.04	4131384.92	4131386.96	4131384.92	4131404.92
587609.66 587610.91	587609.66	587646.09	587685.58	587625.58

23:35:55 PAGE 73	~	<pre>*** L000005 L0000013 L0000013 L0000021 </pre>				1 1 1 1 1 1																						ential MER						
* * *		GROUP: <mark>OFFSIT</mark> L0000004 L0000012 L0000020 L0000020		* *	CONC	0.22371	.3948	0.52388	.3053	.5122	0.65899 0 66008	0.64911		.91		1.11695	•	1.16882	• •	•	∼.	1.33814	L.38003	1 48910	. 4.	5833	.6824	.78	. 69 1	0TCTC-7	2.J1000	.04		.01
		VALUES FOR SOURCE , L0000003 , L0000011 , L0000019	*** S		Y-COORD (M)	311	4131193.87		131210	31210	4131230.81 /131250 81	31270	4131270.81	4131290.81	31310	31310	4131327.24	4131080 40	4131080.40	31080.	31095.	•	4131095./U	21111	31131	131131	31145.	31145.	•	4131374.07 /13137/ 67	- 4 - 4 - 4	414.	•	•
		CONCENTRATION 11 , L0000002 19 , L000010 7 , L000018 15 , L000026	RECEPTOR POINTS	MICROGRAMS/M**3	X-COORD (M) Y	587448.82	∼.	87539.1	87468	87523.2	587539.13 587523 21	87503	87539	8752	87483	87523	587483.72	587931 50	87971	88011	87932.1	87972.1	52.2.1.2.13	87991 1	587914.32	87951	87931.5	87971	87495	787575 63	57475 87475	∞	87555	87625
0		AVERAGE L00000C L00000C L000001	E CARTESIAN	IN MICRO		' 																												
Cupertino	FLGPOL URBAN	ERIOD (43872 HRS) DING SOURCE(S): , L0000008 , L0000016	*** DISCRETE	** CONC OF OTHER	CONC	5.03362	•	0.46523			0.57895 0 56170	•	· ·		1.04295	<u>о</u>	L.25857	1. 53704	1.20472	•	•	•	1.30019 1.22220	•		1.54041	•	Ŀ.		2.U32U/ 2 13310		+ 00 - 00 	.17	3172
U *** ***	CONC ELEV	*** THE PEH INCLUD LO000007 L0000015			(M)	 	0.81	3.87	0.81	0.81	- 81 19	21	0.81	.81	ω.	.81	18.	17. 10	.40	0.40	5.39	5.70	./0	20. 69	1.63	.63	.82	5.99	4.67	4.0/	4.67	4.67	67	4 . 67
ION 14134	RegDFAULT	L0000006 L0000014 L0000022			Y-COORD	413140	413119	413119	413121	4131	4131210	41312	413127	413129	4131	4131	413131	413130	41	413108	413109	413109	4 1 3 1 0 9	7 T	413111	413113	41311	413114	413137	41010/	413139	413141	413141	413141
AERMET - VERSION	MODELOPTs:	ΑĂĂ			X-COORD (M)	 87665	87468	87523	448	87503	87503 87503	87539	87523	483	87539	87503	877539	nσ	87951	66	87915		20010	87951	88011	87931	87970	87951	87475.6	70/010/00 50/010/00	87575.6	87495.6	87535.6	575.6

2.35418 2.36066 2.72446 3.03633 3.24295 3.26111 ***	* * *
	×
4131364.92 4131357.78 4131384.92 4131384.92 4131404.92 4131404.92	
587625.58 587644.68 587625.58 587665.58 587609.66 587645.58	
2.38472 2.02224 2.91631 2.91431 3.33665 3.11499 *** COTT-21 Construction HDA	
4131364.92 4131345.04 4131384.92 4131386.96 4131384.92 4131404.92 10101 ***	14134 ***
587609.66 4 587610.91 4 587610.91 4 587646.09 4 587685.58 4 587685.58 4 587655.58 4	ABRMET - VERSION

*** MODELOPTs: RegDFAULT CONC ELEV FLGPOL URBAN

				•
* * *	L0000005	L0000013	L0000021	
GROUP: OFFSITE	, L0000004 ,	, L0000012 ,	, L0000020 ,	, L0000028 ,
VALUES FOR SOURCE GROUP: OFFSITE	, L0000003	, L0000011	, L0000019	, L0000027
	, L0000002	, L0000010	, L0000018	, L0000026
AVERAGE CON(L000001	, L0000009	, L0000017	, L0000025
PERIOD (43872 HRS) AVERAGE CONCENTRATION	INCLUDING SOURCE(S):	, L0000008	, L0000016	, L0000024
*** THE PERI	INCLUDIN	, L0000007	, L0000015	, L0000023
		L0000006	L000014	L0000022

*** DISCRETE CARTESIAN RECEPTOR POINTS ***

1 1 1

	* *	CONC	21030	0.37445	0.49979	0.28691	0.48651	0.62533	0.63031	0.60565	0.82900	0.85325	0.64677	1.02382	Γ.	1.26206	1.12510	1.19253	1.23400	-	1.28570	1.33186	1.31526	1.42840	1.42240	1.50529	1.59235	863	.75	1.03544
ккк S.T.N		Y-COORD (M)	4131190.81	4131193.87	4131193.87	4131210.81	4131210.81	4131230.81	4131250.81	4131270.81	4131270.81	4131290.81	4131310.81	4131310.81	4131327.24	4131327.24	4131080.40	4131080.40	4131080.40	4131095.70	4131095.70	4131095.70	4131111.63	4131111.63	4131131.32	4131131.63	4131145.99	4131145.99	072.1	4131050.25
ULSCRETE CARTESIAN RECEPTOR FOINTS	IN MICROGRAMS/M**3	X-COORD (M)	587448.82	87503.2	87539	87468	587523.21	587539.13	587523.21	87503.	587539.13	587523.21	87483	587523.21	7483	87523	87931	587971.50	88011	87932.1	587972.13	88012.1	587931.19	587991.19	587914.32		587931.50	87971.5	8818	588089.65
* * NISCRETE (** CONC OF OTHER	CONC	106	0.26125	0.44291	0.22677	0.41132	0.55124	0.52742	0.71655	0.72857	0.54925	0.97011	0.83712		1.03817	Δ.	1.16004		.17	.24	1.31523	1.27619	1.35190	1.44786	1.46520	1.57309	1.63684	.78	0.83867
		Y-COORD (M)	04.92	4131190.81	4131193.87	4131210.81	4131210.81	4131210.81	4131250.81	50.	•	4131290.81	4131290.81	4131310.81	0	4131327.24	327.	4131080.40	4131080.40	95.	4131095.70	4131095.70	4131111.32	4131111.63	4131111.63	4131131.63	4131133.82	4131145.99	100.	4131050.99
		X-COORD (M)	587665.58	87468.	587523.21	87448.	87503.	87539.	87503.	87539.	87523.	87483.	87539.	87503.	87539.	87503.	87539.	87951.	87991.	87915.	87952.	87992.	87914.	87951.	88011.	87931.	87970.	87951.	8188.	88150.

												11/07/21	23:35:55	PAGE 75
0.57993	0.68545	0.29391	0.18370	0.15022	0.16495	0.73349	1.01628	0.91813	0.28632	0.21483	0.16480	* * *	* * *	
4131072.12	4131025.64	4131734.27	4131813.21	4131769.36	4131736.28	4131072.12	4131050.25	4131023.52	4131692.70	4131768.68	4131768.01			
588236.25	588183.43	588280.72	588309.06	588367.08	588365.28	588185.54	588089.65	588089.41	588294.76	588302.99	588347.52			
0.59606	0.93555	0.29816	0.22134	0.16781	0.18547	0.76327	0.82254	0.56582	0.67177	0.28245	0.17950	*** COCU-21 Construction HRA	*** Cupertino	
4131100.64	4131023.52	4131692.70	4131768.68	4131768.01	4131738.76	4131100.64	4131050.99	4131072.12	4131025.64	4131734.27	4131813.21	19191 ***	14134 ***	
588238.36	588089.41	588294.76	588302.99	588347.52	588343.91	588188.71	588150.68	588236.25	588183.43	588280.72	588309.06	*** AERMOD - VERSION	*** AERMET - VERSION	

*** MODELOPTS: RegDFAULT CONC ELEV FLGPOL URBAN

		•	•	•
* * *	L0000005	L000013	L000021	• • • •
)FFSITE	14,	•		
GROUP: 0	L0000004	L0000012	L0000020	L0000028
SOURCE (03 ,	11 ,	19 ,	27 ,
ALUES FOR	, L0000003	, L0000011	, L0000019	, L0000027
ICENTRATION V.	, L0000002	, L0000010	, L0000018	, L0000026
AVERAGE CON	L000001	, L0000009	, L0000017	, L0000025
PERIOD (43872 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: OFFSITE ***	INCLUDING SOURCE (S):	, L0000008	, L0000016	, L0000024
*** THE PER	INCLUDI	, L0000007	, L0000015	, L0000023
		L000006	L000014	L0000022

*** DISCRETE CARTESIAN RECEPTOR POINTS ***

* *	CONC	0.18122	0.33977	0.40008	0.49309	0.40104	0.45983	0.31852	0.37873	0.46908	0.37517	0.43372	0.26716	0.32149	0.37761	0.34736	0.40785	0.67616	0.71875	0.74780	0.72961	0.77556	0.80645
	Y-COORD (M)	4131738.76	4131060.30	4131053.87	4131060.08	4131066.76	4131070.48	4131060.30	4131053.87	4131060.08	4131066.76	4131070.48	4130993.34	4130993.34	4130993.34	4131013.34	4131013.34	4130951.09	4130951.09	4130951.09	4130971.09	4130971.09	4130971.09
IN MICROGRAMS/M**3	X-COORD (M)	588343.91	587562.30	587602.98	587650.37	587588.74	587618.52	587562.30	587602.98	587650.37	587588.74	587618.52	587567.41	587607.41	587647.41	587607.41	587647.41	587913.01	587953.01	587993.01	587913.01	587953.01	587993.01
** CONC OF OTHER	CONC	0.14769	0.16184	0.34106	0.43533	0.37165	0.29843	0.49651	0.32100	0.41144	0.34498	0.28071	0.46932	0.29366	0.34928	0.31742	0.37763	0.26808	0.69834	0.73540	0.75563	0.75381	0.79282
	Y-COORD (M)	4131769.36	4131736.28	4131048.45	4131048.79	4131067.77	4131044.80	4131070.48	4131048.45	4131048.79	4131067.77	4131044.80	4131070.48	4130993.34	4130993.34	4131013.34	4131013.34	4131029.58	4130951.09	4130951.09	4130951.09	4130971.09	4130971.09
		õ	588365.28	587572.82	587626.70	587570.77	587551.38	587638.52	587572.82	587626.70	587570.77	587551.38	587638.52	587587.41	587627.41	587587.41	587627.41	587544.18	587933.01	587973.01	588013.01	587933.01	587973.01

0.84049 0.87354 0.85859 0.96918 0.96805 1.01895 1.04321	1.06214 1.11843 1.14290	1.01230 0.84114 0.78696	0.80901 0.69194 0.67066 0.56103 0.47882
4130991.09 413091.09 4131011.09 4131015.90 4131031.09 4131031.09 4131031.09	4131051.09 4131051.09 4131051.09	4131027.68 4130981.12 4130977.82	4131030.15 4130976.58 4131050.92 4131050.35 4131067.65
587953.01 587993.01 587913.01 587993.01 587933.01 587933.01 588013.01	587933.01 587973.01 588013.01	588049.44 588049.44 588095.18	588147.04 588147.10 588142.98 588236.53 588236.53 588272.79
0.79014 0.85950 0.88123 0.95377 0.95377 0.95614 0.97675 1.03572	1.02618 1.07049 1.13586	1.09894 0.91634 0.86223	U. / 5111 0. 63670 0. 61381 0. 59534 0. 46632
4130991.09 4130991.09 4130991.09 4131015.90 4131031.09 4131026.80 4131031.09	4131051.09 4131046.80 4131051.09	4131046.86 4131003.37 4131002.96	4131005.3/ 4131005.02 4130984.41 4130960.92 4131050.76
587913.01 587973.01 588013.01 587973.01 587913.01 587913.01 587952.43	587913.01 587952.43 587993.01	588049.88 588049.85 588092.71	588194.63 588190.37 588188.31 588182.13 588274.44

