APPENDIX A: AIR QUALITY AND GREENHOUSE GAS EMISSIONS DATA | |
 | |--|------| # 1. Air Quality Ambient air quality standards (AAQS) have been adopted at State and federal levels for criteria air pollutants. In addition, both the State and federal government regulate the release of toxic air contaminants (TACs). The City of San Francisco is in the San Francisco Bay Area Air Basin (SFBAAB) and is subject to the rules and regulations imposed by the Bay Area Air Quality Management District (BAAQMD), as well as the California AAQS adopted by the California Air Resources Board (CARB) and national AAQS adopted by the United States Environmental Protection Agency (EPA). Federal, State, regional, and local laws, regulations, plans, or guidelines that are potentially applicable to the proposed project are summarized below. The discussion also identifies the natural factors in the air basin that affect air pollution. ## 1.1 REGULATORY FRAMEWORK ## 1.1.1 Ambient Air Quality Standards The Clean Air Act (CAA) was passed in 1963 by the US Congress and has been amended several times. The 1970 Clean Air Act amendments strengthened previous legislation and laid the foundation for the regulatory scheme of the 1970s and 1980s. In 1977, Congress again added several provisions, including nonattainment requirements for areas not meeting National AAQS and the Prevention of Significant Deterioration program. The 1990 amendments represent the latest in a series of federal efforts to regulate the protection of air quality in the United States. The CAA allows states to adopt more stringent standards or to include other pollution species. The California Clean Air Act (CCAA), signed into law in 1988, requires all areas of the state to achieve and maintain the California AAQS by the earliest practical date. The California AAQS tend to be more restrictive than the National AAQS, based on even greater health and welfare concerns. These National AAQS and California AAQS are the levels of air quality considered to provide a margin of safety in the protection of the public health and welfare. They are designed to protect "sensitive receptors" most susceptible to further respiratory distress, such as asthmatics, the elderly, very young children, people already weakened by other disease or illness, and persons engaged in strenuous work or exercise. Healthy adults can tolerate occasional exposure to air pollutant concentrations considerably above these minimum standards before adverse effects are observed. Both California and the federal government have established health-based AAQS for seven air pollutants. As shown in Table 1, these pollutants include ozone (O₃), nitrogen dioxide (NO₂), carbon monoxide (CO), sulfur dioxide (SO₂), coarse inhalable particulate matter (PM₁₀), fine inhalable particulate matter (PM_{2.5}), and lead (Pb). In addition, the state has set standards for sulfates, hydrogen sulfide, vinyl chloride, and visibility-reducing particles. These standards are designed to protect the health and welfare of the populace with a reasonable margin of safety. Table 1 Ambient Air Quality Standards for Criteria Pollutants | Pollutant | Averaging Time | California
Standard¹ | Federal Primary
Standard ² | Major Pollutant Sources | | |--|----------------------------|--|--|--|--| | Ozone (O ₃) ³ | 1 hour | 0.09 ppm | * | Motor vehicles, paints, coatings, and solvents. | | | | 8 hours | 0.070 ppm | 0.070 ppm | | | | Carbon Monoxide (CO) | 1 hour | 20 ppm | 35 ppm | Internal combustion engines, primarily gasoline-powered motor vehicles. | | | (00) | 8 hours | 9.0 ppm | 9 ppm | motor verilides. | | | Nitrogen Dioxide (NO ₂) | Annual Arithmetic
Mean | 0.030 ppm | 0.053 ppm | Motor vehicles, petroleum-refining operations, industrial sources, aircraft, ships, and railroads. | | | | 1 hour | 0.18 ppm | 0.100 ppm | | | | Sulfur Dioxide
(SO ₂) | Annual Arithmetic
Mean | * | 0.030 ppm | Fuel combustion, chemical plants, sulfur recovery plants, and metal processing. | | | | 1 hour | 0.25 ppm | 0.075 ppm | | | | | 24 hours | 0.04 ppm | 0.14 ppm | | | | Respirable Coarse
Particulate Matter | Annual Arithmetic
Mean | 20 μg/m3 | * | Dust and fume-producing construction, industrial, and agricultural operations, combustion, atmospheric | | | (PM ₁₀) | 24 hours | 50 μg/m3 | 150 µg/m3 | photochemical reactions, and natural activities (e.g., wind raised dust and ocean sprays). | | | Respirable Fine
Particulate Matter
(PM _{2.5}) ⁴ | Annual Arithmetic
Mean | 12 μg/m3 | 12 µg/m3 | Dust and fume-producing construction, industrial, and agricultural operations, combustion, atmospheric photochemical reactions, and natural activities (e.g., | | | (F IVI2.5) | 24 hours | * | 35 µg/m3 | raised dust and ocean sprays). | | | Lead (Pb) | 30-Day Average | 1.5 µg/m3 | * | Present source: lead smelters, battery manufacturing & | | | | Calendar Quarter | * | 1.5 µg/m3 | recycling facilities. Past source: combustion of leaded gasoline. | | | | Rolling 3-Month
Average | * | 0.15 µg/m3 | | | | Sulfates (SO ₄) ⁵ | 24 hours | 25 µg/m3 | * | Industrial processes. | | | Visibility Reducing Particles | 8 hours | ExCo
=0.23/km
visibility of
10≥ miles | No Federal
Standard | Visibility-reducing particles consist of suspended particulate matter, which is a complex mixture of tiny particles that consists of dry solid fragments, solid cowith liquid coatings, and small droplets of liquid. The particles vary greatly in shape, size and chemical composition, and can be made up of many different materials such as metals, soot, soil, dust, and salt. | | | Hydrogen Sulfide | 1 hour | 0.03 ppm | No Federal
Standard | Hydrogen sulfide (H ₂ S) is a colorless gas with the odor of rotten eggs. It is formed during bacterial decomposition o sulfur-containing organic substances. Also, it can be present in sewer gas and some natural gas and can be emitted as the result of geothermal energy exploitation. | | Table 1 Ambient Air Quality Standards for Criteria Pollutants | This is a second of the | | | | | |--|----------------|-------------------------------------|--|---| | Pollutant | Averaging Time | California
Standard ¹ | Federal Primary
Standard ² | Major Pollutant Sources | | Vinyl Chloride | 24 hours | 0.01 ppm | No Federal
Standard | Vinyl chloride (chloroethene), a chlorinated hydrocarbon, is a colorless gas with a mild, sweet odor. Most vinyl chloride is used to make polyvinyl chloride (PVC) plastic and vinyl products. Vinyl chloride has been detected near landfills, sewage plants, and hazardous waste sites, due to microbial breakdown of chlorinated solvents. | Source: California Air Resources Board (CARB). 2016, October 1. Ambient Air Quality Standards. http://www.arb.ca.gov/research/aaqs/aaqs2.pdf. Notes: ppm: parts per million; µg/m³: micrograms per cubic meter California has also adopted a host of other regulations that reduce criteria pollutant emissions, including: - AB 1493: Pavley Fuel Efficiency Standards - Title 20 California
Code of Regulations (CCR): Appliance Energy Efficiency Standards - Title 24, Part 6, CCR: Building and Energy Efficiency Standards - Title 24, Part 11, CCR: Green Building Standards Code ## 1.1.2 Air Pollutants of Concern A substance in the air that can cause harm to humans and the environment is known as an air pollutant. Pollutants can be in the form of solid particles, liquid droplets, or gases. In addition, they may be natural or man-made. #### 1.1.2.1 CRITERIA AIR POLLUTANTS The air pollutants emitted into the ambient air by stationary and mobile sources are regulated by federal and state law. Air pollutants are categorized as primary or secondary pollutants. Primary air pollutants are those that are emitted directly from sources. Carbon monoxide (CO), volatile organic compounds (VOC), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), coarse inhalable particulate matter (PM₁₀), fine inhalable particulate matter (PM_{2.5}), and lead (Pb) are primary air pollutants. Of these, CO, SO₂, NO₂, PM₁₀, and PM_{2.5} are "criteria air pollutants," which means that ambient air quality standards (AAQS) have been established for them. VOC and oxides of nitrogen (NO_x) are air pollutant precursors that form secondary criteria pollutants through chemical and photochemical reactions in the atmosphere. Ozone (O₃) and NO₂ are the principal secondary pollutants. A description of each of the primary and secondary criteria air pollutants and their known health effects is presented below. ^{*} Standard has not been established for this pollutant/duration by this entity. ¹ California standards for O₃, CO (except 8-hour Lake Tahoe), SO₂ (1 and 24 hour), NO₂, and particulate matter (PM₁₀, PM_{2.5}, and visibility reducing particles), are values that are not to be exceeded. All others are not to be equaled or exceeded. California ambient air quality standards are listed in the Table of Standards in Section 70200 of Title 17 of the California Code of Regulations. ² National standards (other than O₃, PM, and those based on annual arithmetic mean) are not to be exceeded more than once a year. The O₃ standard is attained when the fourth highest 8-hour concentration measured at each site in a year, averaged over three years, is equal to or less than the standard. For PM₁₀, the 24-hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 μg/m³ is equal to or less than one. For PM_{2.5}, the 24-hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standard. ³ On October 1, 2015, the national 8-hour ozone primary and secondary standards were lowered from 0.075 to 0.070 ppm. ⁴ On December 14, 2012, the national annual PM_{2.5} primary standard was lowered from 15 μg/m³ to 12.0 μg/m³. The existing national 24-hour PM_{2.5} standards (primary and secondary) were retained at 35 μg/m³, as was the annual secondary standard of 15 μg/m³. The existing 24-hour PM₁₀ standards (primary and secondary) of 150 μg/m³ also were retained. The form of the annual primary and secondary standards is the annual mean, averaged over 3 years. ⁵ On June 2, 2010, a new 1-hour SO₂ standard was established and the existing 24-hour and annual primary standards were revoked. The 1-hour national standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the 1-hour national standard to the California standard the units can be converted to ppm. In this case, the national standard of 75 ppb is identical to 0.075 ppm. **Carbon Monoxide (CO)** is a colorless, odorless gas produced by incomplete combustion of carbon substances, such as gasoline or diesel fuel. CO is a primary criteria air pollutant. CO concentrations tend to be the highest during winter mornings with little to no wind, when surface-based inversions trap the pollutant at ground levels. The highest ambient CO concentrations are generally found near traffic-congested corridors and intersections. When inhaled at high concentrations, CO combines with hemoglobin in the blood and reduces its oxygen-carrying capacity. This results in reduced oxygen reaching the brain, heart, and other body tissues. This condition is especially critical for people with cardiovascular diseases, chronic lung disease, or anemia, as well as for fetuses. Even healthy people exposed to high CO concentrations can experience headaches, dizziness, fatigue, unconsciousness, and even death. ¹ Volatile Organic Compounds (VOC) are compounds composed primarily of hydrogen and carbon atoms. Internal combustion associated with motor vehicle usage is the major source of ROGs. Other sources of ROGs include evaporative emissions from paints and solvents, the application of asphalt paving, and the use of household consumer products such as aerosols. Adverse effects on human health are not caused directly by ROGs, but rather by reactions of ROGs to form secondary pollutants such as O₃. There are no AAQS established for ROGs. However, because they contribute to the formation of O₃, the Air District has established a significance threshold for this pollutant. Nitrogen Oxides (NO_x) are a by-product of fuel combustion and contribute to the formation of O₃, PM₁₀, and PM_{2.5}. The two major components of NO_x are nitric oxide (NO) and NO₂. The principal component of NO_x produced by combustion is NO, but NO reacts with oxygen to form NO₂, creating the mixture of NO and NO₂ commonly called NO_x. NO₂ absorbs blue light; the result is a brownish-red cast to the atmosphere and reduced visibility. NO is a colorless, odorless gas formed from atmospheric nitrogen and oxygen when combustion takes place under high temperature and/or high pressure.² NO₂ acts as an acute irritant and in equal concentrations is more injurious than NO. At atmospheric concentrations, however, NO₂ is only potentially irritating. There is some indication of a relationship between NO₂ and chronic pulmonary fibrosis. Some increase in bronchitis in children (2 and 3 years old) has also been observed at concentrations below 0.3 parts per million (ppm).³ **Sulfur Dioxide (SO₂)** is a colorless, pungent, irritating gas formed by the combustion of sulfurous fossil fuels. It enters the atmosphere as a result of burning high-sulfur-content fuel oils and coal and from chemical processes at chemical plants and refineries. Gasoline and natural gas have very low sulfur content and do not release significant quantities of SO₂. When SO₂ forms sulfates (SO₄) in the atmosphere, together these pollutants are referred to as sulfur oxides (SO_x). Thus, SO₂ is both a primary and secondary criteria air pollutant. At sufficiently high concentrations, SO₂ may irritate the upper respiratory tract. At lower concentrations and when combined with particulates, SO₂ may do greater harm by injuring lung tissue. ⁴ Suspended Particulate Matter (PM₁₀ and PM_{2.5}) consists of finely divided solids or liquids such as soot, dust, aerosols, fumes, and mists. In the San Francisco Bay Area Air Basin (SFBAAB or Air Basin), most particulate matter is caused by combustion, factories, construction, grading, demolition, agricultural activities, and motor vehicles. Two forms of fine particulates are now recognized and regulated. Inhalable coarse Bay Area Air Quality Management District, 2017, Revised California Environmental Quality Act Air Quality Guidelines. ² Bay Area Air Quality Management District, 2017, Revised California Environmental Quality Act Air Quality Guidelines. ³ Bay Area Air Quality Management District, 2017, Revised California Environmental Quality Act Air Quality Guidelines. ⁴ Bay Area Air Quality Management District, 2017, Revised California Environmental Quality Act Air Quality Guidelines. particles, or PM₁₀, include the particulate matter with an aerodynamic diameter of 10 microns (i.e., 10 millionths of a meter or 0.0004 inch) or less. Inhalable fine particles, or PM_{2.5}, have an aerodynamic diameter of 2.5 microns or less (i.e., 2.5 millionths of a meter or 0.0001 inch). Diesel particulate matter (DPM) is also classified a carcinogen. Extended exposure to particulate matter can increase the risk of chronic respiratory disease. PM₁₀ bypasses the body's natural filtration system more easily than larger particles and can lodge deep in the lungs. The EPA scientific review concluded that PM_{2.5} penetrates even more deeply into the lungs, and this is more likely to contribute to health effects—at concentrations well below current PM₁₀ standards. These health effects include premature death in people with heart or lung disease, nonfatal heart attacks, irregular heartbeat, aggravated asthma, decreased lung function, and increased respiratory symptoms (e.g., irritation of the airways, coughing, or difficulty breathing). Motor vehicles are currently responsible for about half of particulates in the SFBAAB. Wood burning in fireplaces and stoves is another large source of fine particulates. ⁵ Ozone (O₃) is commonly referred to as "smog" and is a gas that is formed when ROGs and NO_x, both by-products of internal combustion engine exhaust, undergo photochemical reactions in the presence of sunlight. O₃ is a secondary criteria air pollutant. O₃ concentrations are generally highest during the summer months when direct sunlight, light winds, and warm temperatures create favorable conditions to the formation of this pollutant. O₃ poses a health threat to those who already suffer from respiratory diseases as well as to healthy people. O₃ levels usually build up during the day and peak in the afternoon hours. Short-term exposure can irritate the eyes and cause constriction of the airways. Besides causing shortness of breath, it can aggravate existing respiratory diseases such as asthma, bronchitis, and emphysema. Chronic exposure to high ozone levels can permanently damage lung tissue. O₃ can also damage plants and trees
and materials such as rubber and fabrics.⁶ **Lead (Pb)** is a metal found naturally in the environment as well as in manufactured products. The major sources of lead emissions have historically been mobile and industrial sources. As a result of the phasing out of leaded gasoline, metal processing is currently the primary source of lead emissions. The highest levels of lead in air are generally found near lead smelters. Other stationary sources are waste incinerators, utilities, and lead-acid battery manufacturers. Because emissions of lead are found only in projects that are permitted by the Air District, lead is not an air quality of concern for the proposed project. ## 1.1.2.2 TOXIC AIR CONTAMINANTS The public's exposure to air pollutants classified as toxic air contaminants (TACs) is a significant environmental health issue in California. In 1983, the California Legislature enacted a program to identify the health effects of TACs and to reduce exposure to these contaminants to protect the public health. The California Health and Safety Code defines a TAC as "an air pollutant which may cause or contribute to an increase in mortality or in serious illness, or which may pose a present or potential hazard to human health." A substance that is listed as a hazardous air pollutant (HAP) pursuant to Section 112(b) of the federal Clean Air Act (42 United States Code §7412[b]) is a toxic air contaminant. Under state law, the California Environmental Protection Agency (Cal/EPA), acting through CARB, is authorized to identify a substance as ⁵ Bay Area Air Quality Management District, 2017, Revised California Environmental Quality Act Air Quality Guidelines. ⁶ Bay Area Air Quality Management District, 2017. Revised California Environmental Quality Act Air Quality Guidelines. a TAC if it determines that the substance is an air pollutant that may cause or contribute to an increase in mortality or to an increase in serious illness, or may pose a present or potential hazard to human health. California regulates TACs primarily through Assembly Bill (AB) 1807 (Tanner Air Toxics Act) and AB 2588 (Air Toxics "Hot Spot" Information and Assessment Act of 1987). The Tanner Air Toxics Act sets forth a formal procedure for CARB to designate substances as TACs. Once a TAC is identified, CARB adopts an "airborne toxics control measure" for sources that emit designated TACs. If there is a safe threshold for a substance (i.e., a point below which there is no toxic effect), the control measure must reduce exposure to below that threshold. If there is no safe threshold, the measure must incorporate toxics best available control technology to minimize emissions. To date, CARB has established formal control measures for 11 TACs, all of which are identified as having no safe threshold. Air toxics from stationary sources are also regulated in California under the Air Toxics "Hot Spot" Information and Assessment Act of 1987. Under AB 2588, toxic air contaminant emissions from individual facilities are quantified and prioritized by the air quality management district or air pollution control district. High priority facilities are required to perform a health risk assessment and, if specific thresholds are exceeded, are required to communicate the results to the public in the form of notices and public meetings. By the last update to the TAC list in December 1999, CARB had designated 244 compounds as TACs.⁷ Additionally, CARB has implemented control measures for a number of compounds that pose high risks and show potential for effective control. The majority of the estimated health risks from TACs can be attributed to relatively few compounds, the most important being particulate matter from diesel-fueled engines. ## **Diesel Particulate Matter** In 1998, CARB identified particulate emissions from diesel-fueled engines (diesel PM) as a TAC. Previously, the individual chemical compounds in diesel exhaust were considered TACs. Almost all diesel exhaust particle mass is 10 microns or less in diameter. Because of their extremely small size, these particles can be inhaled and eventually trapped in the bronchial and alveolar regions of the lung. CARB has promulgated the following specific rules to limit TAC emissions: - 13 CCR Chapter 10, Section 2485, Airborne Toxic Control Measure to Limit Diesel-Fueled Commercial Motor Vehicle Idling - 13 CCR Chapter 10, Section 2480, Airborne Toxic Control Measure to Limit School Bus Idling and Idling at Schools - 13 CCR Section 2477 and Article 8, Airborne Toxic Control Measure for In-Use Diesel-Fueled Transport Refrigeration Units (TRU) and TRU Generator Sets and Facilities Where TRUs Operate ## **Community Risk** In addition, to reduce exposure to TACs, CARB developed and approved the *Air Quality and Land Use Handbook: A Community Health Perspective*⁸ to provide guidance regarding the siting of sensitive land uses in the ⁷ California Air Resources Board (CARB). 