	(1 g/s)
Model Output	Unit Emission Rates

7/2 5:5	PAGE / D	*** L0000005 L0000013 																										High School			
* * * * *		RCE GROUP: OFFSITE , L000004 , L0000012 , L0000012 , L000020		* *	NC		0.54790	0	.2495	0.35623	0.66613 0.66613		•	<u>с</u>	0.24920	0.38900	0.20924	0.51308	0.56782	0.47077 0.47077	0.59156	0	•		195/9.U		.7378	0.80147	ц.		0./3300 0.61542
		VALUES FOR SOURCE 2 , L0000003 6 , L0000011 8 , L0000019	*** STN		OOR	 131033 121600	4131688.78	131725	131734	131734	4131736.04 4131785.32	4131783.05	0	131825	131823	4131865.32 4131865.32	131863	130952	~H ~	41309/1.9/	2	\sim	31016	ব' (-	4131012.20 4131100 13	30971	30991.5	4131012.81	<u>،</u>	30975.	4131012.81 4130954.00
HRA		AVERAGE CONCENTRATION L0000001 , L0000002 L0000009 , L0000010 L0000017 , L0000018 L0000025 , L0000026	CARTESIAN RECEPTOR POINTS	IN MICROGRAMS/M**3	X-COOR	588271 588271	588234.20	8187	8301	8258.9	588231.84 588187.18	588259.45	588232.79	588187.18	588259.45 E88259.70	588187.18	588259.45	587793.14	587833.14	587710.47	87793.1	87833.1	87730.4	87770.4	1.228/813.14	587882.3	87882.3	587879.81	87859.3	87859.3	587881.56 587881.56
*** COCU-21 Construction *** Cupertino	ELEV FLGPOL URBAN	<pre>IRIOD (43872 HRS) A ING SOURCE(S): L0000008 L0000016 L0000024 L0000024 </pre>	*** DISCRETE CA	** CONC OF OTHER	CONC	- 5435 .5435	1.03/03 0.98813	•	.2188	•	0.31768 0.31768	•	0.58625	•	.3491 	0.22869	•	•	· س	0.400// 0.51304	•	•	.5065	.5725	0.03891 0.01255 Dreschoo	.61118	•	0.76388		•	0.76944
19191 *** 14134 ***	RegDFAULT CONC	*** THE PE L0000006 , L0000001 L0000014 , L0000015 L0000022 , L0000023			Y-COORD (M)		4131705.32	31763.9	131735.2	с. С	4131765.32 4131763.05	31760.2	31805.3	131803.0	131800.2	843.0 843.0	31840.2	31860.2	130952.2	4130971.97	30996	30992.2	31016.4	31016	4131012.26 4131103 77	30955	130975.5	31012.	130954.0	130971.5	4131012.81 4131012.81
*** AERMOD - VERSION *** AERMET - VERSION	*** MODELOPTs: F	F00			X-COORD (M)	8236.94	0010/.1 88187.1	88282.1	88319.6	88187.1	588259.45 588259.45	88232.7	88187.1	88259.4	88232.7	88259.4	88232.7	88232.7	87813.1	87768 3	87763.3	87813.1	87710.4	87750.	ר ר	87859.3	87859.3	87859.8	87881.5	87882.	587872.33 587879.81

*** AERMOD - VERSION 19191 ***	** *** COCU-21 Construction HRA	***	11/07/2
*** AERMET - VERSION 14134 ***	** *** Cupertino	* * *	23:35:5
			PAGE
H H MODUIONO	UKEDATI TOADIA TA TA MANDA MITIKADA A		

ד חפרכד кедигаонт. NUDELOF'S TROUM *** THE SUMMARY OF MAXIMUM PERIOD (43872 HRS) RESULTS ***

IN MICROGRAMS/M**3

** CONC OF OTHER

* *

NETWORK GRI D- I D																				
		DC	DC	Д	Д	Д	DC	DC	DC	DC	DC	БС	DC	DC	DC	DC	ДС	DC	ДС	DC
ы О	6.10)	\neg	1	9.14)	-	6.10)	9.14)	6.10)	9.14)	9.14)	6.10)	6.10)	6.10)	6.10)	6.10)	6.10)	6.10)	6.10)	1.50)	6.10)
ZHILL, ZFLAG)		.0		0		6	•	•	56.28,	56.58,	 55.82,	55.94,	54.38,	54.54,	54.51,	55.51,	54.47,	54.66,	53.46,	55.97,
ZELEV,		.0	55.99,	0	6	6	56.02,	•	56.28,	56.58,	.00	55.94,	54.38,	54.54,	<u>ں</u>	55.51,		54.66,	4.	55.97,
PTOR (XR, YR,		45.9	31145.9	<u>с</u>		<u>о</u>	4131133.82,	4131131.63,	4131145.99 ,	4131131.63,	4131404.92,	4131404.92,	4131414.67,	4131414.67,	4131414.67,	4131384.92 ,	4131414.67,	4131404.92,	4131394.67,	4131404.92,
Ц	 R LOCATIC 71.50,	7951.50,	87971.50,	87951.50,	87970.88,	7931.50,	587970.88, 4	587951.19, '	587931.50, '	587951.19, '	587665.58, 4	587645.58, 4	587575.63, '	7555.63,	7535.63,	587685.58, '	587515.63, '	587609.66, '	587575.63, 4	587625.58,
AVERAGE CONC		.0	.62352 A	.48813 A	.45880 A	ς.	3.33845 AT (3.27094 AT (3.24002 AT (3.14891 AT (5.03362 AT (4.63613 AT (4.62937 AT (4.55381 AT (4.51039 AT (4.49149 AT (4.37324 AT (4.34599 AT (4.33577 AT (4.31549 AT (
		HIGHEST VALUE I	HIGHEST VALUE I	HIGHEST VALUE	HIGHEST VALUE I		7TH HIGHEST VALUE IS	8TH HIGHEST VALUE IS	9TH HIGHEST VALUE IS	10TH HIGHEST VALUE IS	1ST HIGHEST VALUE IS	2ND HIGHEST VALUE IS	3RD HIGHEST VALUE IS	4TH HIGHEST VALUE IS	5TH HIGHEST VALUE IS	6TH HIGHEST VALUE IS	7TH HIGHEST VALUE IS	8TH HIGHEST VALUE IS	9TH HIGHEST VALUE IS	10TH HIGHEST VALUE IS
GROUP ID	I I I NONSITE									1	OFFSITE									1

*** RECEPTOR TYPES:

GC = GRIDCART GP = GRIDPOLR DC = DISCCART DP = DISCPOLR

21 55 77

11/07/21 23:35:55 PAGE 78

*** AERMOD - VERSION *** AERMET - VERSION	N 19191 *** *** COCU-21 Construction HRA N 14134 *** *** Cupertino	* * * * * *
*** MODELOPTS: R(RegdFAULT CONC ELEV FLGPOL URBAN	
*** Message Summary	Summary : AERMOD Model Execution ***	
Summary (of Total Messages	
A Total of A Total of A Total of 1	<pre>0 Fatal Error Message(s) 0 Warning Message(s) 5496 Informational Message(s)</pre>	
A Total of 40	43872 Hours Were Processed	
A Total of 1,	14061 Calm Hours Identified	
A Total of	1435 Missing Hours Identified (3.27 Percent)	
**************************************	EROR MESSAGES ************************************	
**************************************	WARNING MESSAGES ******** *** NONE ***	

Appendix C. Construction Ris Calculations

Table C1 Residential MER Concentrations for Risk Calculations

Contaminant		Source	Model	Emission	MEIR	Total MEIR Conc.
			Output ¹	Rates ²	Conc.	Annual Average
			$(\mu g/m^3)$	(g/s)	$(\mu g/m^3)$	$(\mu g/m^3)$
(a)		(p)	(c)	(p)	(e)	(f)
Residential Receptors - Unmitigated	eptors - Un	umitigated				
DPM	2023	On-Site Emissions	3.76	1.21E-02	4.57E-02	4.57E-02
		Truck Route	1.78	3.30E-05	5.87E-05	
	2024	On-Site Emissions	3.76	1.31E-02	4.95E-02	4.95E-02
		Truck Route	1.78	1.81E-05	3.23E-05	
		Total L	Total DPM concentrations used for Cancer Risk and Chronic Hazard calculations	for Cancer Ris	sk and Chronic	: Hazard calculations
$PM_{2.5}$	2023	On-Site Emissions	3.76	1.12E-02	4.23E-02	4.23E-02
		Truck Route	1.78	3.14E-05	5.60E-05	
	2024	On-Site Emissions	3.76	1.24E-02	4.68E-02	4.68E-02
		Truck Route	1.78	1.72E-05	3.06E-05	
			Maximum Aı	Maximum Annual PM _{2.5} Concentration	oncentration	0.05
11 H . 34	- - -		TODOTA LACES TOT LOODOT			

Maximum Exposed Individual Resident (MEIR) UTM coordinates: 587971.50E, 4131145.99N

 $^{\rm 1}$ Model Output at the MEIR based on unit emission rates for sources (1 g/s).

² Emission Rates from Emission Rate Calculations (Appendix A - Construction Emissions).

Table C2 Residential MER Health Risk Calculations	
--	--

Chronic Hazards ³	RESP	(0)		9.14E-03	9.90E-03	0.019														
Chronic	REL	(μg/m ³)		5.0E+00																
Total Cancer Risk		per million (m)		3.1	5.5	8.6														
Carcinogenic Risks (by age bin)	0 < 2 years	per million (k)	-	2.58E+00	5.54E+00	Total														
Carcinogenic Ri (by age bin)	3rd Trimester	per million		5.04E-01																
age bin)	0 < 2 years	(mg/kg-day)	- - -	4.78E-05	5.18E-05		0 < 2 years 2021-2023	350	1090	1	1.0E-06	10	70	1.0E+06	0.85	ations (year)	0 < 2 years	0.42	0.84	1.26
Dose (by age bin)	3rd Trimester	(mg/kg-day) (mg/kg-day)		1.58E-05			3rd Trimester 0 < 2 years 2021 2021-2023	350	361	1	1.0E-06	10	70	1.0E+06	0.85	exposure durations (year)	3rd Trimester	0.25		0.25
	CPF	(mg/kg/day) ⁻¹ (f)		1.1E+00													Risk Scalar ²	0.67	0.84	1.51
	URF	(μg/m ³) ⁻¹ (e)		3.0E-04			71.50E, 4131145.99N OEHHA age bin exposure year(s)	ency (days/year)	inhalation rate (L/kg-day) ¹	inhalation absorption factor	conversion factor (mg/µg; $m^3/L)$	age sensitivity factor	averaging time (years)	per million	fraction of time at home	in	Construction Year	2023	2024	Total
Contaminant		(p)		DPM			M coordinates: 58797	exposure frequency	inhalation	inhalation a	conversion factor	age	avera		fraction	exposure durations per age bin	C			
Weight	Fraction	(c)	nitigated	1.00E+00			ant (MEIR) UT									exposure dı				
MEIR	Conc.	(μg/m ³) (b)	otors - Unn	4.57E-02	4.95E-02		lividual Reside	re Factors:				m Factors:							2	
Source		(a)	Residential Receptors - Unmitigated	2023 On & Off- 4.57E-02 1.00E+00	2024 Site		Maximum Exposed Individual Resident (MEIR) UTM coordinates: 587971.50E, OEHI expos	Dose Exposure Factors:				Risk Calculation Factors:								

T

¹ Inhalation rate taken as the 95th percentile breathing rates (OEHHA, 2015).

² Risk scalar determined for each year of construction to adjust receptor exposures to the exposure durations for each construction year (see App A - Construction Emissions). ³ Chronic Hazards for DPM using the chronic reference exposure level (REL) for the Respiratory Toxicological Endpoint.

Table C3 Day Care/High School MER Concentrations for Risk Calculations

Contaminant	T	Source	Model	Emission Rates ²	MER	Total MER Conc.
			Output ¹		Conc.	Annual Average
			$(\mu g/m^3)$	(g/s)	$(\mu g/m^3)$	$(\mu g/m^3)$
(-)		(b)				$(\mu g/m)$
(a) Preschool Rece	ntors I	(=)	(c)	(d)	(e)	
DPM	2023	On-Site Emissions	0.64	1.21E-02	7.75E-03	7.78E-03
DIWI	2023	Truck Route	0.91	3.30E-05	3.01E-05	7.70L-05
	2024	On-Site Emissions	0.64	1.31E-02	8.40E-03	8.42E-03
	2021	Truck Route	0.91	1.81E-05	1.65E-05	01122 00
	<u> </u>		Total DPM concentration	ons used for Cancer Risl	k and Chronic	Hazard calculations
PM _{2.5}	2023	On-Site Emissions	0.64	1.12E-02	7.18E-03	7.21E-03
2.5		Truck Route	0.91	3.14E-05	2.87E-05	
	2024	On-Site Emissions	0.64	1.24E-02	7.94E-03	7.95E-03
	- · - ·	Truck Route	0.91	1.72E-05	1.57E-05	
	·		Max	ximum Annual PM _{2.5} C	oncentration	0.008
Sunflower Learning	Center UTN	M coordinates: 587778.30E, 4		-10		
Cupertino High S	School Re	ceptors - Unmitigated				
DPM	2023	On-Site Emissions	1.14	1.21E-02	1.38E-02	1.38E-02
		Truck Route	0.80	3.30E-05	2.64E-05	
	2024	On-Site Emissions	1.14	1.31E-02	1.50E-02	1.50E-02
		Truck Route	0.80	1.81E-05	1.45E-05	
			Total DPM concentration	ons used for Cancer Risl		Hazard calculations
PM _{2.5}	2023	On-Site Emissions	1.14	1.12E-02	1.28E-02	1.28E-02
		Truck Route	0.80	3.14E-05	2.52E-05	
	2024	On-Site Emissions	1.14	1.24E-02	1.41E-02	1.42E-02
		Truck Route	0.80	1.72E-05	1.38E-05	
			Max	kimum Annual PM _{2.5} C	oncentration	0.014

High School MER UTM coordinates: 587879.81E, 4131012.81N

 1 Model Output at the MER based on unit emission rates for sources (1 g/s).

² Emission Rates from Emission Rate Calculations (Appendix A - Construction Emissions).

Table C4 Day Care/High School MER Health Risk Calculations

Source	MER	Weight	Contaminant			Dose (by	age bin)		enic Risks ge bin)	Total Cancer Risk	Chronic 1	Hazards ³
	Conc.	Fraction		URF	CPF	Day Care 2 < 9 years	High School 2 < 16 years	Day Care 2 < 9 years	High School 2 < 16 years		REL	RESP
	$(\mu g/m^3)$			$(\mu g/m^3)^{-1}$	(mg/kg/day)-1	(mg/kg-day)	(mg/kg-day)	per million	per million	per million	$(\mu g/m^3)$	
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(k)	(m)	(n)	(0)
Preschool Recept												
2023 On & Off	7.78E-03	1.00E+00	DPM	3.0E-04	1.1E+00	4.59E-06		1.39E-01		0.1	5.0E+00	1.56E-03
2024 Site	8.42E-03					4.96E-06		1.88E-01		0.2		1.68E-03
									Total	0.3		0.003
Cupertino High	School Rec	eptors - U	nmitigated									
2023 On & Off	1.38E-02	1.00E+00	DPM	3.0E-04	1.1E+00		3.55E-06		1.07E-01	0.1	5.0E+00	2.77E-03
2024 Site	1.50E-02						3.84E-06		1.45E-01	0.1		2.99E-03
									Total	0.3		0.006

	OEHHA a exposure			Day Care 2 < 9 years 2023-2023	High School 2 < 16 years 2023-2024
Dose Exposure Factors:	exposure frequency (day	s/year)		250	180
	8-hour inhalation rate (L/kg	-day) ¹		861	520
	inhalation absorption	factor		1	1
	conversion factor (mg/µg	; m ³ /L)		1.0E-06	1.0E-06
Risk Calculation Factors:	age sensitivity	factor		3	3
	averaging time	(years)		70	70
	per	million		1.0E+06	1.0E+06
	exposure durations per age bin	1		exposure dura	tions (year)
	Constructio	n Year	Risk Scalar ²	2 < 9 years	2 < 16 years
	20	23	0.67	0.67	0.67
	20	24	0.84	0.84	0.84
		Total	1.51	1.51	1.51

¹ Inhalation rate taken as the 8-hour 95th percentile breathing rates, Moderate Activity (OEHHA, 2015).

² Risk scalar determined for each year of construction to adjust receptor exposures to the exposure durations for each construction year (see App A - Construction Emissions).
 ³ Chronic Hazards for DPM using the chronic reference exposure level (REL) for the Respiratory Toxicological Endpoint.

APPENDIX C: Arborist Report

.....

Vallco Parkway 1 Campus Tree Inventory & Assessment With Protection Guidelines

19191 Vallco Parkway Cupertino, California

Prepared for: Apple Inc. One Apple Park Way Cupertino, CA 95014

Prepared by: Sam Oakley ISA Board Certified Master Arborist WE-9474B ISA Tree Risk Assessor Qualified ASCA Registered Consulting Arborist #556

2337 American Ave, Hayward, CA 94545 1993 East Bayshore Road, Redwood City, CA 94063 Office: (888) 969-8733 Cell: (925) 518-2028 SOAKLEY@ARBORWELL.COM

Introduction

Arborwell was retained to inventory the trees within the proposed scope of work at 19191 Vallco Parway in Cupertino, California. Please see Exhibit 1 for the inventory plan sheet with each tree's location identified numerically. In addition to the inventory, we were asked to provide tree protection guidelines based on individuals' on-site conditions. The inventory was performed in late November 2020. Included in this report is a map of the inventoried trees (Exhibit 1) and the tree inventory matrix (Exhibit 2).

Assignment & Scope

This report intends to record the state of the trees on the aforementioned property as observed on the date of the inventory. Data collected per individual tree for the inventory are as follows:

- Identification number;
- Common name;
- Species;
- Diameter in inches at fifty-four (54) inches above grade, or for multi-trunk trees, the sum of diameter for all branches;
- Tree Height (approximated)
- Canopy spread;
- Health condition;
- Structural condition;
- Suitability for preservation;
- Observational notes.

Of the data collected in the field, health and structure were combined to give each tree a condition rating. The health of the tree is determined by its current size, canopy density, coloration, the appearance of any abnormalities or deficiencies and the overall health of the trunk, crown, and visible roots. The structure of the tree was evaluated based on the tree's natural, expected growth habit and form versus current growth habit, as well as the tree's inherent and exhibited structural integrity and deficiencies. Health and condition are subjective and species-dependent.

Note that the recommendations in this report are based on visual inspection on the aboveground parts of the tree at the time of the site visit. No soil was removed for below-grade inspection and no aerial inspection was performed. Information in this letter may warrant further investigation as site conditions change over time.

Method

The specific tasks performed were as follows:

- Identify the trees on the property measured at fifty-four (54) inches above grade;
- Assign an identification number for the identified trees;
- Acquire the location of each identified individual;
- Measure the diameter of the individual at fifty-four (54) inches above grade, or the sum of diameter for all branches for multi-trunk trees;
- Observe the assessment data for each tree. Determine the tree's health and structural integrity, assign a current condition rating ranging from poor to excellent:
 - **Excellent** Exemplary health and structure for species; a healthy tree with limited signs or symptoms of disease;
 - **Good** Some minor deficiencies noted in health and/or structure, with potential for corrective measures to be performed to improve upon condition (including but not limited to fertilizer, pruning, and chemical applications);
 - **Fair** Higher level and/or incidence of deficiencies noted in health and/or structure, including possible hazardous conditions signs and symptoms observed, with higher corrective measures and input required to improve condition and, where applicable, mitigate hazard risk;
 - **Poor** Significant deficiencies noted in health and/or structure, some irreversible, and may include hazardous condition signs and symptoms observed requiring corrective action; some individuals may require removal;
- Prepare a written report that presents findings and submit the report via email as a PDF document.

Tree Count and Composition

During the inventory, a total of two hundred (208) trees were quantified within the proposed projects scope of work measured at fifty-four (54) inches above grade. The 100 individuals are comprised of thirteen (13) species. The 13 species are in the following table, including counts and condition.

Common Name	Species	Count	Condition = Poor	Condition = Fair	Condition = Good	Condition = Excellent
California Black Oak	Quercus negra	3	0	0	1	2
Chinese Pistache	Pistacia chinensis	19	0	0	13	6
Coast Live Oak	Quercus agrifolia	12	0	1	10	1
Coast Redwood	Sequoia sempervirens	63	0	34	29	0
Cork Oak	Quercus suber	1	0	0	1	0
Evergreen Ash	Fraxinus uhdei	20	3	17	0	0
Holly Oak	Quercus ilex	14	0	0	1	13
London Plane	Platanus x acerifolia	15	0	0	15	0
Olive	Olea europaea	2	0	0	2	0
Southern Live Oak	Quercus virginiana	20	4	0	11	5
Trident Maple	Acer buergerianum	15	0	0	15	0
Valley Oak	Quercus lobata	3	0	0	2	1
Willow Oak	Quercus phellos	21	0	0	21	0
Total	13	208	3	52	121	32

2337 AMERICAN AVE, HAYWARD, CA 94545 1993 East Bayshore road, Redwood City, CA 94063 Office: (888) 969-8733 Cell: (925) 518-2028 SOAKLEY@ARBORWELL.COM

The City of Cupertino defines a Protected Tree as:

"14.18.050 Protected Trees.

Except as otherwise provided in Section 14.18.170, the following trees shall not be removed without first obtaining a tree removal permit:

- A. Heritage trees in all zoning districts.
- B. All mature specimen trees of the following species on private property:
 - 1. Quercus (native oak tree species), including:
 - a. Quercus agrifolia (Coast Live Oak);
 - b. Quercus lobata (Valley Oak);
 - c. Quercus kelloggii (Black Oak);
 - d. Quercus douglasii (Blue Oak);
 - e. Quercus wislizeni (Interior Live Oak);
 - 2. Aesculus californica (California Buckeye);
 - 3. Acer macrophyllum (Big Leaf Maple);
 - 4. Cedrus deodara (Deodar Cedar);
 - 5. Cedrus atlantica 'Glauca' (Blue Atlas Cedar);
 - 6. Umbellularia californica (Bay Laurel or California Bay); and
 - 7. Platanus racemosa (Western Sycamore).
 - C. Approved development trees(s).
 - D. Approved privacy protection planting in R-1 zoning districts."

All of the trees surveyed are protected as they are part of the scope of an approved development.

Disposition

There are 96 trees on-site proposed for removal based on conflicts with the design plans.

Tree Protection Guidelines

The following sections are to be referred to for Tree Protection Guidelines (TPG).

Prior to Construction

All of the following measures shall be implemented prior to any work to eliminate undesirable consequences that may result from uninformed or careless acts, and preserve both trees and property values.

The following measures shall be implemented along with the TPG:

- 1. All Plan Sheets with work near any tree to be persevered, detailing any work near a tree, or where work occurs within the Tree Protection Zone (TPZ) will make reference to this document in bold so that it is clearly visible.
- 2. All Plan Sheets are to show accurate driplines in their entirety on all sheets where improvements and work is to occur in the TPZ
- 3. The General Notes sheet needs to make reference to the Tree Protection Guidelines sheet.
- 4. The Project Arborist (PA) is to attend the preconstruction meeting.
- 5. The PA or contractor shall verify, in writing, that all preconstruction conditions have been met (tree protection fencing, erosion control, pruning, etc.)
- 6. The demolition, grading and underground contractors, subcontractors, construction superintendent and other pertinent personnel are required to meet with the PA at the site prior to beginning specific work in a TPZ to review procedures, tree protection measures, and to establish appropriate haul routes, staging, areas, contacts, watering, etc. to maintain tree preservation.
- 7. Prior to any grading or construction, the PA shall assist in the setup of the TPZ.
- 8. Fenced enclosures shall be erected around trees to be protected to achieve three primary goals:
 - a. To keep the foliage crowns and branching structure of the trees to be preserved clear from contact by equipment, materials and activities;
 - b. Preserve roots intact and maintain proper soil conditions in a noncompacted state and;
 - c. To identify the TPZ in which no soil disturbance is permitted and activities are restricted.

Tree Protection Zone

All of the trees to be preserved will incur significant impacts from grading, utilities, storm drains, bio-retention basins, curb and gutters, pathways, and landscaping.

Generally, a TPZ is established for each tree based on species tolerance, condition, and age. In many instances, this is an area less than the dripline of the tree. The improvements required for this project will not allow for what would be considered an adequate TPZ. Therefore, the TPZ will be the dripline (or curb face for the area of dripline extending over a hardscape surface) for all of the trees on this site.

Each tree to be preserved shall have a designated TPZ identifying the area sufficiently large enough to protect the tree and roots from disturbance. The recommended TPZ area can be determined by the canopy footprint. All work that occurs in the dripline falls under the category of the TPZ. This means that work that is performed within this zone will require direct involvement of the PA. Direct involvement requires the PA to be on site for all work in the dripline to provide direction when tree roots are encountered. Improvements or activities such as paving, utility, and irrigation trenching and other ancillary activities shall occur outside the TPZ, unless authorized by the PA. Unless otherwise specified, the protective fencing shall serve as the TPZ boundaries. At no time shall tree protection be encroached without the directive of the PA or City Arborist (CA).

Any tree that will have numerous improvements very close to the trunks and well within the driplines will require all work in the TPZ to utilize boring (for utilities and storm drains), pneumatic or hydraulic tools, as described in latter sections. This is necessary in order to preserve the health and structural integrity of the trees.

Improvements will be as far from any tree trunk as possible. Plans will show how the layout will help mitigate the severity of these impacts. There will be not landscape planting and the installation of underground piping and wiring inside any TPZ. Landscaping on the edges of a TPZ is acceptable utilizing the TPG for mitigating impacts under direction of the PA.

Activities prohibited within the TPZ include:

- Storage or parking vehicles, building materials, refuse, excavated spoils or dumping of poisonous materials on or around trees and roots. Poisonous materials include, but are not limited to, paint, petroleum products, concrete or stucco mix, dirty water or any other material which may be deleterious to tree health.
- The use of tree trunks as a winch support, anchorage, as a temporary power pole, sign posts or other similar function.
- Cutting of tree roots by utility trenching, foundation digging, placement of curbs and trenches and other miscellaneous excavation without prior approval of the PA.
- Soil disturbance or grade/drainage changes

- Materials must not be stored, stockpiled, dumped, or buried inside the dripline of trees.
- Excavated soil must not be piled or dumped, even temporarily, inside the TPZ of protected trees.

Activities permitted or required within the TPZ include:

- Mulching: During construction, wood chips shall be spread within the TPZ to a six (6) inch depth, leaving the trunk clear of mulch to help inadvertent compaction and moisture loss from occurring. The mulch may be removed if improvements or other landscaping is required. Mulch material shall comply with ISA specifications. Mulching may be applied at a depth of three (3) inches prior to construction under trees where there is no landscaping or paving (landscaping shall not be installed underneath a mature tree).
- Root Buffer: When areas under the tree canopy cannot be fenced, a temporary buffer is required and shall cover the root zone and remain in place at the specified thickness until final grading stage.
- Irrigation, aeration, or other beneficial practices that have been specifically approved for use within the TPZ.

Size, Type, and Duration of Fence

All trees to be preserved shall be protected with six (6) foot high fences. Fencing is to be mounted on two inch diameter galvanized iron posts, driven into the ground to a depth of at least two (2) feet at no more than ten (10) foot spacing. For trees located directly adjacent to hardscape, instead of driving the posts into the ground they can be mounted to portable stanchions. The stanchions shall be held down with rebar staples in order to avoid easy movement by equipment and construction personnel. A closeable 36-inch entry section for servicing the TPZ shall be provided. In addition, the trunks of the trees to be preserved are to be wrapped with brightly colored snow fencing, which will provide a visual reminder to workers that the trees are protected.

Types of Tree Protection for Project

Tree protection type will be determined by the PA other than specifications noted above. Note that a tree may be in one type of TPZ for a part of the project, and then modified to another type depending on the location and proximity to construction and approved design plans. This will need to be determined by the PA throughout the project on a case by case basis.