1999. California Air Resources Board (CARB). Final Staff Report: Update to the Toxic Air Contaminant List. https://ww3.arb.ca.gov/toxics/id/finalstaffreport.htm. ⁸ California Air Resources Board (CARB). 2005, April. Air Quality and Land Use Handbook: A Community Health Perspective. https://www.arb.ca.gov/ch/handbook.pdf. vicinity of freeways, distribution centers, rail yards, ports, refineries, chrome-plating facilities, dry cleaners, and gasoline-dispensing facilities. This guidance document was developed to assess compatibility and associated health risks when placing sensitive receptors near existing pollution sources. CARB's recommendations on the siting of new sensitive land uses were based on a compilation of recent studies that evaluated data on the adverse health effects from proximity to air pollution sources. The key observation in these studies is that proximity to air pollution sources substantially increases exposure and the potential for adverse health effects. There are three carcinogenic toxic air contaminants that constitute the majority of the known health risks from motor vehicle traffic, DPM from trucks, and benzene and 1,3-butadiene from passenger vehicles. CARB recommendations are based on data that show that localized air pollution exposures can be reduced by as much as 80 percent by following CARB minimum distance separations. ## 1.1.3 Bay Area Air Quality Management District The Air District is the agency responsible for assuring that the National and California AAQS are attained and maintained in the Air Basin. Air quality conditions in the Air Basin have improved significantly since the Air District was created in 1955. The Air District prepares air quality management plans (AQMP) to attain ambient air quality standards in the Air Basin. The Air District prepares ozone attainment plans for the National O₃ standard and clean air plans for the California O₃ standard. These air quality management plans are prepared in coordination with Association of Bay Area Governments (ABAG) and the Metropolitan Transportation Commission (MTC). The Air District adopted the 2017 Clean Air Plan, Spare the Air, Cool the Climate (2017 Clean Air Plan) on April 19, 2017, making it the most recent adopted comprehensive plan. The 2017 Clean Air Plan incorporates significant new scientific data, primarily in the form of updated emissions inventories, ambient measurements, new meteorological episodes, and new air quality modeling tools. #### 1.1.3.1 BAY AREA AIR QUALITY MANAGEMENT DISTRICT 2017 CLEAN AIR PLAN # 2017 Spare the Air, Cool the Climate: A Blueprint for Clean Air and Climate Protection in the Bay Area The 2017 Clean Air Plan serves as an update to the adopted Bay Area 2010 Clean Air Plan and continues in providing the framework for SFBAAB to achieve attainment of the California and National AAQS. The 2017 Clean Air Plan updates the Bay Area's ozone plan, which is based on the "all feasible measures" approach to meet the requirements of the California Clean Air Act. Additionally, it sets a goal of reducing health risk impacts to local communities by 20 percent by 2020. Furthermore, the 2017 Clean Air Plan also lays the groundwork for reducing GHG emissions in the Bay Area to meet the state's 2030 GHG reduction target and 2050 GHG reduction goal. It also includes a vision for the Bay Area in a post-carbon year 2050 that encompasses the following 9: - Construct buildings that are energy efficient and powered by renewable energy. - Walk, bicycle, and use public transit for the majority of trips and use electric-powered autonomous public transit fleets. ⁹ Bay Area Air Quality Management District. 2017, April 19. Final 2017 Clean Air Plan, Spare the Air, Cool the Climate: A Blueprint for Clean Air and Climate Protection in the Bay Area. http://www.baaqmd.gov/plans-and-climate/air-quality-plans/plans-under-development. - Incubate and produce clean energy technologies. - Live a low-carbon lifestyle by purchasing low-carbon foods and goods in addition to recycling and putting organic waste to productive use. A comprehensive multipollutant control strategy has been developed to be implemented in the next three to five years to address public health and climate change and to set a pathway to achieve the 2050 vision. The control strategy includes 85 control measures to reduce emissions of ozone, particulate matter, TACs, and GHG from a full range of emission sources. These control measures cover the following sectors: 1) stationary (industrial) sources; 2) transportation; 3) energy; 4) agriculture; 5) natural and working lands; 6) waste management; 7) water; and 8) super-GHG pollutants. Overall, the proposed control strategy is based on the following key priorities: - Reduce emissions of criteria air pollutants and toxic air contaminants from all key sources. - Reduce emissions of "super-GHGs" such as methane, black carbon, and fluorinated gases. - Decrease demand for fossil fuels (gasoline, diesel, and natural gas). - Increase efficiency of the energy
and transportation systems. - Reduce demand for vehicle travel, and high-carbon goods and services. - Decarbonize the energy system. - Make the electricity supply carbon-free. - Electrify the transportation and building sectors. ## 1.1.3.2 BAAQMD'S COMMUNITY AIR RISK EVALUATION PROGRAM (CARE) The BAAQMD's Community Air Risk Evaluation (CARE) program was initiated in 2004 to evaluate and reduce health risks associated with exposure to outdoor TACs in the Bay Area. Based on findings of the latest report, DPM was found to account for approximately 85 percent of the cancer risk from airborne toxics. Carcinogenic compounds from gasoline-powered cars and light duty trucks were also identified as significant contributors: 1,3-butadiene contributed 4 percent of the cancer risk-weighted emissions, and benzene contributed 3 percent. Collectively, five compounds—DPM, 1,3-butadiene, benzene, formaldehyde, and acetaldehyde—were found to be responsible for more than 90 percent of the cancer risk attributed to emissions. All of these compounds are associated with emissions from internal combustion engines. The most important sources of cancer risk—weighted emissions were combustion-related sources of DPM, including on-road mobile sources (31 percent), construction equipment (29 percent), and ships and harbor craft (13 percent). A 75 percent reduction in DPM was predicted between 2005 and 2015 when the inventory accounted for CARB's diesel regulations. Overall, cancer risk from TACs dropped by more than 50 percent between 2005 and 2015, when emissions inputs accounted for State diesel regulations and other reductions. ¹⁰ Modeled cancer risks from TAC in 2005 were highest near sources of DPM: near core urban areas, along major roadways and freeways, and near maritime shipping terminals. The highest modeled risks were found east of San Francisco, near West Oakland, and the Maritime Port of Oakland. BAAQMD has identified seven impacted communities in the Bay Area: Western Contra Costa County and the cities of Richmond and San Pablo Bay Area Air Quality Management District. 2014. Improving Air Quality & Health in Bay Area Communities, Community Air Risk Program (CARE) Retrospective and Path Forward (2004–2013), April. - Western Alameda County along the Interstate 880 (I-880) corridor and the cities of Berkeley, Alameda, Oakland, and Hayward - San Jose - Eastern side of San Francisco - Concord - Vallejo - Pittsburgh and Antioch The project site is not within a CARE-program impacted community. #### 1.1.3.3 AB 617 COMMUNITY ACTION PLANS In July of 2017, Governor Brown signed Assembly Bill 617 to develop a new community focused program to more effectively reduce exposure to air pollution and preserve public health in environmental justice communities. The bill directs CARB and all local air districts to take measures to protect communities disproportionally impacted by air pollution through monitoring and implementing air pollution control strategies. On September 27, 2018, CARB approved BAAQMD's recommended communities for monitoring and emission reduction planning. The state approved communities for year 1 of the program, as well as communities that would move forward over the next five years. Bay Area recommendations included all the Community Air Risk Evaluation (CARE) areas, as well as areas with large sources of air pollution (refineries, seaports, airports, etc.), areas identified via statewide screening tools as having pollution and/or health burden vulnerability, and areas with low life expectancy.¹¹ #### Year 1 Communities: - West Oakland. The West Oakland community was selected for BAAQMD's first Community Action Plan. In 2017, cancer risk in from sources in West Oakland (local sources) was 204 in a million. The primary sources of air pollution in West Oakland include heavy truck and cars, port and rail sources, large industries, and to a lesser extent other sources such as residential sources (i.e., woodburning). The majority (over 90 percent) of cancer risk is from diesel PM_{2.5}. 12 - Richmond: Richmond was selected for a community monitoring plan in year 1 of the AB 617 program. The Richmond area is in western Contra Costa County and includes most of the City of Richmond and portions of El Cerrito. It also includes communities just north and east of Richmond, such as San Pablo and several unincorporated communities, including North Richmond. The primary goals of the Richmond monitoring effort are to leverage historic and current monitoring studies, to better characterize the area's mix of sources, and to more fully understand the associated air quality and pollution impact. ¹³ BAAQMD. 2019, April 16. San Francisco Bay Area Community Health Protection Program. https://www.baaqmd.gov/~/media/files/ab617-community-health/2019_0325_ab617onepager-pdf.pdf?la=en BAAQMD. 2019, October 2. West Oakland Community Action Plan.. https://www.baaqmd.gov/community-health/community-health-protection-program/west-oakland-community-action-plan BAAQMD. 2019, April 16. San Francisco Bay Area Community Health Protection Program. https://www.baaqmd.gov/~/media/files/ab617-community-health/2019_0325_ab617onepager-pdf.pdf?la=en - Year 2-5 Communities: - East Oakland/San Leandro, Eastern San Francisco, the Pittsburg-Bay Point area, San Jose, Tri-Valley, and Vallejo are slated for action in years 2-5 of the AB 617 program. ## 1.1.3.4 REGULATION 7, ODOROUS SUBSTANCES Sources of objectionable odors may occur within the City. BAAQMD's Regulation 7, Odorous Substances, places general limitations on odorous substances and specific emission limitations on certain odorous compounds. Odors are also regulated under BAAQMD Regulation 1, Rule 1-301, Public Nuisance, which states that "no person shall discharge from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance or annoyance to any considerable number of persons or the public; or which endangers the comfort, repose, health or safety of any such persons or the public, or which causes, or has a natural tendency to cause, injury or damage to business or property." Under BAAQMD's Rule 1-301, a facility that receives three or more violation notices within a 30-day period can be declared a public nuisance. #### 1.1.3.5 OTHER BAAQMD REGULATIONS In addition to the plans and programs described above, BAAQMD administers a number of specific regulations on various sources of pollutant emissions that would apply to individual development projects: - BAAQMD, Regulation 2, Rule 2, New Source Review - BAAQMD, Regulation 2, Rule 5, New Source Review of Toxic Air Contaminants - BAAQMD Regulation 6, Rule 1, General Requirements - BAAQMD Regulation 6, Rule 2, Commercial Cooking Equipment - BAAQMD Regulation 8, Rule 3, Architectural Coatings - BAAQMD Regulation 8, Rule 4, General Solvent and Surface Coatings Operations - BAAQMD Regulation 8, Rule 7, Gasoline Dispensing Facilities - BAAOMD Regulation 11, Rule 2, Asbestos, Demolition, Renovation and Manufacturing) - BAAQMD Regulation 11, Rule 18, Reduction of Risk from Air Toxic Emissions at Existing Facilities ## 1.1.4 Plan Bay Area Plan Bay Area is the Bay Area's Regional Transportation Plan/Sustainable Community Strategy. The 2050 blueprint to Plan Bay Area was adopted jointly by the ABAG and MTC in October 2021¹⁵. The Plan Bay Area 2050 serves as a 30-year plan with 35 new strategies to provide a more equitable and resilient future for residents in the Bay Area. This regional plan aims for more affordable and accessible transportation, which will significantly decrease greenhouse gas emissions to meet the state mandate of a 19% reduction in percapita emissions by 2035. ¹⁴ BAAQMD. 2019, April 16. San Francisco Bay Area Community Health Protection Program. https://www.baaqmd.gov/~/media/files/ab617-community-health/2019_0325_ab617onepager-pdf.pdf?la=en ¹⁵ Metropolitan Transportation Commission and Association of Bay Area Governments. 2021, October. Plan Bay Area 2050 Plan. https://www.planbayarea.org/finalplan2050 ## 1.1.5 Santa Clara Valley Transportation Authority The Santa Clara Valley Transportation Authority (VTA) is the congestion management agency for Santa Clara County. VTA is tasked with developing a comprehensive transportation improvement program among local jurisdictions that will reduce traffic congestion and improve land use decision-making and air quality. VTA's latest congestion management program (CMP) is the 2017 Congestion Management Program Document. VTA's countywide transportation model must be consistent with the regional transportation model developed by the MTC with ABAG data. The countywide transportation model is used to help evaluate cumulative transportation impacts of local land use decisions on the CMP system. In addition, VTA's updated CMP includes multi-modal performance standards and trip reduction and transportation demand management strategies consistent with the goal of reducing regional vehicle miles traveled in accordance with Senate Bill 375. The 2017 CMP also includes a discussion of Senate Bill 743 implementation and relationship to the CMP auto level of service standard. Elements discussed in the 2017 CMP for Santa Clara County, include the following: - Transportation Analysis Standards Element: - Monitor and submit report on the level of service on CMP roadway network intersections using CMP software and procedures - Monitor performance of CMP rural highways and freeways. - Multimodal Performance Measures Element: - Collect available transportation performance measurement data for use in land use analysis, deficiency plans and the CIP. - Transportation Model and Database Element: - Certify that the CMP model us consistent with the regional model. - Certify that member agency models are consistent with the CMP model. - Land Use Impact Analysis Element: - Prepare a Transportation Impact Analysis (TIA) for projects that generate 100 or more peak hour trips and submit
to the CMP according to TIA Guidelines schedule. - Submit relevant conditions of approval to VTA for projects generating TIAs. - Prepare quarterly report on VTA comments and local agency adopted conditions for VTA Board, Congestion Management Program and Planning Committee, Policy Advisory Committee, Technical Advisory Committee, Citizens Advisory Committee, and Bicycle and Pedestrian Advisory Committee. - Prepare and submit land use monitoring data to the CMP on all land use projects approved from July 1 to June 30 of the previous year. - Capital Improvement Program Element: - Develop a list of projects intended to maintain or improve the level of service on the designated system and to maintain transit performance standards. - Monitoring and Conformance Element: - Outline the requirements and procedures established for conducting annual traffic LOS and land use monitoring efforts. Support the Traffic Level of Service and Community Form and Impact Analysis Elements. - Multimodal Improvement Plan Element: - Prepare deficiency plans for facilities that violate CMP traffic LOS standards or that are projected to violate LOS standards using the adopted deficiency plan requirements. - Submit Deficiency Plan Implementation Status Report as part of annual monitoring. ## 1.1.6 City of Cupertino's Municipal Code Cupertino's Municipal Code (CMC) Chapter 17.04, Standard Environmental Protection Requirements, identifies standard environmental protection requirements that all construction projects in the City must meet, including but not limited to the environmental mitigation measures identified in any environmental documents required as part of a General Plan update. ¹⁶ CMC Section 17.04.040, Standard Environmental Protection Technical Report Submittal Requirements, describes air quality technical requirements as follows: - Control Diesel Particulate Matter from Non-Residential Projects During Operation. Applicants for new non-residential land uses within the city that either have the potential to generate 100 or more diesel truck trips per day or have 40 or more trucks with operating diesel-powered Transport Refrigeration Units (TRUs), or are within 1,000 feet of a sensitive land use (e.g., residential, schools, hospitals, nursing homes), as measured from the property line of the project to the property line of the nearest sensitive use, shall: - Prepare and submit an operational Health Risk Assessment (HRA) for approval by the City prior to approval of the project. - The HRA shall be prepared in accordance with policies and procedures of the State Office of Environmental Health Hazard Assessment (OEHHA) and the Bay Area Air Quality Management District (BAAQMD). - If the HRA shows that the incremental cancer risk exceeds ten in one million (10E-06), PM_{2.5} concentrations exceed 0.3 micrograms per cubic meter (µg/m³), or the appropriate noncancer hazard index exceeds 1.0, the project applicant shall be required to identify and demonstrate that Best Available Control Technologies for Toxics (T-BACTs) are capable of reducing potential cancer and noncancer risks to an acceptable level, including appropriate enforcement mechanisms. - T-BACTs identified in the HRA shall be indicated in the appropriate applicable construction document prior to approval of the project. T-BACTs may include the following measures from BAAQMD's Planning Healthy Places Guidebook but are not limited to: - i. Restricting nonessential idling on-site to no more than two minutes. - ii. Providing electric charging capable truck trailer spaces to accommodate Zero Emissions (ZE) Trucks. Page 12 ¹⁶ City of Cupertino, Municipal Code. Local legislation current through Ordinance 22-2238, passed February 1, 2022. https://codelibrary.amlegal.com/codes/cupertino/latest/cupertino_ca/0-0-0-78624. - iii. Providing electric charging capable warehousing docks to accommodate ZE Transport Refrigeration Units (TRUs). - iv. Requiring use of Near Zero Emissions (NZE) or ZE equipment (e.g., yard trucks and forklifts) and/or vehicles. - v. Restricting offsite truck travel through the creation of truck routes. - Manage Indoor Air Pollution. - Applicants for residential and other sensitive land use projects (e.g., hospitals, nursing homes, day care centers) in areas identified on the Bay Area Air Quality Management District's (BAAQMD) "Conduct Further Study" on the Planning Healthy Places Map shall: - i. Prepare and submit an operational Health Risk Assessment (HRA) to the City prior to approval of the project. - ii. The HRA shall be prepared in accordance with policies and procedures of the State Office of Environmental Health Hazard Assessment (OEHHA) and BAAQMD. The latest OEHHA guidelines shall be used for the analysis, including age sensitivity factors, breathing rates, and body weights appropriate for children ages 0 to 16 years. - iii. If the HRA shows that the incremental cancer risk exceeds ten in one million (10E-06), PM_{2.5} concentrations exceed 0.3 micrograms per cubic meter (μg/m³), or the appropriate noncancer hazard index exceeds 1.0, the project applicant shall identify and demonstrate measures that are capable of reducing potential cancer and non-cancer risks to an acceptable level (i.e., below ten in one million or a hazard index of 1.0), including appropriate enforcement mechanisms. iv. Measures to reduce risk may include, but are not limited to: - Air intakes located away from high volume roadways and/or truck loading zones. - Heating, ventilation, and air conditioning systems of the buildings provided with appropriately sized Minimum Efficiency Reporting Value (MERV) filters. - Applicants for residential and/or other sensitive land use projects (e.g., hospitals, nursing homes, day care centers) must state in the applicable construction document where the site is located on the Bay Area Air Quality Management District (BAAQMD) Planning Healthy Places Map, as subsequently revised, supplemented, or replaced. If the site is located in an area identified as "Implement Best Practices," the project applicant shall implement, and include in applicable construction documents, the following best practices identified in the BAAQMD Planning Healthy Places Guidebook: - i. Install air filters rated at a MERV 13 or higher. - ii. Locate operable windows, balconies, and building air intakes as far away from any emission source as is feasible. - iii. Incorporate solid barriers or dense rows of trees in a minimum planter width of 5 feet per row of trees between the residential and/or sensitive land use, and the emissions source into site design. - iv. Do not locate residential and/or sensitive land use on the ground floor units of buildings near non-elevated sources (e.g., ground level heavily traveled roadways and freeways). - The project applicant shall include the applicable measures identified in subsections (a) and (b) above in the applicable construction documents prior to approval of the project. Specifically, the air intake design and MERV filter requirements shall be included on all applicable construction documents submitted to the City and verified by the City's Planning Division. ## **ENVIRONMENTAL SETTING** ## 1.1.7 San Francisco Bay Area Air Basin The BAAQMD is the regional air quality agency for the SFBAAB, which comprises all of Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, and Santa Clara counties; the southern portion of Sonoma County; and the southwestern portion of Solano County. Air quality in this area is determined by such natural factors as topography, meteorology, and climate, in addition to the presence of existing air pollution sources and ambient conditions.¹⁷ #### 1.1.7.1 METEOROLOGY The SFBAAB is characterized by complex terrain, consisting of coastal mountain ranges, inland valleys, and bays, which distort normal wind flow patterns. The Coast Range splits, resulting in a western coast gap, Golden Gate, and an eastern coast gap, Carquinez Strait, which allow air to flow in and out of the SFBAAB and the Central Valley. The climate is dominated by the strength and location of a semi-permanent, subtropical high-pressure cell. During the summer, the Pacific high-pressure cell is centered over the northeastern Pacific Ocean, resulting in stable meteorological conditions and a steady northwesterly wind flow. Upwelling of cold ocean water from below the surface because of the northwesterly flow produces a band of cold water off the California coast. The cool and moisture-laden air approaching the coast from the Pacific Ocean is further cooled by the presence of the cold water band, resulting in condensation and the presence of fog and stratus clouds along the Northern California coast. In the winter, the Pacific high-pressure cell weakens and shifts southward, resulting in wind flow offshore, the absence of upwelling, and the occurrence of storms. Weak inversions coupled with moderate winds result in a low air pollution potential. #### 1.1.7.2 WIND PATTERNS During the summer, winds flowing from the northwest are drawn inland through the Golden Gate and over the lower portions of the San Francisco Peninsula. Immediately south of Mount Tamalpais, the northwesterly ¹⁷ This section describing the air basin is from Bay Area Air Quality Management District, 2017, May, Appendix C: Sample Air Quality Setting, in California Environmental Quality Act Air Quality Guidelines. winds accelerate considerably and come more directly from the west as they stream through the Golden Gate. This channeling of wind through the Golden Gate produces a jet that sweeps eastward and splits off to the northwest toward Richmond and to the southwest toward San Jose when it meets the East Bay hills. Wind speeds may be strong locally in areas where air is channeled through a narrow opening, such as the Carquinez Strait, the Golden Gate, or the San Bruno gap. For example, the average wind speed at San Francisco International Airport in July is about 17 knots (from
3:00 p.m. to 4:00 p.m.), compared with only 7 knots at San Jose and less than 6 knots at the Farallon Islands. The air flowing in from the coast to the Central Valley, called the sea breeze, begins developing at or near ground level along the coast in late morning or early afternoon. As the day progresses, the sea breeze layer deepens and increases in velocity while spreading inland. The depth of the sea breeze depends in large part upon the height and strength of the inversion. If the inversion is low and strong, and hence stable, the flow of the sea breeze will be inhibited and stagnant conditions are likely to result. In the winter, the SFBAAB frequently experiences stormy conditions with moderate to strong winds, as well as periods of stagnation with very light winds. Winter stagnation episodes are characterized by nighttime drainage flows in coastal valleys. Drainage is a reversal of the usual daytime air-flow patterns; air moves from the Central Valley toward the coast and back down toward the Bay from the smaller valleys within the SFBAAB. #### 1.1.7.3 TEMPERATURE Summertime temperatures in the SFBAAB are determined in large part by the effect of differential heating between land and water surfaces. Because land tends to heat up and cool off more quickly than water, a large-scale gradient (differential) in temperature is often created between the coast and the Central Valley, and small-scale local gradients are often produced along the shorelines of the ocean and bays. The temperature gradient near the ocean is also exaggerated, especially in summer, because of the upwelling of cold water from the ocean bottom along the coast. On summer afternoons the temperatures at the coast can be 35 degrees Fahrenheit (°F) cooler than temperatures 15 to 20 miles inland. At night this contrast usually decreases to less than 10°F. In the winter, the relationship of minimum and maximum temperatures is reversed. During the daytime the temperature contrast between the coast and inland areas is small, whereas at night the variation in temperature is large. The lowest average temperature is reported at 41.2°F in January, and the highest average temperature is 79°F in August. 18 #### 1.1.7.4 PRECIPITATION The SFBAAB is characterized by moderately wet winters and dry summers. Winter rains (November through March) account for about 75 percent of the average annual rainfall. The amount of annual precipitation can vary greatly from one part of the SFBAAB to another, even within short distances. In general, total annual rainfall can reach 40 inches in the mountains, but it is often less than 16 inches in sheltered valleys. ¹⁶ USA.Com 2021, July 22 (accessed). Monthly Average Temperature and Precipitation Summary. http://www.usa.com/cupertino-ca-weather.htm During rainy periods, ventilation (rapid horizontal movement of air and injection of cleaner air) and vertical mixing (an upward and downward movement of air) are usually high, and thus pollution levels tend to be low (i.e. air pollutants are dispersed more readily into the atmosphere rather than accumulate under stagnant conditions). However, during the winter, frequent dry periods do occur, when mixing and ventilation are low and pollutant levels build up. Rainfall historically averages 21.96 inches per year in the project area. ¹⁹ #### 1.1.7.5 WIND CIRCULATION Low wind speed contributes to the buildup of air pollution because it allows more pollutants to be emitted into the air mass per unit of time. Light winds occur most frequently during periods of low sun (fall and winter, and early morning) and at night. These are also periods when air pollutant emissions from some sources are at their peak, namely, commuter traffic (early morning) and wood-burning appliances (nighttime). The problem can be compounded in valleys, when weak flows carry the pollutants up-valley during the day, and cold air drainage flows move the air mass down-valley at night. Such restricted movement of trapped air provides little opportunity for ventilation and leads to buildup of pollutants to potentially unhealthful levels. #### 1.1.7.6 INVERSIONS An inversion is a layer of warmer air over a layer of cooler air. Inversions affect air quality conditions significantly because they influence the mixing depth, i.e. the vertical depth in the atmosphere available for diluting air contaminants near the ground. There are two types of inversions that occur regularly in the SFBAAB. Elevation inversions are more common in the summer and fall, and radiation inversions are more common during the winter. The highest air pollutant concentrations in the SFBAAB generally occur during inversions. ## 1.1.8 Existing Ambient Air Quality #### 1.1.8.1 ATTAINMENT STATUS OF THE SFBAAB Areas that meet AAQS are classified attainment areas, and areas that do not meet these standards are classified nonattainment areas. Severity classifications for O₃ range from marginal, moderate, and serious to severe and extreme. The attainment status for the air basin is shown in Table 2. The air basin is currently designated a nonattainment area for California and National O₃, California and National PM_{2.5}, and California PM₁₀ AAQS. ¹⁷ USA.Com 2021, July 22 (accessed). Monthly Average Temperature and Precipitation Summary. http://www.usa.com/cupertino-ca-weather.htm Table 2 Attainment Status of Criteria Pollutants in the San Francisco Bay Area Air Basin | Pollutant | State | Federal ¹ | | |-------------------|-------------------------|-------------------------------|--| | Ozone – 1-hour | Nonattainment | Classification revoked (2005) | | | Ozone – 8-hour | Nonattainment (serious) | Nonattainment | | | PM ₁₀ | Nonattainment | Unclassified/Attainment | | | PM _{2.5} | Nonattainment | Unclassified/Attainment | | | CO | Attainment | Attainment | | | NO ₂ | Attainment | Unclassified | | | SO ₂ | Attainment | Attainment | | | Lead | Attainment | Attainment | | | Sulfates | Attainment | Unclassified/Attainment | | | All others | Unclassified/Attainment | Unclassified/Attainment | | Source: California Air Resources Board, 2019, August, October. Area Designations Maps: State and National. https://ww2.arb.ca.gov/resources/documents/maps-state-and-federal-area-designations. ## 1.1.8.2 EXISTING AMBIENT AIR QUALITY Existing levels of ambient air quality and historical trends and projections in the vicinity of the project site are best documented by measurements made by the BAAQMD. The BAAQMD monitoring station closest to the project site is the San Jose – Jackson Street Monitoring Station, which monitors O₃, NO₂, PM₁₀ and PM_{2.5}. Data from this station is summarized in Table 3. The data show occasional violations of the State and federal O₃ standards, as well as state PM₁₀ and state and federal PM_{2.5} standards. The State and federal CO and NO₂ standards have not been exceeded in the last five years in the vicinity of the project site. Table 3 Ambient Air Quality Monitoring Summary | Tubic C | , | o a i i i i a i y | | | | | |--|--------|--|--------|--------|--------|--| | | | Number of Days Threshold Were Exceeded and Maximum Levels during Such Violations | | | | | | Pollutant/Standard | 2016 | 2017 | 2018 | 2019 | 2020 | | | Ozone (O ₃) | | | | | | | | State 1-Hour ≥ 0.09 ppm | 0 | 3 | 0 | 1 | 1 | | | State & Federal 8-hour ≥ 0.07 ppm | 0 | 4 | 0 | 2 | 2 | | | Maximum 1-Hour Conc. (ppm) | 0.087 | 0.121 | 0.078 | 0.095 | 0.106 | | | Maximum 8-Hour Conc. (ppm) | 0.066 | 0.098 | 0.061 | 0.081 | 0.085 | | | Nitrogen Dioxide (NO₂) | | | | | | | | State 1-Hour ≥ 0.18 (ppm) | 0 | 0 | 0 | 0 | 0 | | | Maximum 1-Hour Conc. (ppb) | 0.0511 | 0.0675 | 0.0861 | 0.0598 | 0.0519 | | | Coarse Particulates (PM ₁₀) | | | | | | | | State 24-Hour > 50 µg/m³ | 0 | 6 | 4 | 4 | 10 | | | Federal 24-Hour > 150 µg/m ³ | 0 | 0 | 0 | 0 | 0 | | | Maximum 24-Hour Conc. (µg/ ^{m3}) | 40.0 | 69.8 | 121.8 | 77.1 | 137.1 | | | Fine Particulates (PM _{2.5}) | | | | | | | | Federal 24-Hour > 35 µg/m³ | 0 | 6 | 15 | 0 | 12 | | | Maximum 24-Hour Conc. (µg/m³) | 22.6 | 49.7 | 133.9 | 27.6 | 120.5 | | Source: California Air Resources Board, 2021, Air Pollution Data Monitoring Cards (2016, 2017, 2018, 2019, and 2020), Accessed September 21, 2021, https://www.arb.ca.gov/adam/topfour/topfour1.php. Data from the San Jose Jackson Street Monitoring Station for 0₃, NO₂, PM₁₀, and PM_{2.5}. Notes: ppm: parts per million; ppb: parts per billion; µg/m3: or micrograms per cubic meter ¹ Federal designations current as of June 30, 2020 #### 1.1.8.3 EXISTING EMISSIONS The project site is currently developed with a two-story 141,000 square foot office with associated surface parking and landscape, which currently generates criteria air pollutants emissions from energy use, transportation, and area sources. ## 1.1.9 Sensitive Receptors Some land uses are considered more sensitive to air pollution than others due to the types of population groups or activities involved. Sensitive population groups include children, the elderly, the acutely ill, and the chronically ill, especially those with cardiorespiratory diseases. Residential areas are also considered sensitive receptors to air pollution because residents (including children and the elderly) tend to be at home for extended periods of time, resulting in sustained exposure to any pollutants present. Other sensitive receptors include retirement facilities, hospitals, and schools. Recreational land uses are considered moderately sensitive to air pollution. Although exposure periods are generally short, exercise places a high demand on respiratory functions, which can be impaired by air pollution. In addition, noticeable air pollution can detract from the enjoyment of recreation. Industrial, commercial, retail, and office areas are considered the least sensitive to air pollution. Exposure periods are relatively short and
intermittent, since the majority of the workers tend to stay indoors most of the time. In addition, the working population is generally the healthiest segment of the population. The nearest sensitive receptors to the project site are the Sunflower Learning Center and TLC Preschool to the southeast, Cupertino High School and residential neighborhoods to the south, Fremont Union High School District Adult School, The Residence Inn Hotel, Kaiser Permanent hospital, residential neighborhoods, Main Street Park to the west of the project site, and Jenny Strang Park and residential neighborhoods to the northeast of the project site. ## 1.2 METHODOLOGY The BAAQMD "CEQA Air Quality Guidelines" were prepared to assist in the evaluation of air quality impacts of projects and plans proposed in the Bay Area. The guidelines provide recommended procedures for evaluating potential air impacts during the environmental review process, consistent with CEQA requirements, and include recommended thresholds of significance, mitigation measures, and background air quality information. They also include recommended assessment methodologies for air toxics, odors, and greenhouse gas emissions. In June 2010, the BAAQMD's Board of Directors adopted CEQA thresholds of significance and an update of the CEQA Guidelines. In May 2011, the updated BAAQMD CEQA Air Quality Guidelines were amended to include a risk and hazards threshold for new receptors and modified procedures for assessing impacts related to risk and hazard impacts; however, this later amendment regarding risk and hazards was the subject of the December 17, 2015 Supreme Court decision (California Building Industry Association v BAAQMD), which clarified that CEQA does not require an evaluation of impacts of the environment on a project.²⁰ CEQA Air Quality Guidelines in May of 2012 that include guidance on calculating air pollution emissions, obtaining information 20 On March 5, 2012, the Alameda County Superior Court issued a judgment finding that the BAAQMD had failed to comply with CEQA when it adopted the thresholds of significance in the BAAQMD CEQA Air Quality Guidelines. The court did not determine whether the thresholds of significance were valid on their merits, but found that the adoption of the thresholds was a project under CEQA. The court issued a writ of mandate ordering the BAAQMD to set aside the thresholds and cease dissemination of them until the BAAQMD complied with CEQA. Following the court's order, the BAAQMD released revised ## 1.2.1 Criteria Air Pollutant Emissions The proposed project qualifies as a project-level project under BAAQMD's criteria. For project-level analyses, BAAQMD has adopted screening criteria and significance criteria that would be applicable to the proposed project. If a project exceeds the screening level, it would be required to conduct a full analysis using BAAQMD's significance criteria.²¹ ## Regional Significance Criteria BAAQMD's criteria for regional significance for projects that exceed the screening thresholds are shown in Table 4. Criteria for both construction and operational phases of the project are shown. Table 4 BAAQMD Regional (Mass Emissions) Criteria Air Pollutant Significance Thresholds | | Construction Phase | Operational Phase | | |--|-----------------------------------|--------------------------------------|---| | Pollutant | Average Daily Emissions (lbs/day) | Average Daily Emissions
(lbs/day) | Maximum Annual Emissions