TPZ for these trees will be difficult as the project moves forward. Initial installation of the TPZ will require the following dimensions:

The fences shall enclose the entire area under the **canopy dripline or designated TPZ** of the tree(s) to be saved throughout the life of the project, or until final improvement work within the area is required, typically near the end of the project.

For trees situated directly adjacent to a **curb edge**, along said curb edge and around the dripline shall be enclosed with the required chain link protective fencing in order to keep the street open for public use.

Final Improvements: If the fencing must be relocated on paving or sidewalk for final improvements, the posts may be supported by an appropriate stanchions.

Duration of Tree Protection Fencing

Tree fencing shall be erected prior to demolition, grading or construction and remain in place until final inspection. Tree Protection Fencing shall be field verified by the PA before any work can begin, including grubbing, demolition, and grading. TPZ cannot be moved without the prior approval of the PA. The PA is required to notify the CA in advance if movement of the TPZ is requested and adequate reasoning behind said request.

TPZs are to remain throughout the entirety of the project.

"Warning" Signage

A warning sign a minimum of 8.5x11-inches shall be prominently displayed on each fence. The sign shall clearly state:

This is a Tree Protection Zone Movement of this fence requires the prior authorization of the Project Arborist & City Arborist Any violation of the TPZ will result in a "Stop Work Order" (List contact information for contractor and project arborist)

Pruning, Surgery and Removal

Prior to construction, trees will require that branches be pruned clear from structures, activities, building encroachment or will need to be strengthened by means of mechanical support (cabling) or surgery. This should be performed under the direction of the PA. Such pruning, surgery or the removal of trees shall adhere to the following standards:

- 1. Pruning limitations:
 - a. Minimum Pruning: If the PA recommends that trees be pruned, and the type of pruning is left unspecified, the standard pruning shall consist of 'crown cleaning' as defined by ISA Pruning Guidelines. Trees shall be pruned to reduce hazards and develop a strong, safe framework. Prune any desiccated material from the crown.
 - b. Maximum Pruning: Maximum pruning should only occur in the rarest situation approved by the PA. No more than one-fourth (1/4) of the functioning leaf and stem area may be removed within one (1) calendar year of any tree, or removal of foliage so as to cause the unbalancing of the tree. It must be recognized that trees are individual in form and structure, and that pruning needs may not always fit strict rules. The PA shall assume all responsibility for special pruning practices that vary from the standards outlined in this document.
 - c. Tree Workers: Pruning shall not be attempted by construction or contractor personnel, but shall be performed by a qualified tree care specialist or certified tree worker under the direction of a certified arborist.

Activities During Construction and Demolition Near Trees

Soil disturbance or other injurious and detrimental activity within the TPZ is prohibited unless approved by the PA. If an injurious event inadvertently occurs, or soil disturbance has been specifically conditioned for project approval, then the following mitigation is required:

- 1. Soil Compaction: If compaction of the soil occurs, it shall be mitigated as outlined in Mitigating Soil Compaction.
- 2. Grading Limitations within the Tree Protection Zone:
 - a. Grade changes outside of the TPZ shall not significantly alter drainage to the tree.
 - b. Grade changes within the TPZ are not permitted.
 - c. Grade changes under specifically approved circumstances shall not allow more than six (6) inches of fill soil added or allow more than four (4) inches of existing soil to be removed from natural grade unless mitigated immediately.
 - d. In some cases excavation will be necessary to accommodate the base thickness for paving, walls, footings, roads, paved plazas, etc. underneath

some existing trees' driplines. This type of excavation will be removed with the assistance of an air spade and assisting hand tool, trenching at 400 to 600 PSI. An air spade will blow soil away from root systems with minimal damage.

Mitigating Soil Compaction

Compaction, inadvertent or intentional, is not allowed within the existing dripline of any protected tree without consent of the PA. If compaction is required in the dripline of any tree, the use of Geocell[®] or equal shall be used in conjunction with structural soils and permeable paving materials where indicated on plan sheets.

Geocell[®], a sub-base confinement system designed for the protection of tree roots where the construction of compacted soils are required in the vicinity of trees, allows the continued passage and circulation of air, water, and nutrients to tree roots to sustain a healthy growing environment while allowing for the required compaction. Call US Fabrics for locating a representative in the United States

- 1. Do not install impervious materials such as roads and walkways where they will impact more than 25% of drip line area (unless existing conditions are already present) and unless reviewed and approved by the PA.
- 2. When installing walkways within the drip line, use pervious materials wherever possible. Refer to Landscape Construction Plans for pervious paving and/or Geocell sub-base locations and details.
- 3. Make sure that the tree requirements are fully recognized during design, construction installation and maintenance of landscape.

Trenching, Excavation and Equipment Use

Excavation or boring activity within the TPZ is restricted to the following activities, conditions and requirements if approved by the PA:

- 1. Notification. Contractor shall notify the PA a minimum of twenty-four (24) hours in advance of the activity in the TPZ.
- 2. Root Severance. Roots that are encountered shall be cut to sound wood and repaired. No roots of two (20 inch diameter and larger shall be cut without the prior approval of the PA. Approval is based on the distance of the root from the tree trunk and whether or not there are sufficient roots in the area to compensate for their removal.
- 3. Excavation. Any approved excavation, demolition or extraction of material shall be performed with equipment sitting outside the TPZ. Methods permitted are by hand

digging, hydraulic or pneumatic air excavation technology. Avoid excavation within the TPZ during hot, dry weather.

a. If excavation or trenching for drainage, utilities, irrigation lines, etc., it is the duty of the contractor to tunnel under any roots two (2) inches in diameter and greater.

b. Prior to excavation for foundation/footings/walls, grading or trenching within the TPZ, roots shall first be severed cleanly one (1) foot outside the TPZ and to the depth of the future excavation. The trench must then be hand dug and roots pruned with a saw or other approved root pruning equipment by the PA.

4. Heavy Equipment. Use of backhoes, steel tread tractors or any heavy vehicles within the TPZ is prohibited

Root Severance

Cutting and removal of roots smaller than two (2) inches in diameter shall be done by chain saw or hand saw to provide a flat and smooth cut and cause the least damage possible to the root and tree's health. Cutting roots by means of tractor-type equipment or other than chain saws and hand saws is prohibited.

Proper pruning technique shall encourage callusing of the roots. Root cutting and removal shall not exceed thirty-five (35) percent of total root surface.

The Contractor shall remove any wood chips or debris that may be left over from root removal that may affect the construction of improvements.

If any roots over two (2) inches in diameter are severed during any excavation, the following procedure shall be followed:

- 1. The roots shall be shaded by immediately covering the entire trench with plywood, or by covering the sides of the trench with burlap sheeting that is kept moist by watering twice per day.
- 2. When ready to backfill, each root shall be severed cleanly with a handsaw. Where practical, they should be cut back to a side root. Immediately, a plastic bag shall be placed over the fresh cut, and secured with a rubber band or electrical tape. Shading should immediately be placed until backfilling occurs.
- 3. Plastic bags shall be removed prior to backfilling.

4. Backfill shall be clean, native material free of debris, gravel or wood chips.

If roots three (3) inches in diameter, or larger, are encountered during excavation, Contractor shall contact the PA immediately and request a field inspection, and obtain instruction as to how the roots should be treated. No roots three (3) inches in diameter, or larger, shall be cut and removed without prior approval from the PA. Excavation will be performed with an air spade when greater than 4" of soil is required to be removed from a dripline. Roots will be pruned according to recommendations by the PA.

Root Barrier Installation

Where paved surfaces are to be installed adjacent to tree root zones, Biobarrier[®] root control fabric or equal shall be used to limit the spread of future roots and control future hardscape damage. The root control fabric uses the controlled release of trifluralin, a root-inhibition herbicide that prevents the growth of roots outside of the desired root zone. To install the root control fabric:

- 1. Dig a minimum 3 foot trench along the area you want to protect.
- 2. Prune tree roots.
- 3. Place the root control fabric in the trench, making sure it is between the area to be protected and all roots.
- 4. Secure the fabric near the surface so roots do not grow over it and against the wall of the trench opposite the root source.
- 5. Backfill the trench and tamp it to ensure there are no gaps in the soil.
- 6. Always follow the detailed installation instructions that are included with the root control fabric.

Irrigation Program

To help compensate for the root loss, deep-root irrigate all trees during the dry months (any month receiving less than 1 inch of rainfall) for a minimum of one (1) year after the project is complete.

- 1. Irrigation is to begin immediately for all existing trees to remain.
- 2. An application of growth regulator (paclobutryzol) prior to construction activities will aid in the development of fine-root growth and will help counter the effects of any root damage. This should be applied immediately for all trees that are to be protected in place. This application of growth

regulator shall be applied yearly for a minimum of one (1) year after the project is complete. This is to be performed by a certified tree care specialist.

- 3. In addition, all trees are to have roots inoculated with endo/ectomycorrhizal fungal inoculum.
- 4. Irrigate a minimum of ten (10) gallons for each inch of trunk diameter every month. A soaker hose or a drip line is preferred for this purpose. The first year's irrigation should be applied at the full rate. The first six (6) months of the second year, half of the rate shall be applied. The last six (6) months of the second year a quarter of the original rate will be applied. All rate adjustments will be monitored by the PA. Extra controller wires and stub outs for additional valves shall be installed for the permanent irrigation system and be available in the event that any individual tree begins to decline from water-stress after the project is complete.
- 5. Irrigation must also be applied during the trees' recovery period, which will be longer than the construction process. Irrigation will be beneficial to new root formation and must be performed for one (1) year after construction is complete. Refer to irrigation plans.
- 6. Any new irrigation for existing trees must not be designed to strike the trunks of trees, because of potential high risk of disease infection. Bubbler irrigation is preferred.
- 7. If any irrigation lines, drain lines, sewer lines, or any other underground features inside the existing dripline of protected trees that are to be abandoned, they should be cut off approximately at soil grade and left in the ground.
- 8. Where necessary, irrigation should be installed using at least two bubblers.
- 9. The foliage of tree shall be kept dust-free with monthly washings, or more frequent as determined by the PA.

Transplanting

Within this project, the following scopes of work are to be performed by a licensed and insured certified arborist:

- Transplantability, Timing, and Site Selection
- Tree Transplants & Boxing
- Maintenance of Boxed Trees

Transplantability, Timing, & Site Selection

Transplanted trees will need similar site conditions to where they are being transplanted. This means that they cannot have more than four (4) hours per day of full sun. They also do best with moist and very well-drained soils; ensure the new site is prepared for this before transplanting.

- 1. Choose a day when the soil is moist so that soil clings to the roots. Transplant the trees when they are in their dormant/slow growth stage, between late October and early March.
- 2. Before the project begins, a soil analysis shall be performed by the contracted arborist at the original site and transfer site to facilitate soil amendments and minimize soil differences.
- 3. Treat the transfer location and hole, using the correct soil amendments, to match the original site's soil characteristics.

Transplant Excavation

Prior to beginning the transplant stages of the project:

- i. Activate a USA call in which all nearby underground utilities will be marked on-site.
- ii. Use a mechanical trenching device to provide a minimum 48-inch box-size for the root ball.
- iii. All locations in which utilities are present around trees to be transplanted will be dug with the airspade to avoid damaging utility lines.

Use a minimum of a 48-inch size box to be built around the root ball, to be determined by the actual tree's size.

- 1. The box will be used during transport and storage.
- 2. The trenches should be excavated vertically down and at least ten (10) inches wide on each side to allow for working space.
- 3. Once the four sides have been dug, hand-excavate the trench at approximately a 15-degree.
- 4. When roots are encountered, prune the roots using hand pruners. Hand pruning the roots will minimize damage to the root system and promote new root growth.
- 5. Wrap the sides of the root ball with burlap tarps.
- 6. Attach the box's vertical sides to each other, securing the root ball inside the structure.
- A winch or mechanical advantage will be used to help lift the tree, with four (4) vertical sides in place, using a high-tension vinyl strap secured around the structure.
- 8. As the structure is lifted, hand-prune any roots beneath the root ball to detach the tree from its current growing location.
- 9. Burlap tarps will be pulled beneath the tree in order to lift it into horizontal bottom of the box structure.
- 10. Attach the horizontal bottom to the box structure.

In this structure, the tree can be stored for no more than one (1) week. Plant as soon as possible and apply TPZ and appropriate treatments. Where necessary, a crane shall be used to assist the crews in lifting and transporting the trees to the storage location. Care should be taken at all times to avoid damage to the trunk and canopy of the tree.

Transplanting Maintenance

Once moved to the new location:

- 1. The trees shall be staked or guyed (the most appropriate technique will be determined by site set-up, location, and conditions).
- 2. A TPZ will be set up at the new location.
- 3. Bi-weekly watering will begin immediately for trees to be transplanted and will resume to the site irrigation schedule once the PA has determined the trees have established.
- 4. At the first watering, modified plant growth regulators will be applied by a licensed and insured certified arborist in the form of trunk injections to help compensate for fine root loss and to encourage active mycorrihizal production within the rooting zone. Notify the PA at least 72 hours in advance.
- 5. The watering rates and amounts will be adjusted according to tree response post-transplant.

Damage to Trees - Reporting

Any damage or injury to trees shall be reported within six (6) hours to the PA and job superintendent or CA so that mitigation can take place. All mechanical or chemical injury to branches, trunk or to roots over two (2) inches in diameter shall be reported in the biweekly inspection report. In the event of injury, the following mitigation and damage control measures shall apply and implemented by a Certified Arborist:

- a. Root injury: If trenches are cut and tree roots two (2) inches or larger are encountered they must be cleanly cut. The end of the root shall be covered with either a plastic bag and secured with tape or rubber band. All exposed root areas within the TPZ shall be backfilled or covered within one (1) hour. Exposed roots may be kept from drying out by temporarily covering the roots and draping layered burlap or carpeting over the upper three (3) feet of trench walls. The materials must be kept wet until backfilled to reduce evaporation from the trench walls. All the above activities shall be performed by a Certified Arborist.
- b. Bark or trunk wounding: Current bark tracing and treatment methods shall be performed by a Certified Arborist within two (2) days.

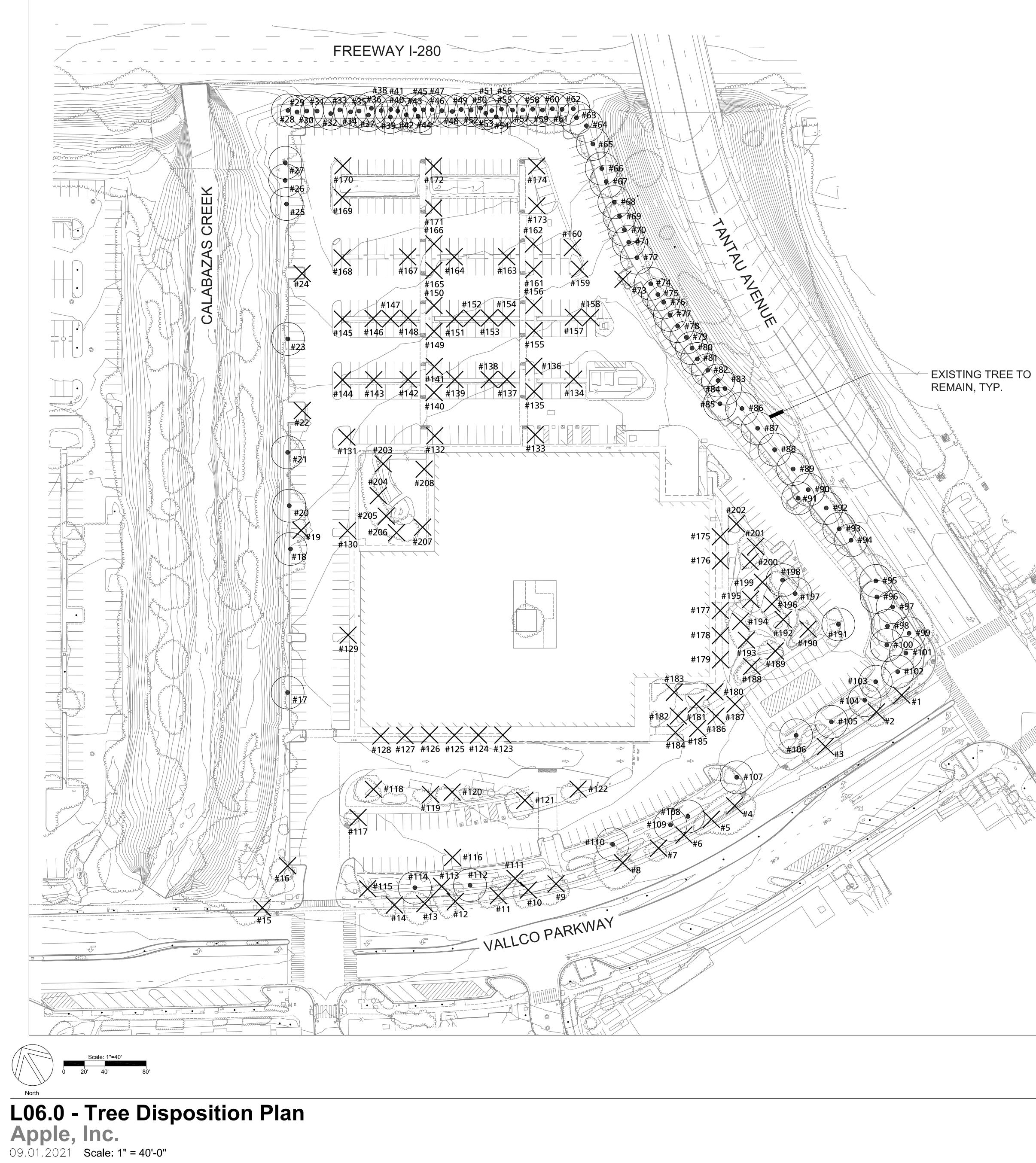
c. Scaffold branch or leaf canopy injury: A Certified Arborist will remove broken or torn branches back to an appropriate branch capable of resuming terminal growth within five (5) days. If leaves are heat scorched from equipment exhaust pipes, consult the PA within six (6) hours.

Inspection Schedule

The PA retained by the applicant shall conduct the following required inspections of the construction site:

- 1. Inspections shall verify that the type of tree protection and/or plantings re consistent with the standards outlined within this document. For each required inspection or meeting, a written summary of the changing tree related conditions, actions taken, and condition of trees shall be provided to the contactor.
 - a. Inspection of Protective Tree Fencing.
 - b. Pre-Construction Meeting. Prior to commencement of construction, the contractor shall conduct a pre-construction meeting to discuss tree protection with the job site superintendent, grading equipment operators, and the PA.
 - c. Inspection of Rough Grading. The PA shall perform an inspection during the course of rough grading adjacent to the TPZ to ensure trees will not be injured by compaction, cut or fill, drainage and trenching, and if required, inspect aeration systems, tree wells, drains and special paving. The contractor shall provide the PA at least forty-eight (48) hours advance notice of such activity.
 - d. The PA shall perform inspections every two weeks during the demolition and mass grading to monitor changing conditions and tree health. Upon completion of demolition and mass grading, the CA will determine if monthly inspections will be required in lieu of inspections every two weeks. The CA shall be in receipt of an inspection summary during the first week of each calendar month or, immediately if there are any changes to the approved plans or protection measures.
 - e. Any special activity within the Tree Protection Zone. Work in this area (TPZ) requires the direct on-site supervision of the PA.

Assumptions and Limiting Conditions


The following are limitations to this report:

- All information presented herein covers only the trees examined at the area of inspection, and reflects the condition observed of said trees at the time of inspection.
- Observations were performed visually without probing, dissecting, coring, or excavation, unless noted above, and in no way shall the observer be held responsible for any defects that could have only been discovered by performing said services in specific area(s) where a defect was located.
- No guarantee or warranty is made, expressed or implied, that defects of the trees inspected may not arise in the future.
- No assurance can be offered that if the recommendation and precautionary measures are accepted and followed, that the desired results may be attained.
- No responsibility is assumed for the methods used by any person or company executing the recommendations provided in this report.
- The information provided herein represents an opinion, and in no way is the reporting of a specified finding, conclusion, or value based on the retainer.
- This report is proprietary to Arborwell, Inc., and may not be reproduced in whole or part without written consent. This report has been prepared exclusively for use of the parties to which it has been submitted.
- Should any part of this report be altered, damaged, corrupted, or lost, the entire evaluation shall be invalid.

Exhibit 1 – Site Plan With Tree Locations

2337 AMERICAN AVE, HAYWARD, CA 94545 1993 East Bayshore road, Redwood City, CA 94063 Office: (888) 969-8733 Cell: (925) 518-2028 SOAKLEY@ARBORWELL.COM

Tree Disposition Legend

Existing Tree to Remain

Existing Tree to be Removed

Existing Tree Dead to be Removed

Existing Tree Analysis

208 Total Number of Existing Trees

- 113 Number of Existing Trees to be Removed
- 95 Number of Existing Trees to Remain
- Number of Existing Trees to Remain 95
- New Trees to be Planted(24" Box size) 191

286 Total Number of Trees at Project Completion

NOTE: See Arborist Report for existing tree species, locations, conditions, and sizes

Replacement Tree Guidelines	
Diameter of Trunk Size of Removed Tree (Measured 4.5 feet above grade)	Replacement Trees Required
Up to 12 inches - 100 Trees	100, 24" box trees
Over 12 inches and up to 36 inches - 13 Trees	26, 24" box trees OR 13, 36" box trees
Over 36 inches - None	N/A
Total Trees To Be Removed: 113	Total Required Replacement Trees: 126, 24" box tree

	Replacement Trees Provided
	190, 24" box trees
ees	Total: 191 Trees (78 Net Possitive Trees)

Exhibit 2 - Vallco Parkway 1 Tree Inventory Matrix 19191 Valico Parkway, Cupertino, California