(Tons/year) | | ROG | 54 | 54 | 10 | | NO _x | 54 | 54 | 10 | | PM ₁₀ | 82 (Exhaust) | 82 | 15 | | PM _{2.5} | 54 (Exhaust) | 54 | 10 | | PM ₁₀ and PM _{2.5} Fugitive Dust | Best Management Practices | None | None | Source: Bay Area Air Quality Management District. 2017, May. California Environmental Quality Act Air Quality Guidelines, Appendix D: Threshold of Significance Justification. BAAQMD is the primary agency responsible for ensuring the health and welfare of sensitive individuals exposed to elevated concentrations of air pollutants in the Air Basin and has established thresholds that would be protective of these individuals. To achieve the health-based standards established by the EPA, BAAQMD prepares the Clean Air Plan that details regional programs to attain the AAQS. Mass emissions in Table 4.3-7 are not correlated with concentrations of air pollutants but contribute to the cumulative air quality impacts in the Air Basin. The thresholds are based on the trigger levels for the federal New Source Review (NSR) Program. The NSR Program was created to ensure projects are consistent with attainment of health-based federal AAQS. Regional emissions from a single project do not single-handedly trigger a regional health impact, and it is speculative to identify how many more individuals in the air basin would be affected by the health effects listed above. Projects that do not exceed the BAAQMD regional significance thresholds in Table 4 would not violate any air quality standards or contribute substantially to an existing or projected air quality violation. regarding the health impacts of air pollutants, and identifying potential mitigation measures, and which set aside the significance thresholds. The Alameda County Superior Court, in ordering BAAQMD to set aside the thresholds, did not address the merits of the science or evidence supporting the thresholds, and in light of the subsequent case history discussed below, the science and reasoning contained in the BAAQMD 2011 CEQA Air Quality Guidelines provide the latest state-of-the-art guidance available. On August 13, 2013, the First District Court of Appeal ordered the trial court to reverse the judgment and upheld the BAAQMD's CEQA Guidelines. (California Building Industry Association versus BAAQMD, Case No. A135335 and A136212 (Court of Appeal, First District, August 13, 2013).) ²¹ Bay Area Air Quality Management District. 2017, May. California Environmental Quality Act Air Quality Guidelines. If projects exceed the emissions in Table 4 emissions would cumulatively contribute to the nonattainment status and would contribute in elevating health effects associated to these criteria air pollutants. Known health effects related to ozone include worsening of bronchitis, asthma, and emphysema and a decrease in lung function. Health effects associated with particulate matter include premature death of people with heart or lung disease, nonfatal heart attacks, irregular heartbeat, decreased lung function, and increased respiratory symptoms. Reducing emissions would further contribute to reducing possible health effects related to criteria air pollutants. However, for projects that exceed the emissions in Table 4 it is speculative to determine how exceeding the regional thresholds would affect the number of days the region is in nonattainment since mass emissions are not correlated with concentrations of emissions or how many additional individuals in the air basin would be affected by the health effects cited above. BAAQMD has not provided methodology to assess the specific correlation between mass emissions generated and the effect on health in order to address the issue raised in *Sierra Club v. County of Fresno* (Friant Ranch, L.P.) (2018) 6 Cal.5th 502, Case No. S21978. Ozone concentrations are dependent upon a variety of complex factors, including the presence of sunlight and precursor pollutants, natural topography, nearby structures that cause building downwash, atmospheric stability, and wind patterns. Because of the complexities of predicting ground-level ozone concentrations in relation to the National AAQS and California AAQS, it is not possible to link health risks to the magnitude of emissions exceeding the significance thresholds. However, if a project in the Bay Area exceeds the regional significance thresholds, the project could contribute to an increase in health effects in the basin until such time the attainment standard are met in the Air Basin. ## **Local CO Hotspots** Congested intersections have the potential to create elevated concentrations of CO, referred to as CO hotspots. The significance criteria for CO hotspots are based on the California AAQS for CO, which is 9.0 ppm (8-hour average) and 20.0 ppm (1-hour average). However, with the turnover of older vehicles, introduction of cleaner fuels, and implementation of control technology, the SFBAAB is in attainment of the California and National AAQS, and CO concentrations in the SFBAAB have steadily declined. Because CO concentrations have improved, BAAQMD does not require a CO hotspot analysis if the following criteria are met: - Project is consistent with an applicable congestion management program established by the County Congestion Management Agency for designated roads or highways, the regional transportation plan, and local congestion management agency plans. - The project would not increase traffic volumes at affected intersections to more than 44,000 vehicles per hour. - The project traffic would not increase traffic volumes at affected intersection to more than 24,000 vehicles per hour where vertical and/or horizontal mixing is substantially limited (e.g. tunnel, parking garage, bridge underpass, natural or urban street canyon, below-grade roadway).²² _ ²² Bay Area Air Quality Management District. 2017, May. California Environmental Quality Act Air Quality Guidelines, Appendix D: Threshold of Significance Justification. #### **Odors** BAAQMD's thresholds for odors are qualitative based on BAAQMD's Regulation 7, Odorous Substances. This rule places general limitations on odorous substances and specific emission limitations on certain odorous compounds. In addition, odors are also regulated under BAAQMD Regulation 1, Rule 1-301, Public Nuisance, which states that no person shall discharge from any source whatsoever such quantities of air contaminants or other material
which cause injury, detriment, nuisance or annoyance to any considerable number of persons or the public; or which endangers the comfort, repose, health or safety of any such persons or the public, or which causes, or has a natural tendency to cause, injury or damage to business or property. Under BAAQMD's Rule 1-301, a facility that receives three or more violation notices within a 30-day period can be declared a public nuisance. BAAQMD has established odor screening thresholds for land uses that have the potential to generate substantial odor complaints, including wastewater treatment plants, landfills or transfer stations, composting facilities, confined animal facilities, food manufacturing, and chemical plants.²³ ## 1.2.2 Toxic Air Contaminants The BAAQMD's significance thresholds for local community risk and hazard impacts apply to the siting of a new source. Local community risk and hazard impacts are associated with TACs and PM_{2.5} because emissions of these pollutants can have significant health impacts at the local level. The purpose of this environmental evaluation is to identify the significant effects of the proposed project on the environment, not the significant effects of the environment on the proposed project (*California Building Industry Association v. Bay Area Air Quality Management District* [2015] 62 Cal.4th 369 [Case No. S213478]). CEQA does not require an environmental evaluation to analyze the environmental effects of attracting development and people to an area. However, the environmental evaluation must analyze the impacts of environmental hazards on future users when the proposed project exacerbates an existing environmental hazard or condition or if there is an exception to this exemption identified in the Public Resources Code. Schools, residential, commercial, and office uses do not use substantial quantities of TACs and typically do not exacerbate existing hazards, so these thresholds are typically applied to new industrial projects. For assessing community risk and hazards, sources within a 1,000-foot radius are considered. Sources are defined as freeways, high volume roadways (with volume of 10,000 vehicles or more per day or 1,000 trucks per day), and permitted sources.^{24,25} The proposed project would generate TACs and PM_{2.5} during construction activities that could elevate concentrations of air pollutants at the surrounding residential receptors. The BAAQMD has adopted screening tables for air toxics evaluation during construction.²⁶ Construction-related TAC and PM_{2.5} impacts should be addressed on a case-by-case basis, taking into consideration the specific construction-related characteristics of each project and proximity to off-site receptors, as applicable.²⁷ ²³ Bay Area Air Quality Management District. 2017, May. California Environmental Quality Act Air Quality Guidelines. ²⁴ Bay Area Air Quality Management District. 2017, May. California Environmental Quality Act Air Quality Guidelines, Appendix D: Threshold of Significance Justification. ²⁵ Bay Area Air Quality Management District. 2012. Recommended Methods for Screening and Modeling Local Risks and Hazards. ²⁶ Bay Area Air Quality Management District. 2010. Screening Tables for Air Toxics Evaluations during Construction. ²⁷ Bay Area Air Quality Management District. 2017, May. California Environmental Quality Act Air Quality Guidelines, Appendix D: Threshold of Significance Justification. The project threshold identified below is applied to the proposed project's construction phase emissions: ## Community Risk and Hazards - Project Project-level construction emissions of TACs or PM_{2.5} from the proposed project to individual sensitive receptors within 1,000 feet of the project site that exceed any of the thresholds listed below are considered a potentially significant community health risk: - Non-compliance with a qualified Community Risk Reduction Plan; - An excess cancer risk level of more than 10 in one million, or a non-cancer (i.e. chronic or acute) hazard index greater than 1.0 would be a significant cumulatively considerable contribution; - An incremental increase of greater than 0.3 micrograms per cubic meter (μg/m³) annual average PM_{2.5} from a single source would be a significant, cumulatively considerable contribution.²⁸ ## Community Risk and Hazards - Cumulative Cumulative sources represent the combined total risk values of each of the individual sources within the 1,000-foot evaluation zone. A project would have a cumulative considerable impact if the aggregate total of all past, present, and foreseeable future sources within a 1,000-foot radius from the fence line of a source or location of a receptor, plus the contribution from the project, exceeds the following: - Non-compliance with a qualified Community Risk Reduction Plan; or - An excess cancer risk levels of more than 100 in one million or a chronic non-cancer hazard index (from all local sources) greater than 10.0; or - 0.8 µg/m³ annual average PM_{2.5}.²⁹ Current BAAQMD guidance recommends the determination of cancer risks using the Office of Environmental Health Hazard Assessment's (OEHHA) methodology, which was originally adopted in 2003. 30,31 In February 2015, OEHHA adopted new health risk assessment guidance which includes several efforts to be more protective of children's health. These updated procedures include the use of age sensitivity factors to account for the higher sensitivity of infants and young children to cancer causing chemicals, and age-specific breathing rates. 32 However, BAAQMD has not formally adopted the new OEHHA methodology into their CEQA guidance. To be conservative, the cancer risks associated with project implementation and significance conclusions were determined using the new 2015 OEHHA guidance for risk assessments. 30 Bay Area Air Quality Management District. 2012, Recommended Methods for Screening and Modeling Local Risks and Hazards. ²⁸ Bay Area Air Quality Management District. 2017, May. California Environmental Quality Act Air Quality Guidelines, Appendix D: Threshold of Significance Justification. ²⁹ Ibid. ³¹ Office of Environmental Health Hazard Assessment. 2003. Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments. ³² Office of Environmental Health Hazard Assessment. 2015. Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments. ## 2. Greenhouse Gas Emissions Scientists have concluded that human activities are contributing to global climate change by adding large amounts of heat-trapping gases, known as GHG, to the atmosphere. Climate change is the variation of Earth's climate over time, whether due to natural variability or as a result of human activities. The primary source of these GHG is fossil fuel use. The Intergovernmental Panel on Climate Change (IPCC) has identified four major GHG—water vapor,³³ carbon (CO₂), methane (CH₄), and ozone (O₃)—that are the likely cause of an increase in global average temperatures observed within the 20th and 21st centuries. Other GHG identified by the IPCC that contribute to global warming to a lesser extent include nitrous oxide (N₂O), sulfur hexafluoride (SF₆), hydrofluorocarbons, perfluorocarbons, and chlorofluorocarbons.^{34, 35} The major GHG are briefly described below. - Carbon dioxide (CO₂) enters the atmosphere through the burning of fossil fuels (oil, natural gas, and coal), solid waste, trees and wood products, and respiration, and also as a result of other chemical reactions (e.g. manufacture of cement). Carbon dioxide is removed from the atmosphere (sequestered) when it is absorbed by plants as part of the biological carbon cycle. - Methane (CH₄) is emitted during the production and transport of coal, natural gas, and oil. Methane emissions also result from livestock and other agricultural practices and from the decay of organic waste in municipal landfills and water treatment facilities. - Nitrous oxide (N₂O) is emitted during agricultural and industrial activities as well as during combustion of fossil fuels and solid waste. - Fluorinated gases are synthetic, strong GHGs that are emitted from a variety of industrial processes. Fluorinated gases are sometimes used as substitutes for ozone-depleting substances. These gases are typically emitted in smaller quantities, but because they are potent GHGs, they are sometimes referred to as high global-warming-potential (GWP) gases. - Chlorofluorocarbons (CFCs) are GHGs covered under the 1987 Montreal Protocol and used for refrigeration, air conditioning, packaging, insulation, solvents, or aerosol propellants. Since they are not destroyed in the lower atmosphere (troposphere, stratosphere), CFCs drift into the upper atmosphere where, given suitable conditions, they break down ozone. These gases are also ozone-depleting gases and are therefore being replaced by other compounds that are GHGs covered under the Kyoto Protocol. ³³ Water vapor (H₂O) is the strongest GHG and the most variable in its phases (vapor, cloud droplets, ice crystals). However, water vapor is not considered a pollutant, but part of the feedback loop rather than a primary cause of change. Black carbon contributes to climate change both directly, by absorbing sunlight, and indirectly, by depositing on snow (making it melt faster) and by interacting with clouds and affecting cloud formation. Black carbon is the most strongly light-absorbing component of particulate matter (PM) emitted from burning fuels such as coal, diesel, and biomass. Reducing black carbon emissions globally can have immediate economic, climate, and public health benefits. California has been an international leader in reducing emissions of black carbon, with close to 95 percent control expected by 2020 due to existing programs that target reducing PM from diesel engines and burning activities (California Air Resources Board (CARB). 2017, March 14. Final Proposed Short-Lived Climate
Pollutant Reduction Strategy. https://www.arb.ca.gov/cc/shortlived/shortlived.htm). However, state and national GHG inventories do not yet include black carbon due to ongoing work resolving the precise global warming potential of black carbon. Guidance for CEQA documents does not yet include black carbon. ³⁵ Intergovernmental Panel on Climate Change (IPCC). 2001. Third Assessment Report: Climate Change 2001. New York: Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/03/WGI_TAR_full_report.pdf. - **Perfluorocarbons** (**PFCs**) are a group of human-made chemicals composed of carbon and fluorine only. These chemicals (predominantly perfluoromethane [CF₄] and perfluoroethane [C₂F₆]) were introduced as alternatives, along with HFCs, to the ozone-depleting substances. In addition, PFCs are emitted as by-products of industrial processes and are used in manufacturing. PFCs do not harm the stratospheric ozone layer, but they have a high global warming potential. - Sulfur Hexafluoride (SF₆) is a colorless gas soluble in alcohol and ether, slightly soluble in water. SF₆ is a strong GHG used primarily in electrical transmission and distribution systems as an insulator. - *Hydrochlorofluorocarbons (HCFCs)* contain hydrogen, fluorine, chlorine, and carbon atoms. Although ozone-depleting substances, they are less potent at destroying stratospheric ozone than CFCs. They have been introduced as temporary replacements for CFCs and are also GHGs. - *Hydrofluorocarbons (HFCs)* contain only hydrogen, fluorine, and carbon atoms. They were introduced as alternatives to ozone-depleting substances to serve many industrial, commercial, and personal needs. HFCs are emitted as by-products of industrial processes and are also used in manufacturing. They do not significantly deplete the stratospheric ozone layer, but they are strong GHGs. 36,37 GHGs are dependent on the lifetime or persistence of the gas molecule in the atmosphere. Some GHGs have stronger greenhouse effects than others. These are referred to as high GWP gases. The GWP of GHG emissions are shown in Table 5. The GWP is used to convert GHGs to CO₂-equivalence (CO₂e) to show the relative potential that different GHGs have to retain infrared radiation in the atmosphere and contribute to the greenhouse effect. For example, under IPCC's Fourth Assessment Report (AR5) GWP values for CH₄, a project that generates 10 MT of CH₄ would be equivalent to 250 MT of CO₂. 38,39 ³⁶ Intergovernmental Panel on Climate Change (IPCC). 2001. Third Assessment Report: Climate Change 2001. New York: Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/03/WGI_TAR_full_report.pdf. ³⁷ US Environmental Protection Agency (USEPA). 2019. Overview of Greenhouse Gases. http://www3.epa.gov/climatechange/ghgemissions/gases.html. ³⁸ CO₂-equivalence is used to show the relative potential that different GHGs have to retain infrared radiation in the atmosphere and contribute to the greenhouse effect. The global warming potential of a GHG is also dependent on the lifetime, or persistence, of the gas molecule in the atmosphere. ³⁹ Intergovernmental Panel on Climate Change (IPCC). 2013. Fifth Assessment Report: Climate Change 2013. New York: Cambridge University Press. Table 5 GHG Emissions and Their Relative Global Warming Potential Compared to CO₂ | GHGs | Carbon Dioxide (CO ₂) | Methane¹ (CH₄) | Nitrous Oxide (N₂O) | |---|-----------------------------------|----------------|---------------------| | Second Assessment | | | | | Atmospheric Lifetime (Years) | 50 to 200 | 12 (±3) | 120 | | Global Warming Potential Relative to CO ₂ ² | 1 | 21 | 310 | | Fourth Assessment | | | | | Atmospheric Lifetime (Years) | 50 to 200 | 12 | 114 | | Global Warming Potential Relative to CO ₂ ² | 1 | 25 | 298 | | Fifth Assessment ³ | <u>.</u> | | | | Atmospheric Lifetime (Years) | 50 to 200 | 12 | 121 | | Global Warming Potential Relative to CO ₂ ² | 1 | 28 | 265 | Source: Intergovernmental Panel on Climate Change (IPCC). 1995. Second Assessment Report: Climate Change 1995 https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_sar_wg_l_full_report.pdf; Intergovernmental Panel on Climate Change (IPCC). 2007. Fourth Assessment Report: Climate Change 2007. New York: Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_full_report.pdf; Intergovernmental Panel on Climate Change (IPCC). 2013. Fifth Assessment Report: Climate Change 2013. New York: Cambridge University Press. Notes: # 2.1 CALIFORNIA'S GREENHOUSE GAS SOURCES AND RELATIVE CONTRIBUTION In 2019, the statewide GHG emissions inventory was updated for 2000 to 2017 emissions using the GWPs in IPCC's AR4.⁴¹ Based on these GWPs, California produced 424.10 MMTCO₂e GHG emissions in 2017. The California Air Resources Board (CARB) categorizes GHG generation into the following seven sectors.⁴² - Transportation. Consists of direct tailpipe emissions from on-road vehicle and direct emissions from off-road transportation mobile sources, intrastate aviation, rail, and watercraft. Emissions are generated from the combustion of fuels in on- and off-road vehicles in addition to aviation, rail, and ships. - **Electric.** Includes emissions from instate power generation (including the portion of cogeneration emissions attributed to electricity generation) and emissions from imported electricity. - Industrial. Includes emissions primarily driven by fuel combustion from sources that include refineries, oil and gas extraction, cement plants, and the portion of cogeneration emissions attribute to thermal energy output. - Commercial and Residential. Accounts for emissions generated from combustion of natural gas and other fuels for household and commercial business use, such as space heating, cooking, and hot water or steam generation. Emissions associated with electricity usage are accounted for in the Electric Sector. - Recycling and Waste. Consists of emissions generated at landfills and from commercial-scale composting. ¹ The methane GWP includes direct effects and indirect effects due to the production of tropospheric ozone and stratospheric water vapor. The indirect effect due to the production of CO₂ is not included. ² Based on 100-year time horizon of the GWP of the air pollutant compared to CO₂. ³ The GWP values in the IPCC's Fifth Assessment Report (2013)⁴⁰ reflect new information on atmospheric lifetimes of GHGs and an improved calculation of the radiative forcing of CO₂. ⁴⁰ Intergovernmental Panel on Climate Change (IPCC). 2013. Fifth Assessment Report: Climate Change 2013. New York: Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf. ⁴¹ Methodology for determining the statewide GHG inventory is not the same as the methodology used to determine statewide GHG emissions under Assembly Bill 32 (2006). ⁴² California Air Resources Board (CARB). 2019, August 26. California Greenhouse Emissions for 2000 to 2017: Trends of Emissions and Other Indicators. https://www.arb.ca.gov/cc/inventory/data/data.htm. - Agriculture. Primarily includes methane (CH₄) and nitrous oxide (N₂O) emissions generated from enteric fermentation and manure management from livestock. Also accounts for emissions associated with crop production (fertilizer use, soil preparation and disturbance, and crop residue burning) and fuel combustion associated with stationary agricultural activities (e.g., water pumping, cooling or heating buildings). - **High Global Warming Potential Gases.** Associated with substitutes for ozone-depleting substances, emissions from electricity transmission and distribution system, and gases emitted in the semiconductor manufacturing process. Substitutes for ozone-depleting substances are used in refrigeration and air conditioning equipment, solvent cleaning, foam production, fire retardants, and aerosols. California's transportation sector was the single largest generator of GHG emissions, producing 40.1 percent of the state's total emissions. Industrial sector emissions made up 21.1 percent, and electric power generation made up 14.7 percent of the state's emissions inventory. Other major sectors of GHG emissions include commercial and residential (9.7 percent), agriculture and forestry (7.6 percent), high GWP (4.7 percent), and recycling and waste (2.1 percent). 43 California's GHG emissions have followed a declining trend since 2007. In 2017, emissions from routine GHG-emitting activities statewide were 424 MMTCO₂e, 5 MMTCO₂e lower than 2016 levels. This represents an overall decrease of 14 percent since peak levels in 2004 and 7 MMTCO₂e below the 1990 level and the state's 2020 GHG target. During the 2000 to 2017 period, per capita GHG emissions in California have continued to drop from a peak in 2001 of 14.0 MTCO₂e per capita to 10.7 MTCO₂e per capita in 2017, a 24 percent decrease. Overall trends in the inventory also demonstrate that the carbon intensity of California's economy (the amount of carbon pollution per million dollars of gross domestic product) has declined 41 percent since the 2001 peak, while the state's gross domestic product has grown 52 percent during the same period. For the first time since California started to track GHG emissions, California uses more electricity from zero-GHG sources (hydro, solar, wind, and nuclear energy).⁴⁴ ## 2.2 HUMAN INFLUENCE ON CLIMATE CHANGE For approximately 1,000 years before the Industrial Revolution, the amount of GHGs in the atmosphere remained relatively constant. During the 20th century, however, scientists observed a rapid change in the climate and the quantity of climate change pollutants in the Earth's atmosphere that is attributable to human activities. The amount of CO₂ in the atmosphere has increased by more than 35 percent since preindustrial times and has increased at an average rate of 1.4 parts per million per year since 1960, mainly due to