	<u> </u>					Canopy					
	ID	Common Name	Species		Height (feet)					Disposition	Observations
1 Suggeste Image A Image A <thimage a<="" th=""> Image A <thimage< th=""><th>1</th><th>Evergreen Ash</th><th>Fraxinus uhdei</th><th>14</th><th>25</th><th>20</th><th>Fair</th><th>Poor</th><th>Low</th><th>Preserve</th><th>Poor Branching Structure</th></thimage<></thimage>	1	Evergreen Ash	Fraxinus uhdei	14	25	20	Fair	Poor	Low	Preserve	Poor Branching Structure
	2			14	25	20	Fair		Low		Poor Branching Structure
	3		Fraxinus uhdei	26	35	25	Fair	Fair	Moderate	Preserve	
	4	Evergreen Ash	Fraxinus uhdei	24	35	35	Fair	Poor	Low	Preserve	Poor Branching Structure
1 Sugardie Disa de Disardie Disa de Disardie Disa de Disardie Disa de Disardie Disardie	5			10	15	15	Fair		Low		
	6	Evergreen Ash	Fraxinus uhdei	12	20	15	Poor	Poor	Low	Preserve	Significant Dieback At The Top Of Canopy; Poor Structure
14.Sugant bSugant bSuga	7				25	20					
1 Sequety Seq	8										
····································											
1 5 organy 11 Image 12 Image 12 <thimage 12<="" th=""> Image 12 <thi< td=""><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thi<></thimage>	10										
1 2 5											
1 1											
I. Jegenth Instance Instance Instance Instance Instance Instance I. Series											
1 9 1											
1 bbbb charation 1 <th1< th=""> 1 <!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>											
Image Description Image Image Party											Large Decay Column on Hunk
A Contribution Operating to any set of the											In Danling, Dave Okrawiter
Balani bi Odi Optimization				-		-					in Decine, Poor Strucutre
Boditabil Section 2010 Section 2010 <td></td> <td></td> <td></td> <td>16</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>In Destines Dess Observed</td>				16							In Destines Dess Observed
1 Contribution Control of and income Control of and income <thcontrol and="" income<="" of="" th=""> Control of and income<td></td><td></td><td></td><td>3</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>in Decline; Poor Strucutre</td></thcontrol>				3		-					in Decline; Poor Strucutre
12 Submic of A Consistence Co											
D Outron Back (b)											
No Optimization OA Optimization OA Optimization OA Optimization OA Optimization OA Optimization OA 18 Contribution OA Guara aginta 14 10 15 Optimization OA Optimization OA 17 Contribution OA Guara aginta 14 10 15 Optimization OA Optimization OA 18 Contribution OA Guara aginta 12 16 174 Optimization OA Optimization OA 19 Contribution OA Statissource 12 18 Optimization OA Optimization OA Optimization OA Optimization OA Non-No Parace						-					
S Card Line Oat Game angle is a special of the special special of the special											
Sati Los Ost Gance Latria J J J Code Partnet J Contress Back Ost Operate Magn 2 0 1 Book Societ None None J Contress Back Ost Operate Magn 2 0 1 Societ None				-							In Decline; Poor Strucutre
1 Carthenization Decide 1 Decide Decide <thdecide< th=""> <thdecide< th=""> <thdecide< th=""></thdecide<></thdecide<></thdecide<>											
3 Case Related Seque serveyons 9 9 7 6 cad Models Pears Pears 29 Case Related Seque serveyons 9 0 7 6 cad Modes Pears Pears <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
D Cast Balance Sauch astronium 28 30 7 6 Code Model Passes Passes 10 Cast Relaxed Secure sergences 20 8 2 Far Good Model Passes Present Tra 10 Cast Relaxed Secure sergences 20 0 Far Good Model Passes Present Tra 10 Cast Relaxed Secure sergences 24 0 2 Far Good Model Passes Present Tra 13 Cast Relaxed Secure sergences 24 0 2 Far Good Modes Passes Present											
13 Cast RabordIsinglia surgeriors 12 13 12 14 10 100 $100 minits$ PassesPassesPartner 13 Cast RabordSegue surgeriors 14 10 20 14^{22} 000 ModeralPassesPassesPasses 13 Cast RabordSegue surgeriors 14 10 20 14^{22} 0000 ModeralPassesPassesPasses 13 Cast RabordSegue surgeriors 14 10 20 14^{22} 0000 ModeralPassesPassesPasses 34 Cast RabordSegue surgeriors 24 50 20 14^{22} 0000 ModeralPassesPassesPasses 34 Cast RabordSegue surgeriors 24 50 20 14^{22} 16000 ModeralPassesPassesPasses 12 Cast RabordSegue surgeriors 24 20 22 14^{22} 160000 ModeralPassesPassesPasses 13 Cast RabordSegue surgeriors 14 20 22 14^{22} 160000 ModeralPassesPassesPasses 14 Cast RabordSegue surgeriors 14 40 20 14^{22} $6000000000000000000000000000000000000$			Sequoia sempervirens					Good		Preserve	
31 Court Robord Source surgerives 15 9 20 Fail Good Modersis Preserve											
Stress Casel Relation Security Relationships Stress Part Good Moderate Pressora Pressora Pressora 33 Casel Relation Security Responses 34 60 50 7ar Good Moderate Pressora Pressora <td></td>											
3 Contribution Data Data <td>31</td> <td>Coast Redwood</td> <td>Sequoia sempervirens</td> <td>16</td> <td>50</td> <td>20</td> <td>Fair</td> <td>Good</td> <td>Moderate</td> <td>Preserve</td> <td>Perimeter Tree</td>	31	Coast Redwood	Sequoia sempervirens	16	50	20	Fair	Good	Moderate	Preserve	Perimeter Tree
13Cost RobodSauda structures 24 43 20 Far GodModetsPateroPateroPatero35Cost RobodSauda structures 36 40 20 $7ar$ GodModetsPateroPateroPatero36Cost RobodSauda structures 36 40 20 20 $7ar$ God ModetsPateroPatero37Expanse AhFasta Abli 4 51 51 51 $7ar$ God ModetsPateroPatero38Cost RobodSauda structures 34 30 20 Far GodModetsPateroPatero39Expanse AhFasta Abli 12 30 20 Far GodModetsPateroPatero41Cost RobodSauda structures 12 15 15 Far GodModetsPateroPatero42Cost RobodSauda structures 10 40 20 Far GodModetsPateroPatero43Cost RobodSauda structures 11 40 20 Far GodModetsPateroPatero44Cost RobodSauda structures 11 40 20 Far GodModetsPateroPatero44Cost RobodSauda structures 11 40 20 Far GodModetsPateroPatero45Cost RobodSauda structures 11 <t< td=""><td>32</td><td>Coast Redwood</td><td>Sequoia sempervirens</td><td>24</td><td>50</td><td>20</td><td>Fair</td><td>Good</td><td>Moderate</td><td>Preserve</td><td>Perimeter Tree</td></t<>	32	Coast Redwood	Sequoia sempervirens	24	50	20	Fair	Good	Moderate	Preserve	Perimeter Tree
S.Coal ReleadSecurity services35505070FatGodModeralPasarePathonPathonPathon38Coal ReleadSequity services246020FatGodModeralPasarePasarePathonPathon39Coal ReleadSequity services443020FatGodModeralPasarePantonPathonPanton39Coal ReleadSequity services443020FatGodModeralPasarePantonPantonPanton40Coal ReleadSequity services121515FatGodModeralPasarePasarePantonPanton41Coal ReleadSequity services104020FatGodModeralPasarePasarePantonPantonTex42Coal ReleadSequity services144020FatGodModeralPasarePantonTex43Coal ReleadSequity services144020FatGodModeralPasarePantonTex44Coal ReleadSequity services144020FatGodModeralPasarePantonTex45Coal ReleadSequity services204020FatGodModeralPasarePantonTex44Coal ReleadSequity services204020Fat	33	Coast Redwood	Sequoia sempervirens	24	50	20	Fair	Good	Moderate	Preserve	Perimeter Tree
St Cost Related Searce semigration 24 50 20 Fail God Moderate Pearse Pearse Pearse 32 Loggram Ads Failung Addit 4 15 15 Fail God Moderate Pearse Pe	34	Coast Redwood	Sequoia sempervirens	24	50	20	Fair	Good	Moderate	Preserve	Perimeter Tree
77Evergren AuhFractura abali61515FarModeratiPesarvaPesarvaPeterder Tree38Coast RedecodSeque sampovines343020FarGoodModeratiPesarvaPerenter Tree39Evergren AuhFractura abali1123020FarFarGoodModeratiPesarvaPerenter Tree40Coast RedecodSeque sampovines121515FarGoodModeratiPesarvaPerenter Tree41Coast RedecodSeque sampovines84020FarGoodModeratiPesarvaPerenter Tree42Coast RedecodSeque sampovines84020FarGoodModeratiPesarvaPerenter Tree43Coast RedecodSeque sampovines184020FarGoodModeratiPesarvaPerenter Tree44Coast RedecodSeque sampovines114020FarGoodModeratiPesarvaPerenter Tree45Coast RedecodSeque sampovines124020FarGoodModeratiPesarvaPeterlee Tree46Coast RedecodSeque sampovines164020FarGoodModeratiPesarvaPeterlee Tree47Coast RedecodSeque sampovines164020FarGoodModeratiPesarvaPeterlee Tree48Coast RedecodSeque sam	35	Coast Redwood	Sequoia sempervirens	36	50	20	Fair	Good	Moderate	Preserve	Perimeter Tree
38 Coast Reduced Seque as angovines 34 30 20 Far Good Moderate Preserve Perserve 39 Exrgen AA Faxins Johi 12 30 20 Fair Fair Moderate Perserve	36	Coast Redwood	Sequoia sempervirens	24	50	20	Fair	Good	Moderate	Preserve	Perimeter Tree
B Everyeen Ash Fear and a doi: 12 30 20 Fair Fair Moderate Preserve Perioder 40 Coast Relevoid Sequite amporitiens 10 40 20 Fair Good Moderate Persone Perioder Tree 41 Coast Relevoid Sequite amporitiens 10 40 20 Fair Good Moderate Persone Perioder Tree 42 Coast Relevoid Sequite amporitiens 18 40 20 Fair Good Moderate Persone Perioder Tree 43 Coast Relevoid Sequite amporitiens 10 40 20 Fair Good Moderate Persone Perioder Tree 44 Coast Relevoid Sequite amporitiens 12 40 20 Fair Good Moderate Persone Perioder Tree 45 Coast Relevoid Sequite amporitiens 16 40 20 Fair Good Moderate Persone Perioder Tree	37	Evergreen Ash	Fraxinus uhdei	6	15	15	Fair	Fair	Moderate	Preserve	Perimeter Tree
Ocal Related Secula semperiera 12 15 15 Far Good Moderate Preserve Peneter Tree 41 Coast Related Secula semperiera 10 40 20 Far Cood Moderate Preserve Peneter Tree 42 Coast Related Secula semperiera 8 40 20 Far Cood Moderate Preserve Peneter Tree 43 Coast Related Secula semperiera 16 40 20 Far Cood Moderate Preserve Peneter Tree 44 Coast Related Secula semperiera 14 40 20 Far Cood Moderate Preserve Peneter Tree 45 Coast Related Secula semperiera 16 40 20 Far Cood Moderate Preserve Peneter Tree 47 Coast Related Secula semperiera 16 40 20 Far Cood Moderate Preserve Peneter Tree 48	38	Coast Redwood	Sequoia sempervirens	34	30	20	Fair	Good	Moderate	Preserve	Perimeter Tree
1Cost RelatedSeque semptives104020 Far GodModeratePreservePreservePermeter Tree42Cost RelatedSeque semptives134020 Far GodModeratePreservePreservePermeter Tree43Cost RelatedSeque semptives144020 Far GodModeratePreservePermeter Tree44Cost RelatedSeque semptives144020 Far GodModeratePreservePermeter Tree45Cost RelatedSeque semptives164020 Far GodModeratePreservePermeter Tree46Cost RelatedSeque semptives164020 Far GodModeratePreservePermeter Tree47Cost RelatedSeque semptives164020 Far GodModeratePreservePermeter Tree48Cost RelatedSeque semptives164020 Far GodModeratePreservePermeter Tree49Cost RelatedSeque semptives164020 Far GodModeratePreservePermeter Tree50Cost RelatedSeque semptives184020 Far GodModeratePreservePermeter Tree51Cost RelatedSeque semptives134020 Far GodModeratePreservePermeter Tree53Cost	39	Evergreen Ash	Fraxinus uhdei	12	30	20	Fair	Fair	Moderate	Preserve	Perimeter Tree
42 Coast Reduced Sequela semperivary 8 40 20 Fair Good Moderate Preserve Perineter 43 Coast Reduced Sequela semperivary 18 40 20 Fair Good Moderate Preserve Perineter 44 Coast Reduced Sequela semperivary 14 40 20 Fair Good Moderate Preserve Perineter 45 Coast Reduced Sequela semperivary 12 40 20 Fair Good Moderate Preserve Perineter 46 Coast Reduced Sequela semperivary 16 40 20 Fair Good Moderate Preserve Perineter 47 Coast Reduced Sequela semperivary 16 40 20 Fair Good Moderate Preserve Perineter 48 Coast Reduced Sequela semperivary 16 40 20 Fair Good Moderate Preserve Perineter 49 Coast Reduced Sequela semperivary 16 40 20 Fair Good Moderate Preserve Perineter 50 Coast Reduced Sequela semperivary 20 40	40	Coast Redwood	Sequoia sempervirens	12	15	15	Fair	Good	Moderate	Preserve	Perimeter Tree
43 Coast Reduced Security semportums 18 40 20 Fair Good Moderate Preserve Perinder Tree 44 Coast Reduced Security semportums 14 40 20 Fair Good Moderate Preserve Perinder Tree 45 Coast Reduced Security semportums 20 40 20 Fair Good Moderate Preserve Perinder Tree 45 Coast Reduced Security semportums 16 40 20 Fair Good Moderate Preserve Perinder Tree 47 Coast Reduced Security semportums 16 40 20 Fair Good Moderate Preserve Perinder Tree 48 Coast Reduced Security semportums 16 40 20 Fair Good Moderate Preserve Perinder Tree 49 Coast Reduced Security semportums 16 40 20 Fair Good Moderate Preserve Perinder Tree </td <td>41</td> <td>Coast Redwood</td> <td>Sequoia sempervirens</td> <td>10</td> <td>40</td> <td>20</td> <td>Fair</td> <td>Good</td> <td>Moderate</td> <td>Preserve</td> <td>Perimeter Tree</td>	41	Coast Redwood	Sequoia sempervirens	10	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
44 Coast Redwood Sequita sempervirem 14 40 20 Fair Cood Moderate Preserve Permeter Tree 45 Coast Redwood Sequita sempervirem 20 40 20 Fair Good Moderate Preserve Permeter Tree 46 Coast Redwood Sequita sempervirems 12 40 20 Fair Good Moderate Preserve Permeter Tree 47 Coast Redwood Sequita sempervirems 16 40 20 Fair Good Moderate Preserve Permeter Tree 48 Coast Redwood Sequita sempervirems 16 40 20 Fair Good Moderate Preserve Permeter Tree 49 Coast Redwood Sequita sempervirems 20 40 20 Fair Good Moderate Preserve Perimeter Tree 51 Coast Redwood Sequita sempervirems 20 40 20 Fair Good Moderate Preserve Perimeter	42	Coast Redwood	Sequoia sempervirens	8	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
45 Coast Redecod Securit semperviews 20 40 20 Fair Good Moderate Preserve Permeter Tree 44 Coast Redecod Securit semperviews 12 40 20 Fair Good Moderate Preserve Perimeter Tree 47 Coast Redecod Securit semperviews 16 40 20 Fair Good Moderate Preserve Perimeter Tree 48 Coast Redecod Securit semperviews 18 40 20 Fair Good Moderate Preserve Perimeter Tree 49 Coast Redecod Securit semperviews 20 40 20 Fair Good Moderate Preserve Perimeter Tree 50 Coast Redecod Securit semperviews 20 40 20 Fair Good Moderate Preserve Perimeter Tree 51 Coast Redecod Securit semperviews 52 40 20 Fair Good Moderate Preserve Perimeter	43	Coast Redwood	Sequoia sempervirens	18	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
46 Coast Redwood Sequela semperviews 12 40 20 Fair Good Moderate Preserve Perimeter Tree 47 Coast Redwood Sequela semperviews 16 40 20 Fair Good Moderate Preserve Perimeter Tree 48 Coast Redwood Sequela semperviews 16 40 20 Fair Good Moderate Preserve Perimeter Tree 49 Coast Redwood Sequela semperviews 16 40 20 Fair Good Moderate Preserve Perimeter Tree 50 Coast Redwood Sequela semperviews 20 40 20 Fair Good Moderate Preserve Perimeter Tree 51 Coast Redwood Sequela semperviews 18 40 20 Fair Good Moderate Preserve Perimeter Tree 52 Coast Redwood Sequela semperviews 52 40 20 Fair Good Moderate Preserve Perimeter	44	Coast Redwood	Sequoia sempervirens	14	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
47 Coast Redwood Sequelais semperviews 16 40 20 Fair Good Moderate Preserve Perimeter Tree 48 Coast Redwood Sequelais semperviews 16 40 20 Fair Good Moderate Preserve Perimeter Tree 49 Coast Redwood Sequelais semperviews 16 40 20 Fair Good Moderate Preserve Perimeter Tree 50 Coast Redwood Sequelais semperviews 20 40 20 Fair Good Moderate Preserve Perimeter Tree 51 Coast Redwood Sequelais semperviews 20 40 20 Fair Good Moderate Preserve Perimeter Tree 52 Coast Redwood Sequelais semperviews 18 40 20 Fair Good Moderate Preserve Perimeter Tree 53 Coast Redwood Sequelais semperviews 52 40 20 Fair Good Moderate Preserve Perimeter Tree 54 Coast Redwood Sequelais semperviews 55 40 20 Fair Good Moderate Preserve Perimeter Tree 55 Coast Redwood	45	Coast Redwood	Sequoia sempervirens	20	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
48 Coast Redwood Sequela semperviens 18 40 20 Fair Good Moderate Preserve Perimeter Tree 49 Coast Redwood Sequela semperviens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 50 Coast Redwood Sequela semperviens 20 40 20 Fair Good Moderate Preserve Perimeter Tree 51 Coast Redwood Sequela semperviens 20 40 20 Fair Good Moderate Preserve Perimeter Tree 51 Coast Redwood Sequela semperviens 20 40 20 Fair Good Moderate Preserve Perimeter Tree 52 Coast Redwood Sequela semperviens 52 40 20 Fair Good Moderate Preserve Perimeter Tree 53 Coast Redwood Sequela semperviens 55 40 20 Fair Good Moderate Preserve Perimeter	46	Coast Redwood	Sequoia sempervirens	12	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
49 Coast Redwood Sequela sempervirens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 50 Coast Redwood Sequela sempervirens 20 40 20 Fair Good Moderate Preserve Perimeter Tree 51 Coast Redwood Sequela sempervirens 20 40 20 Fair Good Moderate Preserve Perimeter Tree 51 Coast Redwood Sequela sempervirens 18 40 20 Fair Good Moderate Preserve Perimeter Tree 52 Coast Redwood Sequela sempervirens 18 40 20 Fair Good Moderate Preserve Perimeter Tree 53 Coast Redwood Sequela sempervirens 52 40 20 Fair Good Moderate Preserve Perimeter Tree 54 Coast Redwood Sequela sempervirens 56 40 20 Fair Good Moderate Preserve Perimeter Tree 55 Coast Redwood Sequela sempervirens 12	47	Coast Redwood	Sequoia sempervirens	16	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
50 Coast Redwood Sequela sempervirens 20 40 20 Fair Good Moderate Preserve Perimeter Tree 51 Coast Redwood Sequela sempervirens 20 40 20 Fair Good Moderate Preserve Perimeter Tree 52 Coast Redwood Sequela sempervirens 18 40 20 Fair Good Moderate Preserve Perimeter Tree 53 Coast Redwood Sequela sempervirens 52 40 20 Fair Good Moderate Preserve Perimeter Tree 54 Coast Redwood Sequela sempervirens 52 40 20 Fair Good Moderate Preserve Perimeter Tree 55 Coast Redwood Sequela sempervirens 55 40 20 Fair Good Moderate Preserve Perimeter Tree 55 Coast Redwood Sequela sempervirens 12 40 20 Fair Good Moderate Preserve Pe	48	Coast Redwood	Sequoia sempervirens	18	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
51 Coast Redwood Sequela sempervirens 20 40 20 Fair Good Moderate Preserve Perimeter Tree 52 Coast Redwood Sequela sempervirens 18 40 20 Fair Good Moderate Preserve Perimeter Tree 53 Coast Redwood Sequela sempervirens 52 40 20 Fair Good Moderate Preserve Perimeter Tree 54 Coast Redwood Sequela sempervirens 52 40 20 Fair Good Moderate Preserve Perimeter Tree 54 Coast Redwood Sequela sempervirens 55 40 20 Fair Good Moderate Preserve Perimeter Tree 55 Coast Redwood Sequela sempervirens 56 40 20 Fair Good Moderate Preserve Perimeter Tree 56 Coast Redwood Sequela sempervirens 12 40 20 Fair Good Moderate Preserve Perimeter Tree 57 Coast Redwood Sequela sempervirens 18 40 20 Fair Good Moderate Preserve Perimeter Tree 58 Coast Redwood Se	49	Coast Redwood	Sequoia sempervirens	16	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
52 Coast Redwood Sequela sempervirens 18 40 20 Fair Good Moderate Preserve Perimeter Tree 53 Coast Redwood Sequela sempervirens 52 40 20 Fair Good Moderate Preserve Perimeter Tree 54 Coast Redwood Sequela sempervirens 52 40 20 Fair Good Moderate Preserve Perimeter Tree 54 Coast Redwood Sequela sempervirens 56 40 20 Fair Good Moderate Preserve Perimeter Tree 55 Coast Redwood Sequela sempervirens 56 40 20 Fair Good Moderate Preserve Perimeter Tree 56 Coast Redwood Sequela sempervirens 12 40 20 Fair Good Moderate Preserve Perimeter Tree 57 Coast Redwood Sequela sempervirens 18 40 20 Fair Good Moderate Preserve Perimeter Tree 58 Coast Redwood Sequela sempervirens 18 40 20 Fair Good Moderate Preserve Perimeter Tree 59 Coast Redwood Se	50	Coast Redwood	Sequoia sempervirens	20	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
53 Coast Redwood Sequela sempervirens 52 40 20 Fair Good Moderate Preserve Perimeter Tree 54 Coast Live Oak Querous sarifolia 6 15 15 Fair Fair Moderate Preserve Perimeter Tree 55 Coast Redwood Sequela sempervirens 56 40 20 Fair Good Moderate Preserve Perimeter Tree 56 Coast Redwood Sequela sempervirens 12 40 20 Fair Good Moderate Preserve Perimeter Tree 57 Coast Redwood Sequela sempervirens 18 40 20 Fair Good Moderate Preserve Perimeter Tree 58 Coast Redwood Sequela sempervirens 18 40 20 Fair Good Moderate Preserve Perimeter Tree 58 Coast Redwood Sequela sempervirens 18 40 20 Fair Good Moderate Preserve Perimeter Tree 59 Coast Redwood Sequela sempervirens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 60 Coast Redwood Seque	51	Coast Redwood	Sequoia sempervirens	20	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
54 Coast Live Oak Querous sorifolia 6 15 15 Fair Fair Fair Moderate Preserve Perimeter Tree 55 Coast Redwood Sequoia sempervirens 56 40 20 Fair Good Moderate Preserve Perimeter Tree 56 Coast Redwood Sequoia sempervirens 12 40 20 Fair Good Moderate Preserve Perimeter Tree 57 Coast Redwood Sequoia sempervirens 18 40 20 Fair Good Moderate Preserve Perimeter Tree 58 Coast Redwood Sequoia sempervirens 18 40 20 Fair Good Moderate Preserve Perimeter Tree 58 Coast Redwood Sequoia sempervirens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 59 Coast Redwood Sequia sempervirens 16 40 20 Fair Good Moderate Preserve </td <td>52</td> <td>Coast Redwood</td> <td>Sequoia sempervirens</td> <td>18</td> <td>40</td> <td>20</td> <td>Fair</td> <td>Good</td> <td>Moderate</td> <td>Preserve</td> <td>Perimeter Tree</td>	52	Coast Redwood	Sequoia sempervirens	18	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
55 Coast Redwood Sequeia sempervirens 56 40 20 Fair Good Moderate Preserve Perimeter Tree 56 Coast Redwood Sequeia sempervirens 12 40 20 Fair Good Moderate Preserve Perimeter Tree 57 Coast Redwood Sequeia sempervirens 18 40 20 Fair Good Moderate Preserve Perimeter Tree 58 Coast Redwood Sequeia sempervirens 24 40 20 Fair Good Moderate Preserve Perimeter Tree 59 Coast Redwood Sequeia sempervirens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 60 Coast Redwood Sequeia sempervirens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 60 Coast Redwood Sequeia sempervirens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 61 Coast Redwood Sequeia sempervirens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 61 Coast Redwood Se	53	Coast Redwood	Sequoia sempervirens	52	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
56 Coast Redwood Sequela sempervirens 12 40 20 Fair Good Moderate Preserve Perimeter Tree 57 Coast Redwood Sequela sempervirens 18 40 20 Fair Good Moderate Preserve Perimeter Tree 58 Coast Redwood Sequela sempervirens 24 40 20 Fair Good Moderate Preserve Perimeter Tree 59 Coast Redwood Sequela sempervirens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 60 Coast Redwood Sequela sempervirens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 60 Coast Redwood Sequela sempervirens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 61 Coast Redwood Sequela sempervirens 24 40 20 Fair Good Moderate Preserve Perimeter Tree 61 Coast Redwood Sequela sempervirens 24 40 20 Fair Good Moderate Preserve Perimeter Tree 61 Coast Redwood Se	54	Coast Live Oak	Quercus agrifolia	6	15	15	Fair	Fair	Moderate	Preserve	Perimeter Tree
57 Coast Redwood Sequeia sempervirens 18 40 20 Fair Good Moderate Preserve Perimeter Tree 58 Coast Redwood Sequeia sempervirens 24 40 20 Fair Good Moderate Preserve Perimeter Tree 59 Coast Redwood Sequeia sempervirens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 60 Coast Redwood Sequeia sempervirens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 60 Coast Redwood Sequeia sempervirens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 61 Coast Redwood Sequeia sempervirens 24 40 20 Fair Good Moderate Preserve Perimeter Tree 61 Coast Redwood Sequeia sempervirens 24 40 20 Fair Good Moderate Preserve Perimeter Tree	55	Coast Redwood	Sequoia sempervirens	56	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
58 Coast Redwood Sequoia sempervirens 24 40 20 Fair Good Moderate Preserve Perimeter Tree 59 Coast Redwood Sequoia sempervirens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 60 Coast Redwood Sequoia sempervirens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 61 Coast Redwood Sequoia sempervirens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 61 Coast Redwood Sequoia sempervirens 24 40 20 Fair Good Moderate Preserve Perimeter Tree 61 Coast Redwood Sequoia sempervirens 24 20 Fair Good Moderate Preserve Perimeter Tree	56	Coast Redwood	Sequoia sempervirens	12	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
59 Coast Redwood Sequeia sempervirens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 60 Coast Redwood Sequeia sempervirens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 61 Coast Redwood Sequeia sempervirens 24 40 20 Fair Good Moderate Preserve Perimeter Tree	57	Coast Redwood	Sequoia sempervirens	18	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
60 Coast Redwood Sequeia sempervirens 16 40 20 Fair Good Moderate Preserve Perimeter Tree 61 Coast Redwood Sequeia sempervirens 24 40 20 Fair Good Moderate Preserve Perimeter Tree	58	Coast Redwood	Sequoia sempervirens	24	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
61 Coast Redwood Sequoia sempervirens 24 40 20 Fair Good Moderate Preserve Perimeter Tree	59	Coast Redwood	Sequoia sempervirens	16	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
	60	Coast Redwood	Sequoia sempervirens	16	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
62 Coast Redwood Sequila sempervirens 24 40 20 Fair Good Moderate Preserve Perimeter Tree	61	Coast Redwood	Sequoia sempervirens	24	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree
	62	Coast Redwood	Sequoia sempervirens	24	40	20	Fair	Good	Moderate	Preserve	Perimeter Tree

			DBH		Canopy Spread	Health	Structural	Suitability For		
ID	Common Name	Species	(inches)	Height (feet)	(feet)	Condition	Condition	Preservation	Disposition	Observations
63 64	Coast Redwood Coast Redwood	Sequoia sempervirens Sequoia sempervirens	58	40 40	20 20	Fair Fair	Good	Moderate Moderate	Preserve Preserve	Perimeter Tree Perimeter Tree
65	Coast Redwood	Sequoia sempervirens	24	55	25	Good	Good	Good	Preserve	Perimeter Tree
66	Coast Redwood	Sequoia sempervirens	14	30	20	Good	Good	Good	Preserve	Perimeter Tree
67	Coast Redwood	Sequoia sempervirens	24	50	30	Good	Good	Good	Preserve	Perimeter Tree
68	Coast Redwood	Sequoia sempervirens	24	25	20	Good	Good	Good	Preserve	Perimeter Tree
69	Coast Redwood	Sequoia sempervirens	12	50	30	Good	Good	Good	Preserve	Perimeter Tree
70	Coast Redwood	Sequoia sempervirens	18	50	30	Good	Good	Good	Preserve	Perimeter Tree
71	Coast Redwood Coast Redwood	Sequoia sempervirens Sequoia sempervirens	12	50 40	30 20	Good	Good	Good	Preserve Preserve	Perimeter Tree Perimeter Tree
73	Southern Live Oak	Quercus virginiana	3	10	10	Excellent	Excellent	Good	Removed Based On Design Plans	Young Tree
74	Coast Redwood	Sequoia sempervirens	18	30	20	Good	Good	Good	Preserve	Perimeter Tree
75	Coast Redwood	Sequoia sempervirens	6	15	10	Good	Good	Good	Preserve	Perimeter Tree
76	Coast Redwood	Sequoia sempervirens	22	45	20	Good	Good	Good	Preserve	Perimeter Tree
77	Coast Redwood	Sequoia sempervirens	12	40	20	Good	Good	Good	Preserve	Perimeter Tree
78	Coast Redwood	Sequoia sempervirens	22	50	30	Good	Good	Good	Preserve	Perimeter Tree
79	Coast Redwood	Sequoia sempervirens	22	50	30	Good	Good	Good	Preserve	Perimeter Tree
80	Coast Redwood Coast Redwood	Sequoia sempervirens	18	45	<u>30</u> 30	Good	Good	Good	Preserve	Perimeter Tree
81	Coast Redwood	Sequoia sempervirens Sequoia sempervirens	24	45 55	30	Good	Good	Good	Preserve Preserve	Perimeter Tree Perimeter Tree
83	Coast Redwood	Sequoia sempervirens	20	55	30	Good	Good	Good	Preserve	Perimeter Tree
84	Coast Redwood	Sequoia sempervirens	6	55	30	Good	Good	Good	Preserve	Perimeter Tree
85	Coast Redwood	Sequoia sempervirens	20	55	30	Good	Good	Good	Preserve	Perimeter Tree
86	Coast Redwood	Sequoia sempervirens	24	55	30	Good	Good	Good	Preserve	Perimeter Tree
87	Coast Redwood	Sequoia sempervirens	18	55	30	Good	Good	Good	Preserve	Perimeter Tree
88	Coast Redwood	Sequoia sempervirens	22	55	30	Good	Good	Good	Preserve	Perimeter Tree
89	Coast Redwood	Sequoia sempervirens	24	55	30	Good	Good	Good	Preserve	Perimeter Tree
90	Coast Redwood	Sequoia sempervirens	24	55	30	Good	Good	Good	Preserve	Perimeter Tree
91 92	Southern Live Oak Coast Redwood	Quercus virginiana Seguoia sempervirens	4 20	10 45	10 30	Excellent Good	Excellent Good	Good	Preserve	Young Tree Perimeter Tree
92	Coast Redwood	Sequoia sempervirens	18	45	30	Good	Good	Good	Preserve	Perimeter Tree
94	Coast Redwood	Sequoia sempervirens	14	40	32	Good	Good	Good	Preserve	Perimeter Tree
95	Evergreen Ash	Fraxinus uhdei	24	45	35	Fair	Fair	Moderate	Preserve	
96	Southern Live Oak	Quercus virginiana	2	10	5	Excellent	Excellent	Good	Preserve	Young Tree
97	Evergreen Ash	Fraxinus uhdei	28	60	40	Fair	Fair	Moderate	Preserve	
98	Southern Live Oak	Quercus virginiana	2	10	5	Excellent	Excellent	Good	Preserve	Young Tree
99	Evergreen Ash	Fraxinus uhdei	28	60	40	Fair	Fair	Moderate	Preserve	
100	Coast Live Oak	Quercus agrifolia	2	10	5	Excellent	Excellent	Good	Preserve	Young Tree
101	California Black Oak Coast Redwood	Quercus kelloggii Sequoia sempervirens	2	10 50	30	Excellent Good	Excellent Good	Good	Preserve Preserve	Young Tree
102	Holly Oak	Quercus ilex	4	10	10	Excellent	Excellent	Good	Preserve	Young Tree
104	Holly Oak	Quercus ilex	4	10	10	Excellent	Excellent	Good	Preserve	Young Tree
105	Holly Oak	Quercus ilex	2	10	10	Excellent	Excellent	Good	Preserve	Young Tree
106	Holly Oak	Quercus ilex	2	10	10	Excellent	Excellent	Good	Preserve	Young Tree
107	Holly Oak	Quercus ilex	4	10	10	Excellent	Excellent	Good	Preserve	Young Tree
108	Holly Oak	Quercus ilex	6	10	10	Excellent	Excellent	Good	Preserve	Young Tree
109	Holly Oak	Quercus ilex	6	10	10	Excellent	Excellent	Good	Preserve	Young Tree
110	Holly Oak Holly Oak	Quercus ilex Quercus ilex	6	10 10	10	Excellent Excellent	Excellent Excellent	Good	Preserve Preserve	Young Tree Young Tree
111	Holly Oak	Quercus ilex	6	10	10	Excellent	Excellent	Good	Preserve	Young Tree
112	Holly Oak	Quercus ilex	6	10	10	Excellent	Excellent	Good	Preserve	Young Tree
114	Holly Oak	Quercus ilex	2	10	10	Excellent	Excellent	Good	Preserve	Young Tree
115	Holly Oak	Quercus ilex	6	10	10	Excellent	Excellent	Good	Preserve	Young Tree
116	Southern Live Oak	Quercus virginiana	8	30	20	Good	Good	Good	Removed Based On Design Plans	
117	Valley Oak	Quercus lobata	4	10	10	Excellent	Excellent	Good	Removed Based On Design Plans	Young Tree
118	Valley Oak	Quercus lobata	12	30	30	Good	Good	Good	Removed Based On Design Plans	
119	London Plane	Platanus x acerifolia	10	30	30	Good	Good	Good	Removed Based On Design Plans	
120	Coast Live Oak	Quercus agrifolia	12	10	15	Good	Good	Good	Removed Based On Design Plans	
121	Cork Oak Coast Live Oak	Quercus suber Quercus agrifolia	18	30 10	30 15	Good	Good	Good	Removed Based On Design Plans Removed Based On Design Plans	
122	Chinese Pistache	Pistacia chinensis	6	10	10	Excellent	Excellent	Good	Removed Based On Design Plans	
124	Chinese Pistache	Pistacia chinensis	6	10	10	Excellent	Excellent	Good	Removed Based On Design Plans	
125	Chinese Pistache	Pistacia chinensis	6	10	10	Excellent	Excellent	Good	Removed Based On Design Plans	
126	Chinese Pistache	Pistacia chinensis	6	10	10	Excellent	Excellent	Good	Removed Based On Design Plans	
127	Chinese Pistache	Pistacia chinensis	6	10	10	Excellent	Excellent	Good	Removed Based On Design Plans	