combustion of fossil fuels and deforestation.⁴⁵ These recent changes in the quantity and concentration of climate change pollutants far exceed the extremes of the ice ages, and the global mean temperature is warming at a rate that cannot be explained by natural causes alone. Human activities are directly altering the chemical composition of the atmosphere through the buildup of climate change pollutants.⁴⁶ In the past, gradual changes in the earth's temperature changed the distribution of species, availability of water, etc. Page 26 ⁴³ California Air Resources Board (CARB). 2019, August 26. 2019 Edition California Greenhouse Gas Inventory for 2000-2017: By Category as Defined in the 2008 Scoping Plan. https://www.arb.ca.gov/cc/inventory/data/data.htm. ⁴⁴ California Air Resources Board (CARB). 2019, August 26. 2019 Edition California Greenhouse Gas Inventory for 2000-2017: By Category as Defined in the 2008 Scoping Plan. https://www.arb.ca.gov/cc/inventory/data/data.htm. ⁴⁵ Intergovernmental Panel on Climate Change (IPCC). 2007. Fourth Assessment Report: Climate Change 2007. New York: Cambridge University Press. ⁴⁶ California Climate Action Team (CAT). 2006, March. Climate Action Team Report to Governor Schwarzenegger and the Legislature. However, human activities are accelerating this process so that environmental impacts associated with climate change no longer occur in a geologic time frame but within a human lifetime.⁴⁷ Like the variability in the projections of the expected increase in global surface temperatures, the environmental consequences of gradual changes in the Earth's temperature are hard to predict. Projections of climate change depend heavily upon future human activity. Therefore, climate models are based on different emission scenarios that account for historical trends in emissions and on observations of the climate record that assess the human influence of the trend and projections for extreme weather events. Climate-change scenarios are affected by varying degrees of uncertainty. For example, there are varying degrees of certainty on the magnitude of the trends for: - Warmer and fewer cold days and nights over most land areas. - Warmer and more frequent hot days and nights over most land areas. - An increase in frequency of warm spells/heat waves over most land areas. - An increase in frequency of heavy precipitation events (or proportion of total rainfall from heavy falls) over most areas. - Larger areas affected by drought. - Intense tropical cyclone activity increases. - Increased incidence of extreme high sea level (excluding tsunamis). ## 2.3 POTENTIAL CLIMATE CHANGE IMPACTS FOR CALIFORNIA Observed changes over the last several decades across the western United States reveal clear signs of climate change. Statewide, average temperatures increased by about 1.7°F from 1895 to 2011, and warming has been greatest in the Sierra Nevada.⁴⁸ The years from 2014 through 2016 have shown unprecedented temperatures with 2014 being the warmest.⁴⁹ By 2050, California is projected to warm by approximately 2.7°F above 2000 averages, a threefold increase in the rate of warming over the last century. By 2100, average temperatures could increase by 4.1 to 8.6°F, depending on emissions levels.⁵⁰ In California and western North America, observations of the climate have shown: 1) a trend toward warmer winter and spring temperatures; 2) a smaller fraction of precipitation falling as snow; 3) a decrease in the amount of spring snow accumulation in the lower and middle elevation mountain zones; 4) advanced shift in the timing of snowmelt of 5 to 30 days earlier in the spring; and 5) a similar shift (5 to 30 days earlier) in the timing of spring flower blooms.⁵¹ Overall, California has become drier over time, with five of the eight years of severe to extreme drought occurring between 2007 and 2016, with unprecedented dry years occurring in 2014 and 2015. ⁵² Statewide precipitation has become increasingly variable from year to year, with the driest Air Quality and Greenhouse Gas Background and Modeling Data ⁴⁷ Intergovernmental Panel on Climate Change (IPCC). 2007. Fourth Assessment Report: Climate Change 2007. New York: Cambridge University Press. ⁴⁸ California Climate Change Center (CCCC). 2012, July. Our Changing Climate 2012: Vulnerability and Adaptation to the Increasing Risks from Climate Change in California. ⁴⁹ Office of Environmental Health Hazards Assessment (OEHHA). 2018, May. Indicators of Climate Change in California. https://oehha.ca.gov/media/downloads/climate-change/report/2018caindicatorsreportmay2018.pdf. ⁵⁰ California Climate Change Center (CCCC). 2012, July. Our Changing Climate 2012: Vulnerability and Adaptation to the Increasing Risks from Climate Change in California. ⁵¹ California Climate Action Team (CAT). 2006, March. Climate Action Team Report to Governor Schwarzenegger and the Legislature. ⁵² Office of Environmental Health Hazards Assessment (OEHHA). 2018, May. Indicators of Climate Change in California. https://oehha.ca.gov/media/downloads/climate-change/report/2018caindicatorsreportmay2018.pdf. consecutive four years occurring from 2012 to 2015.⁵³ According to the California Climate Action Team—a committee of state agency secretaries and the heads of agencies, boards, and departments, led by the Secretary of the California Environmental Protection Agency—even if actions could be taken to immediately curtail climate change emissions, the potency of emissions that have already built up, their long atmospheric lifetimes (see Table 5), and the inertia of the Earth's climate system could produce as much as 0.6°C (1.1°F) of additional warming. Consequently, some impacts from climate change are now considered unavoidable. Global climate change risks to California are shown in Table 6 and include impacts to public health, water resources, agriculture, coastal sea level, forest and biological resources, and energy. Table 6 Summary of GHG Emissions Risks to California | Table 6 Summary of GHG Emissions Risks to California | | | | |--|---|--|--| | Impact Category | Potential Risk | | | | Public Health Impacts | Heat waves will be more frequent, hotter, and longer Fewer extremely cold nights Poor air quality made worse Higher temperatures increase ground-level ozone levels | | | | Water Resources Impacts | Decreasing Sierra Nevada snow pack Challenges in securing adequate water supply Potential reduction in hydropower Loss of winter recreation | | | | Agricultural Impacts | Increasing temperature Increasing threats from pests and pathogens Expanded ranges of agricultural weeds Declining productivity Irregular blooms and harvests | | | | Coastal Sea Level Impacts | Accelerated sea level rise Increasing coastal floods Shrinking beaches Worsened impacts on infrastructure | | | | Forest and Biological Resource Impacts | Increased risk and severity of wildfires Lengthening of the wildfire season Movement of forest areas Conversion of forest to grassland Declining forest productivity Increasing threats from pest and pathogens Shifting vegetation and species distribution Altered timing of migration and mating habits Loss of sensitive or slow-moving species | | | | Energy Demand Impacts | Potential reduction in hydropower
Increased energy demand | | | Sources: California Energy Commission (CEC). 2006. Our Changing Climate: Assessing the Risks to California. 2006 Biennial Report. CEC-500-2006-077. California Climate Change Center; California Energy Commission (CEC). 2009, May. The Future Is Now: An Update on Climate Change Science, Impacts, and Response Options for California. CEC-500-2008-0077; California Climate Change Center (CCCC). 2012, July. Our Changing Climate 2012: Vulnerability and Adaptation to the Increasing Risks from Climate Change in California; and California Natural Resources Agency (CNRA). 2014, July. Safeguarding California: Reducing Climate Risk: An Update to the 2009 California Climate Adaptation Strategy. https://resources.ca.gov/CNRALegacyFiles/docs/climate/Final_Safeguarding_CA_Plan_July_31_2014.pdf. ⁵³ Office of Environmental Health Hazards Assessment (OEHHA). 2018, May. Indicators of Climate Change in California. https://oehha.ca.gov/media/downloads/climate-change/report/2018caindicatorsreportmay2018.pdf. ## 2.1 REGULATORY FRAMEWORK ## 2.1.1 Federal Regulations The US Environmental Protection Agency (EPA) announced on December 7, 2009, that GHG emissions threaten the public health and welfare of the American people and that GHG emissions from on-road vehicles contribute to that threat. The EPA's final findings respond to the 2007 US Supreme Court decision that GHG emissions fit within the Clean Air Act definition of air pollutants. The findings did not themselves impose any emission reduction requirements but allowed the EPA to finalize the GHG standards proposed in 2009 for new light-duty vehicles as part of the joint rulemaking with the Department of Transportation.⁵⁴ To regulate GHGs from passenger vehicles, EPA was required to issue an endangerment finding. The finding identifies emissions of six key GHGs—CO₂, CH₄, N₂O, hydrofluorocarbons, perfluorocarbons, and SF₆—that have been the subject of scrutiny and intense analysis for decades by scientists in the United States and around the world. The first three are applicable to the proposed project's GHG emissions inventory because they constitute the majority of GHG emissions; they are the GHG emissions that should be evaluated as part of a project's GHG emissions inventory. ## 2.1.1.1 US MANDATORY REPORTING RULE FOR GREENHOUSE GASES
(2009) In response to the endangerment finding, the EPA issued the Mandatory Reporting of GHG Rule that requires substantial emitters of GHG emissions (large stationary sources, etc.) to report GHG emissions data. Facilities that emit 25,000 MTCO₂e or more per year are required to submit an annual report. ## 2.1.1.2 UPDATE TO CORPORATE AVERAGE FUEL ECONOMY STANDARDS (2021 TO 2026) The federal government issued new Corporate Average Fuel Economy (CAFE) standards in 2012 for model years 2017 to 2025, which required a fleet average of 54.5 miles per gallon in 2025. However, on March 30, 2020, the EPA finalized an updated CAFE and GHG emissions standards for passenger cars and light trucks and established new standards, covering model years 2021 through 2026, known as the Safer Affordable Fuel Efficient (SAFE) Vehicles Final Rule for Model Years 2021-2026. Under SAFE, the fuel economy standards will increase 1.5 percent per year compared to the 5 percent per year under the CAFE standards established in 2012. However, consortium of automakers and California have agreed on a voluntary framework to reduce emissions that can serve as an alternative path forward for clean vehicle standards nationwide. Automakers who agreed to the framework are Ford, Honda, BMW of North America, and Volkswagen Group of America. The framework supports continued annual reductions of vehicle greenhouse gas emissions through the 2026 model year, encourages innovation to accelerate the transition to electric vehicles, and provides industry the certainty needed to make investments and create jobs. This commitment means that the auto companies party to the voluntary agreement will only sell cars in the United States that meet the CAFE standards established in 2021 for model years 2017 to 2025.⁵⁵ Air Quality and Greenhouse Gas Background and Modeling Data ⁵⁴ US Environmental Protection Agency (USEPA). 2009, December. EPA: Greenhouse Gases Threaten Public Health and the Environment. Science overwhelmingly shows greenhouse gas concentrations at unprecedented levels due to human activity. https://archive.epa.gov/epapages/newsroom_archive/newsreleases/08d11a451131bca585257685005bf252.html. ⁵⁵ California Air Resources Board (CARB). 2019, September 5 (accessed). California and major automakers reach groundbreaking framework agreement on clean emission standards. https://ww2.arb.ca.gov/news/california-and-major-automakers-reach-groundbreaking-framework-agreement-clean-emission. ## 2.1.1.3 EPA REGULATION OF STATIONARY SOURCES UNDER THE CLEAN AIR ACT (ONGOING) Pursuant to its authority under the Clean Air Act, the EPA has been developing regulations for new, large stationary sources of emissions such as power plants and refineries. Under former President Obama's 2013 Climate Action Plan, the EPA was directed to develop regulations for existing stationary sources as well. On June 19, 2019, the EPA issued the final Affordable Clean Energy (ACE) rule which became effective on August 19, 2019. The ACE rule was crafted under the direction of President Trump's Energy Independence Executive Order. It officially rescinds the Clean Power Plan rule issued during the Obama Administration and sets emissions guidelines for states in developing plans to limit CO₂ emissions from coal-fired power plants. ## 2.1.2 State Regulations Current State of California guidance and goals for reductions in GHG emissions are generally embodied in Executive Orders S-03-05 and B-30-15, Assembly Bill (AB) 32, Senate Bill (SB) 32, and SB 375. #### 2.1.2.1 **EXECUTIVE ORDER S-03-05** Executive Order S-03-05, signed June 1, 2005. Executive Order S-03-05 set the following GHG reduction targets for the State: - 2000 levels by 2010 - 1990 levels by 2020 - 80 percent below 1990 levels by 2050 ## 2.1.2.2 ASSEMBLY BILL 32, THE GLOBAL WARMING SOLUTIONS ACT State of California guidance and targets for reductions in GHG emissions are generally embodied in the Global Warming Solutions Act, adopted with passage of AB 32. AB 32 was passed by the California state legislature on August 31, 2006, to place the state on a course toward reducing its contribution of GHG emissions. AB 32 follows the 2020 emissions reduction goal established in Executive Order S-03-05. ## **CARB 2008 Scoping Plan** The first Scoping Plan was adopted by CARB on December 11, 2008. The 2008 Scoping Plan identified that GHG emissions in California are anticipated to be 596 MMTCO₂e in 2020. In December 2007, CARB approved a 2020 emissions limit of 427 MMTCO₂e (471 million tons) for the state (CARB 2008). To effectively implement the emissions cap, AB 32 directed CARB to establish a mandatory reporting system to track and monitor GHG emissions levels for large stationary sources that generate more than 25,000 MTCO₂e per year, prepare a plan demonstrating how the 2020 deadline can be met, and develop appropriate regulations and programs to implement the plan by 2012. ## First Update to the Scoping Plan CARB completed a five-year update to the 2008 Scoping Plan, as required by AB 32. The First Update to the Scoping Plan, adopted May 22, 2014, highlights California's progress toward meeting the near-term 2020 GHG emission reduction goals defined in the 2008 Scoping Plan. As part of the update, CARB recalculated the 1990 GHG emission levels with the updated AR4 GWPs, and the 427 MMTCO₂e 1990 emissions level and 2020 GHG emissions limit, established in response to AB 32, are slightly higher at 431 MMTCO₂e. ⁵⁶ As identified in the Update to the Scoping Plan, California is on track to meet the goals of AB 32. The update also addresses the state's longer-term GHG goals in a post-2020 element. The post-2020 element provides a high-level view of a long-term strategy for meeting the 2050 GHG goal, including a recommendation for the state to adopt a midterm target. According to the Update to the Scoping Plan, local government reduction targets should chart a reduction trajectory that is consistent with or exceeds the trajectory created by statewide goals.⁵⁷ CARB identified that reducing emissions to 80 percent below 1990 levels will require a fundamental shift to efficient, clean energy in every sector of the economy. Progressing toward California's 2050 climate targets will require significant acceleration of GHG reduction rates. Emissions from 2020 to 2050 will have to decline several times faster than the rate needed to reach the 2020 emissions limit. ⁵⁸ #### 2.1.2.3 EXECUTIVE ORDER B-30-15 Executive Order B-30-15, signed April 29, 2015, sets a goal of reducing GHG emissions in the state to 40 percent below 1990 levels by year 2030. Executive Order B-30-15 also directs CARB to update the Scoping Plan to quantify the 2030 GHG reduction goal for the state and requires state agencies to implement measures to meet the interim 2030 goal as well as the long-term goal for 2050 in Executive Order S-03-05. It also requires the Natural Resources Agency to conduct triennial updates of the California adaption strategy, Safeguarding California, in order to ensure climate change is accounted for in state planning and investment decisions. #### 2.1.2.4 SENATE BILL 32 AND ASSEMBLY BILL 197 In September 2016, Governor Brown signed Senate Bill 32 and Assembly Bill 197, making the Executive Order goal for year 2030 into a statewide, mandated legislative target. AB 197 established a joint legislative committee on climate change policies and requires the CARB to prioritize direction emissions reductions rather than the market-based cap-and-trade program for large stationary, mobile, and other sources. #### 2017 Climate Change Scoping Plan Update Executive Order B-30-15 and SB 32 required CARB to prepare another update to the Scoping Plan to address the 2030 target for the state. On December 24, 2017, CARB approved the 2017 Climate Change Scoping Plan Update, which outlines potential regulations and programs, including strategies consistent with ⁵⁶ California Air Resources Board (CARB). 2014, May 15. First Update to the Climate Change Scoping Plan: Building on the Framework, Pursuant to AB 32, The California Global Warming Solutions Act of 2006. http://www.arb.ca.gov/cc/scopingplan/document/updatedscopingplan2013.htm. ⁵⁷ California Air Resources Board (CARB). 2014, May 15. First Update to the Climate Change Scoping Plan: Building on the Framework, Pursuant to AB 32, The California Global Warming Solutions Act of 2006. http://www.arb.ca.gov/cc/scopingplan/scopingplan.htm. ⁵⁸ California Air Resources Board (CARB). 2014, May 15. First Update to the Climate Change Scoping Plan: Building on the Framework, Pursuant to AB 32, The California Global Warming Solutions Act of 2006. http://www.arb.ca.gov/cc/scopingplan/document/updatedscopingplan2013.htm. AB 197 requirements, to achieve the 2030 target. The 2017 Scoping Plan establishes a new emissions limit of 260 MMTCO₂e for the year 2030, which corresponds to a 40 percent decrease in 1990 levels by 2030.⁵⁹ California's climate strategy will require contributions from all sectors of the economy, including enhanced focus on zero- and near-zero emission vehicle technologies; continued investment in renewables such as solar roofs, wind, and other types of distributed generation; greater use of low carbon fuels; integrated land conservation and development strategies; coordinated efforts to reduce emissions of short-lived climate pollutants (methane, black carbon, and fluorinated gases); and an increased focus on integrated land use planning to support livable, transit-connected communities and conserve agricultural and other lands. Requirements for GHG reductions at stationary sources complement local air pollution control efforts by the local air districts to tighten emissions limits for criteria air pollutants and toxic air contaminants on a broad spectrum of industrial sources. Major elements of the 2017 Scoping Plan framework include: - Implementing and/or increasing the standards of the Mobile Source Strategy, which
include increasing zero-emission (ZE) buses and trucks. - Low Carbon Fuel Standard (LCFS), with an increased stringency (18 percent by 2030). - Implementation of SB 350, which expands the Renewables Portfolio Standard (RPS) to 50 percent RPS and doubles energy efficiency savings by 2030. - California Sustainable Freight Action Plan, which improves freight system efficiency by 25 percent by 2030 and utilizes near-zero emissions technology and deployment of ZE trucks. - Implementing the proposed Short-Lived Climate Pollutant Strategy, which focuses on reducing methane and hydrofluorocarbon emissions by 40 percent and anthropogenic black carbon emissions by 50 percent by year 2030. - Post-2020 Cap-and-Trade Program that includes declining caps. - Continued implementation of SB 375. - Development of a Natural and Working Lands Action Plan to secure California's land base as a net carbon sink. In addition to these statewide strategies, the 2017 Climate Change Scoping Plan also identified local governments as essential partners in achieving the state's long-term GHG reduction goals and recommended local actions to reduce GHG emissions—for example, statewide targets of no more than 6 MTCO₂e or less per capita by 2030 and 2 MTCO₂e or less per capita by 2050. CARB recommends that local governments evaluate and adopt quantitative, locally appropriate goals that align with the statewide per capita targets and sustainable development objectives and develop plans to achieve the local goals. The statewide per capita goals were developed by applying the percent reductions necessary to reach the 2030 and 2050 climate goals (i.e., 40 percent and 80 percent, respectively) to the state's 1990 emissions limit established under AB 32. For CEQA projects, CARB states that lead agencies have discretion to develop evidenced-based numeric thresholds (mass emissions, per capita, or per service population) consistent with the Scoping Plan and the state's long-term GHG goals. To the degree a project relies on GHG mitigation measures, CARB recommends that lead agencies prioritize on-site design features that reduce emissions, especially from vehicle miles traveled (VMT), and direct investments in GHG reductions within the project's region that contribute potential air quality, health, and economic co-benefits. Where further project design or regional investments _ ⁵⁹ California Air Resources Board (CARB). 2017, November. California's 2017 Climate Change Scoping Plan: The Strategy for Achieving California's 2030 Greenhouse Gas Target. https://www.arb.ca.gov/cc/scopingplan/scoping_plan_2017.pdf. are infeasible or not proven to be effective, CARB recommends mitigating potential GHG impacts through purchasing and retiring carbon credits. The Scoping Plan scenario is set against what is called the "business as usual" yardstick—that is, what would the GHG emissions look like if the state did nothing at all beyond the policies that are already required and in place to achieve the 2020 limit, as shown in Table 7. It includes the existing renewables requirements, advanced clean cars, the "10 percent" LCFS, and the SB 375 program for more vibrant communities, among others. However, it does not include a range of new policies or measures that have been developed or put into statute over the past two years. Also shown in the table, the known commitments are expected to result in emissions that are 60 MMTCO₂e above the target in 2030. If the estimated GHG reductions from the known commitments are not realized due to delays in implementation or technology deployment, the post-2020 Cap-and-Trade Program would deliver the additional GHG reductions in the sectors it covers to ensure the 2030 target is achieved. Table 7 2017 Climate Change Scoping Plan Emissions Reductions Gap | Modeling Scenario | 2030 GHG Emissions
MMTCO₂e | |---|-------------------------------| | Reference Scenario
(Business-as-Usual) | 389 | | With Known Commitments | 320 | | 2030 GHG Target | 260 | | Gap to 2030 Target with Known Commitments | 60 | Source: California Air Resources Board. 2017, November. California's 2017 Climate Change Scoping Plan: The Strategy for Achieving California's 2030 Greenhouse Gas Target. https://www.arb.ca.gov/cc/scopingplan/2030sp_pp_final.pdf. Table 8 provides estimated GHG emissions by sector compared to 1990 levels, and the range of GHG emissions for each sector estimated for 2030. Table 8 2017 Scoping Plan Emissions Changes by Sector to Achieve the 2030 Target | Scoping Plan Sector | 1990
MMTCO₂e | 2030 Proposed Plan Ranges
MMTCO₂e | % Change from 1990 | |--------------------------------|-----------------|--------------------------------------|--------------------| | Agricultural | 26 | 24-25 | -8% to -4% | | Residential and Commercial | 44 | 38-40 | -14% to -9% | | Electric Power | 108 | 30-53 | -72% to -51% | | High GWP | 3 | 8-11 | 267% to 367% | | Industrial | 98 | 83-90 | -15% to -8% | | Recycling and Waste | 7 | 8-9 | 14% to 29% | | Transportation (including TCU) | 152 | 103-111 | -32% to -27% | | Net Sink ^a | -7 | TBD | TBD | | Sub Total | 431 | 294-339 | -32% to -21% | | Cap-and-Trade Program | NA | 24-79 | NA | | Total | 431 | 260 | -40% | Source: California Air Resources Board. 2017, November. California's 2017 Climate Change Scoping Plan: The Strategy for Achieving California's 2030 Greenhouse Gas Target. https://www.arb.ca.gov/cc/scopingplan/2030sp_pp_final.pdf. Notes: TCU = Transportation, Communications, and Utilities; TBD: To Be Determined. a Work is underway through 2017 to estimate the range of potential sequestration benefits from the natural and working lands sector. #### 2.1.2.5 SENATE BILL 375 – SUSTAINABLE COMMUNITIES STRATEGY In 2008, SB 375, the Sustainable Communities and Climate Protection Act, was adopted to connect the GHG emissions reductions targets established in the 2008 Scoping Plan for the transportation sector to local land use decisions that affect travel behavior. Its intent is to reduce GHG emissions from light-duty trucks and automobiles (excludes emissions associated with goods movement) by aligning regional long-range transportation plans, investments, and housing allocations to local land use planning to reduce VMT and vehicle trips. Specifically, SB 375 required CARB to establish GHG emissions reduction targets for each of the 18 metropolitan planning organizations (MPOs). The Metropolitan Transportation Commission (MTC) is the MPO for the nine-county San Francisco Bay Area region. MTC's targets are a 7 percent per capita reduction in GHG emissions from 2005 by 2020, and 15 percent per capita reduction from 2005 levels by 2035.60 #### 2017 Update to the SB 375 Targets CARB is required to update the targets for the MPOs every eight years. In June 2017, CARB released updated targets and technical methodology and recently released another update in February 2018. The updated targets consider the need to further reduce VMT, as identified in the 2017 Scoping Plan Update, while balancing the need for additional and more flexible revenue sources to incentivize positive planning and action toward sustainable communities. Like the 2010 targets, the updated SB 375 targets are in units of percent per capita reduction in GHG emissions from automobiles and light trucks relative to 2005. This excludes reductions anticipated from implementation of state technology and fuels strategies and any potential future state strategies such as statewide road user pricing. The proposed targets call for greater per capita GHG emission reductions from SB 375 than are currently in place, which for 2035, translate into proposed targets that either match or exceed the emission reduction levels in the MPOs' currently adopted sustainable communities strategies (SCS). As proposed, CARB staff's proposed targets would result in an additional reduction of over 8 MMTCO2e in 2035 compared to the current targets. For the next round of SCS updates, CARB's updated targets for the SCAG region are an 8 percent per capita GHG reduction in 2020 from 2005 levels (unchanged from the 2010 target) and a 19 percent per capita GHG reduction in 2035 from 2005 levels (compared to the 2010 target of 13 percent).61 CARB adopted the updated targets and methodology on March 22, 2018. All SCSs adopted after October 1, 2018, are subject to these new targets. #### 2.1.2.6 OTHER APPLICABLE MEASURES ## **Transportation** #### Assembly Bill 1493 California vehicle GHG emission standards were enacted under AB 1493 (Pavley I). Pavley I is a clean-car standard that reduces GHG emissions from new passenger vehicles (light-duty auto to medium-duty vehicles) from 2009 through 2016 and is anticipated to reduce GHG emissions from new passenger vehicles by 30 percent in 2016. California implements the Pavley I standards through a waiver granted to California by ⁶⁰ California Air Resources Board. 2010. Staff Report, Proposed Regional Greenhouse Gas Emission Reduction Targets for Automobiles and Light Trucks Pursuant to Senate Bill 375, August. ⁶¹ California Air Resources Board (CARB). 2018, February. Proposed Update to the SB 375 Greenhouse Gas Emission Reduction Targets. https://www.arb.ca.gov/cc/inventory/data/data.htm. the EPA. In 2012, the EPA issued a Final Rulemaking that sets even more stringent fuel economy and GHG emissions standards for model years 2017 through 2025 light-duty vehicles (see also the discussion on the update to the Corporate Average Fuel Economy standards under *Federal Laws*, above). In January 2012, CARB approved the Advanced Clean Cars program (formerly known as Pavley II) for model years 2017 through 2025. The program combines the control of smog, soot, and global warming gases with requirements for greater numbers of ZE vehicles into a single package of standards. Under California's Advanced Clean Car program, by 2025 new automobiles will emit 34 percent less global warming gases and 75 percent
less smogforming emissions. #### Executive Order S-1-07 On January 18, 2007, the state set a new LCFS for transportation fuels sold in the state. Executive Order S-01-07 sets a declining standard for GHG emissions measured in CO₂e gram per unit of fuel energy sold in California. The LCFS requires a reduction of 2.5 percent in the carbon intensity of California's transportation fuels by 2015 and a reduction of at least 10 percent by 2020. The standard applies to refiners, blenders, producers, and importers of transportation fuels, and would use market-based mechanisms to allow these providers to choose how they reduce emissions during the "fuel cycle" using the most economically feasible methods. #### Executive Order B-16-2012 On March 23, 2012, the state identified that CARB, the California Energy Commission (CEC), the Public Utilities Commission, and other relevant agencies worked with the Plug-in Electric Vehicle Collaborative and the California Fuel Cell Partnership to establish benchmarks to accommodate ZE vehicles in major metropolitan areas, including infrastructure to support them (e.g., electric vehicle charging stations). The executive order also directed the number of ZE vehicles in California's state vehicle fleet to increase through the normal course of fleet replacement so that at least 10 percent of fleet purchases of light-duty vehicles are ZE by 2015 and at least 25 percent by 2020. The executive order also establishes a target for the transportation sector of reducing GHG emissions 80 percent below 1990 levels. #### Renewables Portfolio Standard #### Senate Bills 1078, 107, X1-2, and Executive Order S-14-08 A major component of California's Renewable Energy Program is the renewables portfolio standard established under Senate Bills 1078 (Sher) and 107 (Simitian). Under the RPS, certain retail sellers of electricity were required to increase the amount of renewable energy each year by at least 1 percent in order to reach at least 20 percent by December 30, 2010. Executive Order S-14-08, signed in November 2008, expanded the state's renewable energy standard to 33 percent renewable power by 2020. This standard was adopted by the legislature in 2011 (SB X1-2). Renewable sources of electricity include wind, small hydropower, solar, geothermal, biomass, and biogas. The increase in renewable sources for electricity production will decrease indirect GHG emissions from development projects because electricity production from renewable sources is generally considered carbon neutral. #### Senate Bill 350 Senate Bill 350 (de Leon), was signed into law September 2015. SB 350 establishes tiered increases to the RPS of 40 percent by 2024, 45 percent by 2027, and 50 percent by 2030. SB 350 also set a new goal to double the energy efficiency savings in electricity and natural gas through energy efficiency and conservation measures. #### Senate Bill 100 On September 10, 2018, Governor Brown signed SB 100. Under SB 100, the RPS for public-owned facilities and retail sellers consist of 44 percent renewable energy by 2024, 52 percent by 2027, and 60 percent by 2030. Additionally, SB 100 also established a new RPS requirement of 50 percent by 2026. Furthermore, the bill establishes an overall state policy that eligible renewable energy resources and zero-carbon resources supply 100 percent of all retail sales of electricity to California end-use customers and 100 percent of electricity procured to serve all state agencies by December 31, 2045. Under the bill, the state cannot increase carbon emissions elsewhere in the western grid or allow resource shuffling to achieve the 100 percent carbon-free electricity target. #### Executive Order B-55-18 Executive Order B-55-18, signed September 10, 2018, sets a goal "to achieve carbon neutrality as soon as possible, and no later than 2045, and achieve and maintain net negative emissions thereafter." Executive Order B-55-18 directs CARB to work with relevant state agencies to ensure future Scoping Plans identify and recommend measures to achieve the carbon neutrality goal. The goal of carbon neutrality by 2045 is in addition to other statewide goals, meaning not only should emissions be reduced to 80 percent below 1990 levels by 2050, but that, by no later than 2045, the remaining emissions be offset by equivalent net removals of CO₂e from the atmosphere, including through sequestration in forests, soils, and other natural landscapes. #### **Energy Efficiency** ## California Building Standards Code – Building Energy Efficiency Standards Energy conservation standards for new residential and non-residential buildings were adopted by the California Energy Resources Conservation and Development Commission (now the CEC) in June 1977 and most recently revised in 2019 (Title 24, Part 6, of the California Code of Regulations [CCR]). Title 24 requires the design of building shells and building components to conserve energy. The standards are updated periodically to allow for consideration and possible incorporation of new energy efficiency technologies and methods. The 2019 Building Energy Efficiency Standards, which were adopted on May 9, 2018, went into effect on January 1, 2020. The 2019 standards move towards cutting energy use in new homes by more than 50 percent and will require installation of solar photovoltaic systems for single-family homes and multi-family buildings of 3 stories and less. Four key areas the 2019 standards will focus on include 1) smart residential photovoltaic systems; 2) updated thermal envelope standards (preventing heat transfer from the interior to exterior and vice versa); 3) residential and nonresidential ventilation requirements; 4) and nonresidential lighting requirements.⁶² Under ⁶² California Energy Commission (CEC). 2018. News Release: Energy Commission Adopts Standards Requiring Solar Systems for New Homes, First in Nation. http://www.energy.ca.gov/releases/2018_releases/2018-05-09_building_standards_adopted_nr.html. the 2019 standards, nonresidential buildings and multi-family residential buildings of four stories or more will be 30 percent more energy efficient compared to the 2016 standards while single-family homes will be 7 percent more energy efficient.⁶³ When accounting for the electricity generated by the solar photovoltaic system, single-family homes would use 53 percent less energy compared to homes built to the 2016 standards.⁶⁴ Furthermore, on August 11, 2021, the CEC adopted the 2022 Building Energy Efficiency Standards, which were subsequently approved by the California Building Standards Commission in December 2021. The 2022 standards become effective and replace the existing 2019 standards on January 1, 2023. The 2022 standards would require mixed-fuel single-family homes to be electric-ready to accommodate replacement of gas appliances with electric appliances. In addition, the new standards also include prescriptive photovoltaic system and battery requirements for high-rise, multifamily buildings (i.e., more than three stories) and noncommercial buildings such as hotels, offices, medical offices, restaurants, retail stores, schools, warehouses, theaters, and convention centers.⁶⁵ ## California Green Building Standards Code - CALGreen On July 17, 2008, the California Building Standards Commission adopted the nation's first green building standards. The California Green Building Standards Code (24 CCR, Part 11, known as "CALGreen") was adopted as part of the California Building Standards Code. CALGreen established planning and design standards for sustainable site development, energy efficiency (in excess of the California Energy Code requirements), water conservation, material conservation, and internal air contaminants. The mandatory provisions of CALGreen became effective January 1, 2011. The CEC adopted the voluntary standards of the 2019 CALGreen on October 3, 2018. The 2019 CALGreen standards became effective January 1, 2020. #### 2006 Appliance Energy Efficiency Regulations The 2006 Appliance Efficiency Regulations (20 CCR §§ 1601–1608) were adopted by the CEC on October 11, 2006 and approved by the California Office of Administrative Law on December 14, 2006. The regulations include standards for both federally regulated appliances and non–federally regulated appliances. Though these regulations are now often viewed as "business as usual," they exceed the standards imposed by all other states, and they reduce GHG emissions by reducing energy demand. #### **Solid Waste** #### AB 939 California's Integrated Waste Management Act of 1989 (AB 939, Public Resources Code §§ 40050 et seq.) set a requirement for cities and counties throughout the state to divert 50 percent of all solid waste from landfills by January 1, 2000, through source reduction, recycling, and composting. In 2008, the requirements were modified to reflect a per capita requirement rather than tonnage. To help achieve this, the act requires that ⁶³ California Energy Commission (CEC). 2018. 2019 Building Energy and Efficiency Standards Frequently Asked Questions. http://www.energy.ca.gov/title24/2019standards/documents/2018_Title_24_2019_Building_Standards_FAQ.pdf. ⁶⁴ California Energy Commission (CEC). 2018. 2019 Building Energy and Efficiency Standards Frequently Asked Questions. http://www.energy.ca.gov/title24/2019standards/documents/2018_Title_24_2019_Building_Standards_FAQ.pdf. ⁶⁵ California Energy Commission (CEC). 2021. Amendments to the Building Energy Efficiency Standards (2022 Energy Code) Draft Environmental Report. CEC-400-2021-077-D. The green building standards became mandatory in the 2010 edition of the code. each city and county prepare and submit a source reduction and recycling element. AB 939 also established the goal for all California counties to provide at least 15 years of ongoing landfill capacity. #### AB 341 AB 341 (Chapter 476, Statutes of 2011) increased the statewide goal for waste diversion to 75 percent by 2020 and requires