			2011		Canopy					
ID	Common Name	Species	DBH (inches)	Height (feet)	Spread (feet)	Health Condition	Structural Condition	Suitability For Preservation	Disposition	Observations
128	Chinese Pistache	Pistacia chinensis	6	10	10	Excellent	Excellent	Good	Removed Based On Design Plans	
129	Southern Live Oak	Quercus virginiana	2	10	5	Excellent	Excellent	Good	Removed Based On Design Plans	Young
130	Southern Live Oak	Quercus virginiana Quercus virginiana	6	20 15	10	Good	Good	Good	Removed Based On Design Plans Removed Based On Design Plans	
132	Trident Maple	Acer buergerianum	6	15	10	Good	Good	Good	Removed Based On Design Plans	
133	Trident Maple	Acer buergerianum	6	10	10	Good	Good	Good	Removed Based On Design Plans	
134	Willow Oak	Quercus phellos	4	15	10	Good	Good	Good	Removed Based On Design Plans	
135	Trident Maple	Acer buergerianum	4	15	10	Good	Good	Good	Removed Based On Design Plans	
136	Trident Maple	Acer buergerianum	4	15	10	Good	Good	Good	Removed Based On Design Plans	
137	Willow Oak	Quercus phellos	4	15	10	Good	Good	Good	Removed Based On Design Plans	
138	Willow Oak	Quercus phellos	6	15	15	Good	Good	Good	Removed Based On Design Plans	
139	Willow Oak	Quercus phellos	6	15	15	Good	Good	Good	Removed Based On Design Plans	
140	Trident Maple	Acer buergerianum	4	10	10	Good	Good	Good	Removed Based On Design Plans	
141	Trident Maple	Acer buergerianum	4	10	10	Good	Good	Good	Removed Based On Design Plans	
142 143	Willow Oak Willow Oak	Quercus phellos Quercus phellos	2	10 10	5	Good	Good	Good	Removed Based On Design Plans Removed Based On Design Plans	
145	Southern Live Oak	Quercus virginiana	4	15	5	Good	Good	Good	Removed Based On Design Plans	
145	Southern Live Oak	Quercus virginiana	2	10	5	Good	Good	Good	Removed Based On Design Plans	
146	Willow Oak	Quercus phellos	2	10	5	Good	Good	Good	Removed Based On Design Plans	
147	Willow Oak	Quercus phellos	2	10	5	Good	Good	Good	Removed Based On Design Plans	
148	Willow Oak	Quercus phellos	2	10	5	Good	Good	Good	Removed Based On Design Plans	
149	Trident Maple	Acer buergerianum	4	10	10	Good	Good	Good	Removed Based On Design Plans	
150	Willow Oak	Quercus phellos	6	10	10	Good	Good	Good	Removed Based On Design Plans	
151	Willow Oak	Quercus phellos	2	15	10	Good	Good	Good	Removed Based On Design Plans	
152	Willow Oak	Quercus phellos	2	10	5	Good	Good	Good	Removed Based On Design Plans	
153	Willow Oak	Quercus phellos	2	10	5	Good	Good	Good	Removed Based On Design Plans	
154	Willow Oak	Quercus phellos	2	10	5	Good	Good	Good	Removed Based On Design Plans	
155	Trident Maple	Acer buergerianum Acer buergerianum	4	10 10	10	Good	Good	Good	Removed Based On Design Plans	
150	Willow Oak	Quercus phellos	4	15	10	Good	Good	Good	Removed Based On Design Plans Removed Based On Design Plans	
158	Willow Oak	Quercus phellos	4	15	10	Good	Good	Good	Removed Based On Design Plans	
159	Southern Live Oak	Quercus virginiana	2	10	5	Good	Good	Good	Removed Based On Design Plans	
160	Southern Live Oak	Quercus virginiana	6	10	10	Good	Good	Good	Removed Based On Design Plans	
161	Trident Maple	Acer buergerianum	4	10	10	Good	Good	Good	Removed Based On Design Plans	
162	Trident Maple	Acer buergerianum	6	10	10	Good	Good	Good	Removed Based On Design Plans	
163	Willow Oak	Quercus phellos	6	15	10	Good	Good	Good	Removed Based On Design Plans	
164	Willow Oak	Quercus phellos	6	15	10	Good	Good	Good	Removed Based On Design Plans	
165	Trident Maple	Acer buergerianum	6	10	10	Good	Good	Good	Removed Based On Design Plans	
166	Trident Maple	Acer buergerianum	6	15	10	Good	Good	Good	Removed Based On Design Plans	
167 168	Willow Oak Southern Live Oak	Quercus phellos Quercus virginiana	6	15 10	10 5	Good	Good	Good	Removed Based On Design Plans Removed Based On Design Plans	
169	Southern Live Oak	Quercus virginiana	8	15	15	Good	Good	Good	Removed Based On Design Plans	
170	Southern Live Oak	Quercus virginiana	4	10	5	Good	Good	Good	Removed Based On Design Plans	
171	Trident Maple	Acer buergerianum	6	15	10	Good	Good	Good	Removed Based On Design Plans	
172	Trident Maple	Acer buergerianum	4	10	10	Good	Good	Good	Removed Based On Design Plans	
173	Willow Oak	Quercus phellos	6	15	10	Good	Good	Good	Removed Based On Design Plans	
174	Willow Oak	Quercus phellos	6	15	10	Good	Good	Good	Removed Based On Design Plans	
175	Chinese Pistache	Pistacia chinensis	4	15	10	Good	Good	Good	Removed Based On Design Plans	
176	Chinese Pistache	Pistacia chinensis	4	15	10	Good	Good	Good	Removed Based On Design Plans	
177	Chinese Pistache	Pistacia chinensis	6	15	10	Good	Good	Good	Removed Based On Design Plans	
178	Chinese Pistache	Pistacia chinensis Pistacia chinensis	4	15	10	Good	Good	Good	Removed Based On Design Plans	
179 180	Chinese Pistache Chinese Pistache	Pistacia chinensis Pistacia chinensis	6	15 10	10	Good	Good	Good	Removed Based On Design Plans Removed Based On Design Plans	
180	Chinese Pistache Chinese Pistache	Pistacia chinensis Pistacia chinensis	4	10	10	Good	Good	Good	Removed Based On Design Plans	
182	Chinese Pistache	Pistacia chinensis	4	10	10	Good	Good	Good	Removed Based On Design Plans	
183	Chinese Pistache	Pistacia chinensis	4	10	10	Good	Good	Good	Removed Based On Design Plans	
184	Chinese Pistache	Pistacia chinensis	6	10	10	Good	Good	Good	Removed Based On Design Plans	
185	Chinese Pistache	Pistacia chinensis	6	10	10	Good	Good	Good	Removed Based On Design Plans	
186	Chinese Pistache	Pistacia chinensis	4	10	10	Good	Good	Good	Removed Based On Design Plans	
187	Chinese Pistache	Pistacia chinensis	4	10	10	Good	Good	Good	Removed Based On Design Plans	
188	Coast Live Oak	Quercus agrifolia	10	15	10	Good	Good	Good	Removed Based On Design Plans	
189	London Plane	Platanus x acerifolia	10	20	20	Good	Good	Good	Removed Based On Design Plans	
190	Coast Live Oak	Quercus agrifolia	12	15	15	Good	Good	Good	Removed Based On Design Plans	
191	Holly Oak	Quercus ilex	4	10	5	Good	Good	Good	Preserve	
192	Coast Live Oak	Quercus agrifolia	12	15	20	Good	Good	Good	Removed Based On Design Plans	

ID	Common Name	Species	DBH (inches)	Height (feet)	Canopy Spread (feet)	Health Condition	Structural Condition	Suitability For Preservation	Disposition	Observations
193	London Plane	Platanus x acerifolia	6	20	15	Good	Good	Good	Removed Based On Design Plans	
194	London Plane	Platanus x acerifolia	12	20	20	Good	Good	Good	Removed Based On Design Plans	
195	London Plane	Platanus x acerifolia	8	20	20	Good	Good	Good	Removed Based On Design Plans	
196	London Plane	Platanus x acerifolia	10	20	20	Good	Good	Good	Removed Based On Design Plans	
197	London Plane	Platanus x acerifolia	10	20	20	Good	Good	Good	Removed Based On Design Plans	
198	London Plane	Platanus x acerifolia	10	20	20	Good	Good	Good	Removed Based On Design Plans	
199	London Plane	Platanus x acerifolia	6	15	10	Good	Good	Good	Removed Based On Design Plans	
200	London Plane	Platanus x acerifolia	6	20	20	Good	Good	Good	Removed Based On Design Plans	
201	London Plane	Platanus x acerifolia	12	20	15	Good	Good	Good	Removed Based On Design Plans	
202	London Plane	Platanus x acerifolia	4	10	10	Good	Good	Good	Removed Based On Design Plans	
203	London Plane	Platanus x acerifolia	10	20	20	Good	Good	Good	Removed Based On Design Plans	Multistemmed
204	London Plane	Platanus x acerifolia	10	20	20	Good	Good	Good	Removed Based On Design Plans	Multistemmed
205	London Plane	Platanus x acerifolia	10	20	20	Good	Good	Good	Removed Based On Design Plans	Multistemmed
206	Olive	Olea europaea	10	15	15	Good	Good	Good	Removed Based On Design Plans	Multistemmed
207	Olive	Olea europaea	10	15	15	Good	Good	Good	Removed Based On Design Plans	Multistemmed
208	Southern Live Oak	Quercus virginiana	12	20	20	Good	Good	Good	Removed Based On Design Plans	