recycling of waste from commercial and multifamily residential land uses. Section 5.208 of CALGreen also requires that at least 65 percent of the nonhazardous construction and demolition waste from nonresidential construction operations be recycled and/or salvaged for reuse. #### AB 1327 The California Solid Waste Reuse and Recycling Access Act (AB 1327, Public Resources Code §§ 42900 et seq.) requires areas to be set aside for collecting and loading recyclable materials in development projects. The act required the California Integrated Waste Management Board to develop a model ordinance for adoption by any local agency requiring adequate areas for collection and loading of recyclable materials as part of development projects. Local agencies are required to adopt the model or an ordinance of their own. #### AB 1826 In October of 2014, Governor Brown signed AB 1826 requiring businesses to recycle their organic waste on and after April 1, 2016, depending on the amount of waste they generate per week. This law also requires that on and after January 1, 2016, local jurisdictions across the state implement an organic waste recycling program to divert organic waste generated by businesses and multifamily residential dwellings with five or more units. Organic waste means food waste, green waste, landscape and pruning waste, nonhazardous wood waste, and food-soiled paper waste that is mixed with food waste. ## Water Efficiency #### SBX7-7 The 20x2020 Water Conservation Plan was issued by the Department of Water Resources (DWR) in 2010 pursuant to Senate Bill 7, which was adopted during the 7th Extraordinary Session of 2009–2010 and therefore dubbed "SBX7-7." SBX7-7 mandated urban water conservation and authorized the DWR to prepare a plan implementing urban water conservation requirements (20x2020 Water Conservation Plan). In addition, it required agricultural water providers to prepare agricultural water management plans, measure water deliveries to customers, and implement other efficiency measures. SBX7-7 requires urban water providers to adopt a water conservation target of 20 percent reduction in urban per capita water use by 2020 compared to 2005 baseline use. #### AB 1881 The Water Conservation in Landscaping Act of 2006 (AB 1881) requires local agencies to adopt the updated DWR model ordinance or equivalent. AB 1881 also requires the Energy Commission, in consultation with the department, to adopt, by regulation, performance standards and labeling requirements for landscape irrigation equipment, including irrigation controllers, moisture sensors, emission devices, and valves to reduce the wasteful, uneconomic, inefficient, or unnecessary consumption of energy or water. ## **Short-Lived Climate Pollutant Strategy** #### Senate Bill 1383 On September 19, 2016, the Governor signed SB 1383 to supplement the GHG reduction strategies in the Scoping Plan to consider short-lived climate pollutants, including black carbon and CH₄. Black carbon is the light-absorbing component of fine particulate matter produced during incomplete combustion of fuels. SB 1383 required the state board, no later than January 1, 2018, to approve and begin implementing a comprehensive strategy to reduce emissions of short-lived climate pollutants to achieve a reduction in methane by 40 percent, hydrofluorocarbon gases by 40 percent, and anthropogenic black carbon by 50 percent below 2013 levels by 2030. The bill also established targets for reducing organic waste in landfills. On March 14, 2017, CARB adopted the Short-Lived Climate Pollutant Reduction Strategy, which identifies the state's approach to reducing anthropogenic and biogenic sources of short-lived climate pollutants. Anthropogenic sources of black carbon include on- and off-road transportation, residential wood burning, fuel combustion (charbroiling), and industrial processes. According to CARB, ambient levels of black carbon in California are 90 percent lower than in the early 1960s, despite the tripling of diesel fuel use. ⁶⁷ In-use on-road rules are expected to reduce black carbon emissions from on-road sources by 80 percent between 2000 and 2020. ## 2.1.3 Regional Regulations ## Plan Bay Area, Strategy for a Sustainable Region Plan Bay Area 2050 is the Bay Area's RTP/SCS and was adopted jointly by ABAG and MTC on October 2021.⁶⁸ The Plan Bay Area 2050 serves as a 30-year plan with 35 new strategies to provide a more equitable and resilient future for residents in the Bay Area. This regional plan aims for more affordable and accessible transportation, which will significantly decrease greenhouse gas emissions to meet the state mandate of a 19 percent reduction in per-capita emissions by 2035. As part of the implementing framework for Plan Bay Area, local governments have identified Priority Development Areas (PDAs) to focus growth. PDAs are transit-oriented, infill development opportunity areas in existing communities. Overall, well over two-thirds of all regional growth in the Bay Area by 2050 is allocated in PDAs. Per the Final Plan Bay Area 2050, the projected number of new housing units and new jobs within PDAs would increase to 1,672,000 units and 2,561,000 jobs compared to the adopted Plan Bay Area 2040. In addition, its overall share would be increased to 51 percent and 35 percent. ⁶⁹ However, Plan Bay Area 2050 remains on track to meet a 19 percent per capita reduction of GHG emissions by 2035. ⁷⁰ The proposed project site is not within a PDA. ⁷¹ Air Quality and Greenhouse Gas Background and Modeling Data ⁶⁷ California Air Resources Board (CARB). 2017, March 14. Final Proposed Short-Lived Climate Pollutant Reduction Strategy. https://www.arb.ca.gov/cc/shortlived/shortlived.htm. ⁶⁸ Metropolitan Transportation Commission and Association of Bay Area Governments. 2021, October. Plan Bay Area 2050 Plan. https://www.planbayarea.org/finalplan2050 Metropolitan Transportation Commission (MTC) and Association of Bay Area Governments (ABAG). 2021, October. Plan Bay Area 2050 Plan. https://www.planbayarea.org/sites/default/files/documents/Plan_Bay_Area_2050_October_2021.pdf. Metropolitan Transportation Commission (MTC) and Association of Bay Area Governments (ABAG). 2021, October. Plan Bay Area 2050 Plan. https://www.planbayarea.org/sites/default/files/documents/Plan_Bay_Area_2050_October_2021.pdf. Metropolitan Transportation Commission (MTC) and Association of Bay Area Governments (ABAG). 2022, January 18 #### Bay Area Clean Air Plan BAAQMD adopted the 2017 Clean Air Plan, Spare the Air, Cool the Climate on April 19, 2017. The 2017 Clean Air Plan also lays the groundwork for reducing GHG emissions in the Bay Area to meet the state's 2030 GHG reduction target and 2050 GHG reduction goal. It also includes a vision for the Bay Area in a post-carbon year 2050 that encompasses the following: - Construct buildings that are energy efficient and powered by renewable energy. - Walk, bicycle, and use public transit for the majority of trips and use electric-powered autonomous public transit fleets. - Incubate and produce clean energy technologies. - Live a low-carbon lifestyle by purchasing low-carbon foods and goods in addition to recycling and putting organic waste to productive use.⁷² A comprehensive multipollutant control strategy has been developed to be implemented in the next 3 to 5 years to address public health and climate change and to set a pathway to achieve the 2050 vision. The control strategy includes 85 control measures to reduce emissions of ozone, particulate matter, toxic air contaminants, and GHG from a full range of emission sources. These control measures cover the following sectors: 1) stationary (industrial) sources; 2) transportation; 3) energy; 4) agriculture; 5) natural and working lands; 6) waste management; 7) water; and 8) super-GHG pollutants. Overall, the proposed control strategy is based on the following key priorities: - Reduce emissions of criteria air pollutants and toxic air contaminants from all key sources. - Reduce emissions of "super-GHGs" such as methane, black carbon, and fluorinated gases. - Decrease demand for fossil fuels (gasoline, diesel, and natural gas). - Increase efficiency of the energy and transportation systems. - Reduce demand for vehicle travel, and high-carbon goods and services. - Decarbonize the energy system. - Make the electricity supply carbon-free. - Electrify the transportation and building sectors. #### Bay Area Commuter Benefits Program Under Air District Regulation 14, Model Source Emissions Reduction Measures, Rule 1, Bay Area Commuter Benefits Program, employers with 50 or more full-time employees within the BAAQMD are required to register and offer commuter benefits to employees. In partnership with the BAAQMD and the Metropolitan Transportation Commission (MTC), the rule's purpose is to improve air quality, reduce GHG emissions, and decrease the Bay Area's traffic congestion by encouraging employees to use alternative commute modes, such as transit, vanpool, carpool, bicycling, and walking. The benefits program allows employees to choose from ⁽accessed). Priority Development Areas (Plan Bay Area 2050) ArcGIS. https://www.arcgis.com/apps/mapviewer/index.html?layers=4df9cb38d77346a289252ced4ffa0ca0. Pay Area Air Quality Management District, 2017. Final 2017 Clean Air Plan, Spare the Air, Cool the Climate: A Blueprint for Clean Air and Climate Protection in the Bay Area. http://www.baaqmd.gov/plans-and-climate/air-quality-plans/current-plans, accessed November 21, 2019. one of four commuter benefit options including a pre-tax benefit, employer-provided subsidy, employer-provided transit, and alternative commute benefit. ## 2.1.4 Local Regulations #### 2.1.4.1 CITY OF CUPERTINO CLIMATE ACTION PLAN The City of Cupertino published the public draft Climate Action Plan (CAP) in December 2014 to achieve the GHG reduction target of AB 32 for target year 2020 and interim year 2035. The CAP serves to support California's
statewide climate change efforts through identification of actions that can be taken locally, by residents, businesses, and the City itself, to ensure the State's ambitious reduction goals can be achieved. The strategies outlined in the CAP seek to not only reduce GHG emissions, but also provide energy, water, fuel, and cost savings for the City.⁷³ The goals established by the City's CAP are the following: - Goal 1 Reduce Energy Use: Increase energy efficiency in existing homes and buildings and increase use of renewable energy community-wide. - Goal 2 Encourage Alternative Transportation: Support transit, carpooling, walking, and bicycling as viable transportation modes to decrease the number of single-occupancy vehicle trips within the community. - Goal 3 Conserve Water: Promote the efficient use and conservation of water in buildings and landscapes. - Goal 4 Reduce Solid Waste: Strengthen waste reduction efforts through recycling and organics collection and reduced consumption of materials that otherwise end up in landfills. - Goal 5 Expand Green Infrastructure: Enhance the City's existing urban forest on public and private lands. #### 2.1.4.2 CITY OF CUPERTINO MUNICIPAL CODE Cupertino's Municipal Code (CMC) Chapter 17.04, Standard Environmental Protection Requirements, identifies standard environmental protection requirements that all construction projects in the City must meet, including but not limited to the environmental mitigation measures identified in any environmental documents required as part of a General Plan update.⁷⁴ CMC Section 17.04.050, Standard Environmental Protection Permit Submittal Requirements, describes greenhouse gas permit requirements as follows: Reduce Greenhouse Gas Emissions (GHG) and Energy Use. The project applicant shall complete the City of Cupertino Climate Action Plan – Development Project Consistency Checklist, for review and approval by the City Environment and Sustainability Department prior to issuance of the first permit, to demonstrate how the project is consistent with the Cupertino Climate Action Plan, as subsequently revised, supplemented, or replaced, in order to reduce greenhouse gas emissions and conserve energy. ⁷³ City of Cupertino, 2015. Climate Action Plan. January, 2015. http://www.cupertino.org/home/showdocument?id=13531 ⁷⁴ City of Cupertino, Municipal Code. Local legislation current through Ordinance 22-2238, passed February 1, 2022. https://codelibrary.amlegal.com/codes/cupertino/latest/cupertino_ca/0-0-0-78624. ## 2.2 ENVIRONMENTAL SETTING ## 2.2.1 Existing Emissions The project site is currently developed with one two-story office building (141,000 square-foot) with associated surface parking and landscaping. The building operations currently generate greenhouse emissions from transportation, area sources, energy use, water use/wastewater generation, and solid waste disposal. ## 2.3 METHODOLOGY The BAAQMD The Draft Justification Report: CEQA Thresholds for Evaluating the Significance of Climate Impacts from Land Use Projects and Plans were prepared to assist in the evaluation of GHG emissions impacts of projects and plans proposed within the Bay Area. ## 2.3.1 BAAQMD Standards of Significance Cumulative GHG emissions impacts are based on the state's GHG reduction goals for development projects adopted by BAAQMD in April 2022 *Justification Report: CEQA Thresholds for Evaluating the Significance of Climate Impacts From Land Use Projects and Plans* (Justification Report).⁷⁵ Development of the proposed project would contribute to climate change through direct and indirect emissions of GHG from the construction activities needed to implement the project, which would generate a short-term increase in GHG emissions. BAAQMD identified in their Justification Report that projects that implement the following Best Management Practices (BMPs) would contribute their fair of what will be required to achieve the state's long-term climate goals, as described below: A. Projects must include, at a minimum, the following project design elements; OR #### 1. Buildings - a. The project will not include natural gas appliances or natural gas plumbing (in both residential and nonresidential development). - b. The project will not result in any wasteful, inefficient, or unnecessary electrical usage as determined by the analysis required under CEQA Section 21100(b)(3) and Section 15126.2(b) of the State CEQA Guidelines. #### 2. Transportation - a. Achieve compliance with electric vehicle requirements in the most recently adopted version of CALGreen Tier 2. - b. Achieve a reduction in project-generated vehicle miles traveled (VMT) below the regional average consistent with the current version of the California Climate Change Scoping Plan or meet a locally ⁷⁵ BAAQMD. 2022, April 20. Justification Report: CEQA Thresholds for Evaluating the Significance of Climate Impacts from Land Use Projects and Plans. https://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/ceqa-thresholds-2022/justification-report-pdf.pdf?la=en adopted Senate Bill 743 VMT target, reflecting the recommendations provided in the Governor's Office of Planning and Research's Technical Advisory on Evaluating Transportation Impacts in CEQA: B. Projects must be consistent with a local GHG reduction strategy that meets the criteria under State CEQA Guidelines Section 15183.5(b). BAAQMD does not have thresholds of significance for construction related GHG emissions, which are onetime, short-term emissions and therefore would not significantly contribute to the long-term cumulative GHG emissions impacts of the proposed project. ## **CalEEMod Inputs - VP1 Apple Office Project, Construction** Name: VP1 Apple Office Project Project Number: COCU-21 **Project Location:** 19191 Vallco Parkway County: Santa Clara Climate Zone: 4 Land Use Setting: Urban Operational Year: 2024 Utility Company: Silicon Valley Clean Energy Air Basin: San Francisco Bay Area Air Basin (SFBAAB) Air District: Bay Area Air Quality Management District (BAAQMD) Proiect Site Acreage 7.97 Disturbed Site Acreage 7.97 | Project Components | SQFT | | Tons | | |----------------------------------|----------------|------------|---------------------------|-------| | Demolition | | | | | | Existing Building | 141,024 | | 6,487 | | | Asphalt Demo | 168,000 | | 3,366 | | | New Construction | | | | | | | Stories/Levels | Total SQFT | Building Footprint | Acres | | 4-Story Office building | 4 | 280,020 | 75,430 | 1.73 | | Commercial/Retail Space | 1 | 2,300 | 2,300 | 0.05 | | TOTAL COMMERCIAL | | 282,320 | 77,730 | 1.78 | | | | | | | | Parking Garage | 6 | 213,080 | 35,250 | 0.81 | | Parking Lot | N/A | 129,591 | 129,591 | 2.98 | | Hardscape ¹ | N/A | 21,706 | 21,706 | 0.50 | | Landscape | N/A | 82,896 | 82,896 | 1.90 | | Total Other Non-Asphalt Surfaces | | 104,602 | 104,602 | 2.40 | Notes: ## **CalEEMod Land Use Inputs** | Land Use Type | Land Use Subtype | Unit Amount | Size Metric | Lot Acreage | Land Use Square Feet | |--------------------------|--------------------------------|-------------|-------------|-------------|----------------------| | Commercial | General Office building | 282.32 | 1000 sqft | 1.78 | 282,320 | | Parking (Parking garage) | Enclosed parking with elevator | 213.08 | 1000 sqft | 0.81 | 213,080 | | Parking (Parking lot) | Parking Lot | 129.59 | 1000 sqft | 2.98 | 129,591 | | Parking | Other Non-Asphalt Surfaces | 104.60 | 1000 sqft | 2.40 | 104,602 | | | | | | 7.97 | 729,593 | ## **Demolition** | | | 1 | 1 | | | | |-----------|--------------------------------|---|------------------------------------|-----------------|----------------|------------| | Component | Amount to be Demolished (Tons) | Haul Truck Capacity (tons) ¹ | Haul Distance (miles) ¹ | Total Trip Ends | Trip Ends/ day | Total Days | | Building | 6,487 | 20 | 20 | 649 | 130 | 5 | | Asphalt _ | 3,366 | 20 | 20 | 337 | 67 | 5 | | Total | 9,853 | | | 986 | | | ¹ Includes Outdoor Commercial Space. ¹ CalEEMod default used. ## Soil Haul¹ | Construction Activities | Haul Truck Capacity (CY) ¹ | Volume (CY) ² | Haul Distance (miles) ¹ | Total Trip Ends | Total Days | Trip Ends/Day | |---------------------------------|---------------------------------------|--------------------------|------------------------------------|-----------------|------------|---------------| | Rough Grading (import & export) | 16 | 58,757 | 20 | 7346 | 30 | 250 | | | | 58.757 | 20 | | | | #### Notes: ## **Architectural Coating** | | 4-Story Office Building ^{1,3} | Parking Garage ^{2,3} | Commercial/Retail Space ^{1,3} | |---------------------------|--|-------------------------------|--| | Percent Interior Painted: | 45% | 0% | 1% | | Percent Exterior Painted: | 0% | 5% | 0% | | | VOC Content (g/L) | VOC Content (g/L) | VOC Content (g/L) | | Interior | 50 | 100 | 50 | | Exterior | 100 | 157 | 100 | #### Notes ³ Information provided by Applicant. | Non-Residential Structures | Land Use Square Feet | CalEEMod Factor ² | Total Paintable Surface Area | Paintable Interior
Area ¹ | Paintable Exterior
Area ¹ | |----------------------------|----------------------|------------------------------|------------------------------|---|---| | 4-Story Office Building | 280,020 | 2.0 | 560,040 | 189,014 | 0 | | Commercial Space | 2,300 | 2.0 | 4,600 | 35 | 0 | | Parking Garage | 213,080 | 2.0 | 426,160 | 0 | 5,327 | | | | | | 189,048 | 5,327 | | Parking ³ | | | | | | | Parking Lot (Striping) | 129,591 | 6% | 7,775 | - | 7,775 | ## Notes: 7,775 ¹ CalEEMod default used. ² Combined soil haul import and export volumes into one phase provided by Applicant. $^{^{1}}$ CalEEMod defaults used for exterior painting VOC content for office building and commercial/retail space. $^{^{\,2}}$ CalEEMod defaults used for interior painting
VOC content for parking garage. ¹ CalEEMod methodology calculates the paintable interior and exterior areas by multiplying the total paintable surface area by 75 and 25 percent, respectively. The program assumes the total surface for painting equals 2.7 times the floor square footage for residential and 2.0 times that for nonresidential square footage defined by the user. Architectural coatings for the parking lot is based on CalEEMod methodology applied to a surface parking lot (i.e., striping), in which 6% of surface area is painted. ## Silicon Valley Clean Energy Carbon Intensity Factors | CO ₂ :1 | 2.00 | pounds per megawatt hour | |--------------------------------|------|--------------------------| | CH ₄ : ¹ | 0 | pound per megawatt hour | | $N_2O:^1$ | 0 | pound per megawatt hour | Notes: ## **BAAQMD Construction BMPs** | DAAQIND CONSCIUCTION DIVINS | | | | |-----------------------------|------------------|----|----------------| | Replace Ground Cover | PM10: | 5 | % Reduction | | Replace Ground Cover | PM2.5: | 5 | % Reduction | | | | | | | Water Exposed Area | Frequency: | 2 | per day | | | PM10: | 55 | % Reduction | | | PM25: | 55 | % Reduction | | | | | | | Unpaved Roads | Vehicle Speed: | 15 | mph | | | | | | | | Clean Paved Road | 9 | % PM Reduction | | | | | | ¹ CalEEMod default values. ## **CalEEMod Inputs - VP1 Apple Office Project, Existing Conditions** Name: VP1 Apple Office Project Project Number: COCU-21 **Project Location:** 19191 Vallco Parkway **County:** Santa Clara Source Receptor Area (SRA): 21- Capistrano Valley Climate Zone: 4 Land Use Setting: Urban Operational Year: 2021 & 2024 **Utility Company:** Silicon Valley Clean Energy Air Basin: San Francisco Bay Area Air Basin (SFBAAB) Air District: Bay Area Air Quality Management District (BAAQMD) Proiect Site Acreage 7.97 ## **CalEEMod Land Use Inputs** | Land Use Type | Land Use Subtype | Unit Amount | Size Metric | Lot Acreage | Land Use Square Feet | |---------------------|----------------------------|-------------|-------------|-------------|----------------------| | Commercial | General Office Building | 141.02 | 1000sqft | 3.24 | 141,024 | | Parking | Parking Lot | 141.29 | 1000sqft | 3.24 | 141,292 | | Parking (Landscape) | Other Non-asphalt surfaces | 64.86 | 1000sqft | 1.49 | 64,857 | | | | | | 7.97 | | Trips¹ Source: Fehr & Peers. 2021. Transportation Analysis: VP1 Apple Office Project. | Land Use Type | Average Daily Trips ² | CalEEMod Trip Rate | Saturday Trips | CalEEMod Trip Rate | Sunday Trips | CalEEMod Trip Rate | |-------------------------|----------------------------------|--------------------|----------------|--------------------|--------------|--------------------| | General Office Building | 1,823 | 12.93 | 0 | 0.00 | 0 | 0.00 | | Trips | Annual Vehicle Miles Traveled ³ | Average Daily Vehicle
Miles Traveled | VMT per Worker | |-------------|--|---|----------------| | Total Trips | 4,759,300 | 13,039 | 15.60 | ## Notes: $^{^{3}}$ Annual and total daily VMT calculated based on daily VMT per worker provided by Fehr & Peers, 2021. | | Trip Type Percentages | | | | |--------------------------------|-----------------------|----------|--------|--| | | Primary | Diverted | Passby | | | General Office Building | 77% | 19% | 4% | | | Adjusted Trip Type Percentages | 100% | 0% | 0% | | | | Trip Length | | | | | | |-------------------------|-----------------------------------|------|------|--|--|--| | | H-W or C-W H-S or C-C H-O or C-NW | | | | | | | General Office Building | 9.50 | 7.30 | 7.30 | | | | | Adjusted Trip Lengths | 15.60 | 7.30 | 7.30 | | | | ## Water Use and Wastewater Generation Wastewater is treated by the San José/Santa Clara Water Pollution Control Plant (SJ/SCWPCP), which provides tertiary treated wastewater throughout the County of Santa Clara. Therefore, CalEEMod defaults reflect 100% aerobic treatment. | Land Use | Wastewater Demand ¹ | Indoor ² | Outdoor ³ | Total | |----------------------------|--------------------------------|---------------------|----------------------|-----------| | Total Water Use (gal/day) | 6,699 | 7,051 | 1,954 | 15,704 | | Total Water Use (gal/year) | 2,445,004 | 2,573,688 | 713,265 | 5,731,957 | ## Notes: ## Solid Waste | | | | | Total Solid Waste | |-------------------------|-----------------------------|---------|-----------|--------------------------| | Land Use | Total Solid Waste (lbs/day) | tons/lb | days/year | (tons/yr) | | General Office Building | 1,222 | 0.0005 | 365 | 223 | Source: Per Capita Disposal for Employees - CalRecycle, 2020, Jurisdiction Per Capita Disposal Trends, https://www2.calrecycle.ca.gov/LGCentral/AnnualReporting/ReviewReports. ¹ Assume normal office operations of similar Apple buildings in which offices will be closed on the weekends. $^{^{2}}$ Based on trip generation rates presented in Apple Campus 2 (2013) by Fehr & Peers, 2021. ¹ Assume wastewater flow rate of 95% of indoor water demand for non-residential (Westport). $^{^{2}}$ Yarne & Assoc, 2014, Water Supply Evaluation (pg 16) (from Appendix H of GPEIR). ³ Assume all irrigation is drip or bubblers; no turf areas for outdoor water calculations. ## **Architectural Coating** | Percentage Interior Painted: | 100% | | |------------------------------|-------------------|-----------------| | Percent Exterior Painted: | 100% | • | | Rule 1113 | VOC Content (g/L) | | | Interior Paint VOC content: | 100 | grams per liter | | Exterior Paing VOC content: | 100 | grams per liter | | Non-Residential Structures | Land Use Square Feet | CalEEMod Factor ² | Total Paintable Surface Area | Paintable Interior
Area ¹ | Paintable Exterior
Area ¹ | |----------------------------|----------------------|------------------------------|------------------------------|---|---| | General Office Building | 141,024 | 2.0 | 282,048 | 211,536 | 70,512 | | | | | 282,048 | 211,536 | 70,512 | | Parking | 141,292 | 6% | 8,478 | - | 8,478 | | | | | 8,478 | | 8,478 | Notes: CalEEMod methodology calculates the paintable interior and exterior areas by multiplying the total paintable surface area by 75 and 25 percent, respectively. ² The program assumes the total surface for painting equals 2.7 times the floor square footage for residential and 2 times that for nonresidential square footage defined by the user. Architectural coatings for the parking lot is based on CalEEMod methodology applied to a surface parking lot (i.e., striping), in which 6% of surface area is painted. ## **Electricity (Buildings)** ## **Existing Energy** Existing non-residential modeled using historic energy demand rates in CalEEMod. Modeling is conservative because the net increase in energy use due to the project is likely smaller than reflected due to improved building energy efficiency between the project and existing land uses. | Land Use Subtype | Title-24 Electricity Energy Intensity (kWhr/size/year)* | Nontitle-24 Electricity
Energy Intensity
(kWhr/size/year) | Lighting Energy Intensity
(KWhr/size/year) | Title-24 Natural Gas
Energy Intensity
(KBTU/size/year)* | Nontitle-24 Natural Gas Energy Intensity (KBTU/size/year) | |----------------------------|---|---|---|---|---| | General Office Building | 8.01 | 7.84 | 4.72 | 19.90 | 0.06 | | Other Non-Asphalt Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Parking Lot | 0.00 | 0.00 | 0.88 | 0.00 | 0.00 | ## **Silicon Valley Clean Energy Carbon Intensity Factors** | CO ₂ : ¹ | 2.00 | pounds per megawatt hour | |--------------------------------|------|--------------------------| | CH ₄ : ¹ | 0 | pound per megawatt hour | | N ₂ O: ¹ | 0 | pound per megawatt hour | ¹ CalEEMod default values. ## **CalEEMod Inputs - VP1 Apple Office Project, Operations Assumptions** Name: VP1 Apple Office Project Project Number: COCU-21 Project Location:19191 Vallco ParkwayCounty:Santa ClaraSource Receptor Area (SRA):21- Capistrano Valley Climate Zone: 4 Land Use Setting: Urban Operational Year: 2024 **Utility Company:** Silicon Valley Clean Energy Air Basin:San Francisco Bay Area Air Basin (SFBAAB)Air District:Bay Area Air Quality Management District (BAAQMD) Proiect Site Acreage 7.97 | Proposed New Construction | | | | | | | |----------------------------------|----------------|------------|---------------------------|-------|--|--| | | Stories/Levels | Total SQFT | Building Footprint | Acres | | | | 4-Story Office building | 4 | 280,020 | 75,430 | 1.73 | | | | Commercial/Retail Space | 1 | 2,300 | 2,300 | 0.05 | | | | TOTAL COMMERCIAL | | 282,320 | 77,730 | 1.78 | | | | | | | | | | | | Parking Garage | 6 | 213,080 | 35,250 | 0.81 | | | | Parking Lot | N/A | 129,591 | 129,591 | 2.98 | | | | Hardscape | N/A | 21,706 | 21,706 | 0.50 | | | | Landscape | N/A | 82,896 | 82,896 | 1.90 | | | | Total Other Non-Asphalt Surfaces | | 104,602 | 104,602 | 2.40 | | | ## **CalEEMod Land Use Inputs** | • · · · · · · · · · · · · · · · · · · · | | | | | | |---|--|-------------|-------------|-------------|----------------------| | Land Use Type | Land Use Subtype | Unit Amount | Size Metric | Lot Acreage | Land Use Square Feet | | Commercial | General Office building | 280.02 | 1000 sqft | 1.73 | 280,020 | | Retail (Retail space) ¹ | Convenience Market | 2.30 | 1000 sqft | 0.05 | 2,300 | | Parking (Parking garage) | Enclosed parking structure with elevator | 213.08 | 1000 sqft | 0.81 | 213,080 | | Parking (Parking lot) | Parking Lot | 129.59 | 1000 sqft | 2.98 | 129,591 | | Parking | Other Non-Asphalt
Surfaces | 104.60 | 1000 sqft | 2.40 | 104,602 | | | | | | 7 97 | | Notes: Trips¹ Source: Fehr & Peers. 2021. Transportation Analysis: VP1 Apple Office Project. | Land Use Type | Average Daily Trips | CalEEMod Trip Rate | Net Increase in
Saturday Trips ¹ | CalEEMod Trip Rate | Net Increase in Sunday
Trips | CalEEMod Trip Rate | |--|---------------------|--------------------|--|--------------------|---------------------------------|--------------------| | General Office Building | 3,621 | 12.93 | 0 | 0.00 | 0 | 0.00 | | Convience Market (Commercial Retail Space) | 327 | 142.17 | 0 | 0.00 | 0 | 0.00 | | Total | 3 0/18 | | | | | | Net 2,125 | Trips | Annual Vehicle Miles Traveled ² | Average Daily Vehicle
Miles Traveled | VMT Per Worker | |-------------|--|---|----------------| | Total Trips | 10,049,378 | 27,533 | 15.51 | Notes: ² Annual and total daily VMT calculated based on daily VMT per worker provided by Fehr & Peers, 2021. TDM Program also included in calculation. | | Trip Type Percentages | | | | | | |--|-------------------------|-----|----|--|--|--| | | Primary Diverted Passby | | | | | | | General Office Building | 77% | 19% | 4% | | | | | Convience Market (Commercial Retail Space) | 24% 15% 61% | | | | | | | Adjusted Trip Type Percentages | 100% | 0% | 0% | | | | | | Trip Length | | | | | |--|-------------|------------|-------------|--|--| | | H-W or C-W | H-S or C-C | H-O or C-NW | | | | General Office Building | 9.50 | 7.30 | 7.30 | | | | Convience Market (Commercial Retail Space) | 9.50 | 7.30 | 7.30 | | | | Adjusted Trip Lengths | 15.51 | 7.30 | 7.30 | | | # Water Use and Wastewater Generation Wastewater is treated by the San José/Santa Clara Water Pollution Control Plant (SJ/SCWPCP), which provides tertiary treated wastewater throughout the County of Santa Clara. Therefore, CalEEMod defaults reflect 100% aerobic treatment. | Land Use | Wastewater Demand for General Office Building ¹ | Wastewater Demand
for Retail Space ¹ | Indoor General Office Building ² | Indoor Retail Space ² | Outdoor ³ | |-------------------------------|---|--|---|----------------------------------|----------------------| | Water Use (gal/day) | 13,301 | 240 | 14,001 | 253 | 2,229 | | Water Use (gal/year) | 4,854,865 | 87,600 | 5,110,365 | 92,345 | 813,595 | | Total General Office Building | 9965230 | | | | | | Total Retail Space | 179945 | | | | | | Total Outdoor | 813595 | | | | | ¹ Used Convenice market land use subtype to represent the retail space within the office building. ¹ Assume normal office operations of similar Apple buildings in which offices will be closed on the weekends. 1 Assume wastewater flow rate of 95% of indoor water demand for non-residential (Westport). $^{\rm 3}$ Exclude bioretention areas because this will not require irrigation. ² Yarne & Assoc, 2014, Water Supply Evaluation (pg 16) (from Appendix H of GPEIR) and CalWater WSA, 2018, Vallco Area Specific Plan for commercial office water demand factor. ## Solid Waste | Land Use ¹ | Total Solid Waste (lbs/day) | tons/lb | days/year | Total Solid Waste
(tons/yr) | |-------------------------|-----------------------------|---------|-----------|--------------------------------| | General Office Building | 2,440 | 0.0005 | 365 | 445 | Source: Per Capita Disposal for Employees - CalRecycle, 2020, Jurisdiction Per Capita Disposal Trends, https://www2.calrecycle.ca.gov/LGCentral/AnnualReporting/ReviewReports. Notes: ¹ This calculation includes General Office Building and Commercial Retail Space. ### **Architectural Coating** * See Architectural Coating for Construction Model ## <u>Fireplaces</u> *No fireplaces or grills on project site ## **Electricity (Buildings)** Modeling is conservative because it is based on the Electricity and Natural Gas Energy Intensity default information from CalEEMod, which complies with 2019 Building Energy Efficiency Standards. Table A-9 shows average energy use rates per dwelling unit or area for major natural gas commercial and residential end uses. Any full or partial reduction in natural gas end uses or appliance types can be estimated by multiplying the percentage of natural gas reduction by the percent of total natural gas consumption for a given gas appliance. That reduction percentage can then be subtracted from an existing total gas consumption rate (e.g. CalEEMod default energy use intensities). The additional electricity use can be estimated by multiplying the electric energy use rate by the number of dwelling units or commercial square footage and adding this to the CalEEMod® default total electricity consumption rate. For example, a single family residence that complies with BMP 1 would remove all natural gas use from the CalEEMod® default ("Title 24" and "Non-Title 24" natural gas categories) and add 4,650 kWh to the electricity total. In contrast, a residence that keeps natural gas cooking would use Table A-9 to show that it should keep 9% of the CalEEMod® default natural gas use and should add (4,650 minus 310 equals 4,340) 4,340 kWh to the electricity total. Sacramento Metropolitan Air Quality Management District (SCAQMD). 2020, June 1. Greenhouse Gas Thresholds for Sacramento County. Table A-9, Increases in Electricity Use to Replace Source Natural Gas Greenhouse Gas CEQA Thresholds Update Sacramento County, California. https://www.airquality.org/LandUseTransportation/Documents/SMAQMDGHGThresholds2020-03- | Commercial Energy Use Categories | | | | |----------------------------------|---|----------------------------------|---------------------------------| | | Percent of Annual Energy - Gas ¹ | Energy Use Index
(KwH/ksf/yr) | Energy Use Index
(KwH/sf/yr) | | Water Heaters | 31% | 341 | 0.341 | | Space Heaters | 44% | 1037 | 1.037 | | Cooking (Oven + Cooktop) | 18% | 666 | 0.666 | | Total | 93% | 2044 | 2.044 | Notes: 1 This demonstrates that the majority of natural gas use in commercial buildings (93%) is accounted for by these three appliance groups. Due to differences in efficiency between electric and natural gas appliances, the relative amount of energy used for each appliance group may vary if applied to electricity consumption. Based on the Electricity and Natural Gas Energy Intensity default information from CalEEMod, which complies with 2019 Building Energy Efficiency Standards ## Additional Electricity Demand from Fuel Switching | | | | | Additional | |-------------------------|----------------|------|-------|---------------| | 4-Story Office building | kWhr/size/year | T24E | NT24E | Kwh/size/year | | 280,020 | 2.04 | 1.38 | 0.67 | 572,361 | | | | | | Additional | | Commercial/Retail Space | kWhr/size/year | T24E | NT24E | Kwh/size/year | | 2,300 | 2.04 | 1.38 | 0.67 | 4,701 | ## CalEEMod Defaults | Cail Defaults | | | | | | |---------------------------------------|------|--------|---------------|-------|--------| | Land Use Subtype | T24E | NT24E | LightingElect | T24NG | NT24NG | | | | kBTU/s | ize/year | | | | Commercial/Retail Space | 2.46 | 2.68 | 5.25 | 2.34 | 0.00 | | Enclosed Parking Garage with Elevator | 3.50 | 0.19 | 1.75 | 0.00 | 0.00 | | General Office Building | 5.45 | 7.84 | 3.88 | 16.14 | 0.06 | | Parking Lot | 0.00 | 0.00 | 0.35 | 0.00 | 0.00 | Notes: ¹ Photovoltaic (PV) system will be installed and generate 525,000 kWh/year and generate 5% of the total electricity demand. ² Emergency generator will be permitted and under review of BAAQMD. ## Silicon Valley Clean Energy Carbon Intensity Factors | CO ₂ : ¹ | 2.00 | pounds per megawatt hour | |--------------------------------|------|--------------------------| | CH ₄ : ¹ | 0 | pound per megawatt hour | | N ₂ O: ¹ | 0 | pound per megawatt hour | Notes: ¹ CalEEMod default values. # Construction Activities and Schedule Assumptions: 22690 Stevens Creek Boulevard Residential Project Based on the Construction Schedule provided by the project applicant. ## CalEEMod | | | Construction Schedule | | | | | | |---|-----------------------|-----------------------|-----------|-----------------------------------|--|--|--| | Construction Activities | Phase Type | Start Date | End Date | CalEEMod
Duration
(Workday) | | | | | Demolition (Building + Asphalt) | Demolition | 5/1/2023 | 5/26/2023 | 20 | | | | | Building Demolition Debris Haul | Demolition | 5/17/2023 | 5/23/2023 | 5 | | | | | Asphalt Demolition Debris Haul | Demolition | 5/17/2023 | 5/26/2023 | 8 | | | | | Site Preparation | Site Preparation | 5/27/2023 | 6/2/2023 | 5 | | | | | Rough Grading | Grading | 6/3/2023 | 6/30/2023 | 20 | | | | | Rough Grading Soil Haul (import & export) | Grading | 6/3/2023 | 7/15/2023 | 30 | | | | | Fine Grading/Trenching | Grading | 7/1/2023 | 11/3/2023 | 90 | | | | | Building Construction | Construction | 11/4/2023 | 8/23/2024 | 210 | | | | | Parking Structure Construction | Construction | 1/28/2024 | 10/4/2024 | 180 | | | | | Paving | Paving | 8/24/2024 | 9/6/2024 | 10 | | | | | Architectural Coating | Architectural Coating | 9/7/2024 | 10/4/2024 | 20 | | | | | Finishing/Landscaping | Trenching | 10/5/2024 | 11/1/2024 | 20 | | | | ## **Overlapping Construction Schedule** | | | | CalEEMod Duration | |---|------------|------------|-------------------| | Construction Activities | Start Date | End Date | (Workday) | | Demolition | 5/1/2023 | 5/16/2023 | 12 | | Demolition, Building Demolition Debris | | | | | Haul, and Asphalt Demolition Debris Haul | 5/17/2023 | 5/23/2023 | 5 | | Demolition and Asphalt Demolition Debris
Haul | 5/24/2023 | 5/26/2023 | 3 | | Site Preparation | 5/27/2023 | 6/2/2023 | 5 | | Rough Grading and Soil Haul | 6/3/2023 | 6/30/2023 | 20 | | Rough Grading Soil Haul and Fine | | | | | Grading/Trenching | 7/1/2023 | 7/15/2023 | 10 | | Fine Grading/Trenching | 7/16/2023 | 11/3/2023 | 80 | | Building Construction 2023 | 11/4/2023 | 12/31/2023 | 40 | | Building Construction 2024 | 1/1/2024 | 1/27/2024 | 20 | | Building Construction 2024 and Parking | | | | | Structure Construction 2024 | 1/28/2024 | 8/23/2024 | 150 | | Parking Structure Construction 2024 and | | | | | Paving | 8/24/2024 | 9/6/2024 | 10 | | Parking Structure Construction 2024 and | | | | | Architectural Coating | 9/7/2024 | 10/4/2024 | 20 | | Finishing/Landscaping | 10/5/2024 | 11/1/2024 | 20 | # **CalEEMod Construction Off-Road Equipment Inputs** *CalEEMod default used for construction equipment General Construction Hours: 8 hours btwn 7:00 AM to 4:00 PM (with 1 hr break), Mon-Fri | | Construction Equipment Details | | | | | | | | |-------------------|-----------------------------------|--------|------------------------|------------------|-----|--------------|-------------|--| | | Equipment | model | # of Equipment | hr/day | hp | load factor* | total trips | | | Building I | Demolition | | | | | | | | | | Concrete/Industrial Saws | | 1 | 8 | 81 | 0.73 | | | | | Excavators | | 3 | 8 | 158 | 0.38 | | | | | Rubber Tired Dozers | | 2 | 8 | 247 | 0.4 | | | | | Worker Trips | | | | | | 15 | | | | Vendor Trips | | | | | | | | | | Hauling Trips | | | | | | | | | | Water Trucks | | | | | | 4 | | | Building I | Demolition Debris Haul | | | | | | | | | | | no ado | ditional equipment nee | ded for Demo Hau | l | | | | | | Worker Trips | | | | | | 0 | | | | Vendor Trips | | | | | | 0 | | | | Hauling Trips | | | | | | 649 | | | Asphalt D | emolition Debris Haul | | | | | | | | | | | no ado | ditional equipment nee | ded for Demo Hau | l | | | | | | Worker Trips | | | | | | 0 | | | | Vendor Trips | | | | | | 0 | | | | Hauling Trips | | | | | | 337 | | | Site Prepa | aration | | | | | | | | | | Rubber Tired Dozers | | 3 | 8 | 247 | 0.4 | | | | | Tractors/Loaders/Backhoes | | 4 | 8 | 97 | 0.37 | | | | | Worker Trips | | | | | | 18 | | | | Vendor Trips | | | | | | | | | | Hauling Trips | | | | | | | | | | Water Trucks | | | | | | 4 | | | Rough Gr | ading | | | | | | | | | | Excavators | | 1 | 8 | 158 | 0.38 | | | | | Graders | | 1 | 8 | 187 | 0.41 | | | | | Rubber Tired Dozers | | 1 | 8 | 247 | 0.4 | | | | | Tractors/Loaders/Backhoes | | 3 | 8 | 97 | 0.37 | | | | | Worker Trips | | | | | | 15 | | | | Vendor Trips | | | | | | | | | | Hauling Trips | | | | | | | | | | Water Trucks | | | | | | 4 | | | Rough Gr | ading Soil Haul (Import & Export) | | | | | | | | | | | no ado | ditional equipment nee | ded for Demo Hau | I | | | | | | Worker Trips | | • • | | | | | | | | Vendor Trips | | | | | | | | | | Hauling Trips | | | | | | 7346 | | | Fine Grad | ling/Utility Trenching | | | | | | | | | | Excavators | | 1 | 8 | 158 | 0.38 | | | | | Graders | | 1 | 8 | 187 | 0.41 | | | | | Rubber Tired Dozers | | 1 | 8 | 247 | 0.4 | | | | | Tractors/Loaders/Backhoes | | 3 | 8 | 97 | 0.37 | | | | | Worker Trips | | • | • | | | 15 | | | | Vendor Trips | | | | | | | | | | Hauling Trips | | | | | | 4 | | | Building (| Construction | | | | | | | | | - 3 | Cranes ¹ | | 1 | 1 | 231 | 0.29 | | | | | Forklifts | | 3 | 8 | 89 | 0.29 | | | | | Generator Sets | | 1 | <u> </u> | 84 | 0.2 | | | | | | | 3 | 8
7 | 97 | 0.74 | | | | | Tractors/Loaders/Backhoes | | | | | | | | | | Welders Worker Trips | | 1 | 8 | 46 | 0.45 | 120 | | | | Worker Trips | | | | | | 138
57 | | | | Vendor Trips | | | | | | 5/ | | | | Hauling Trips | | | | | | | | | Parking Structure Construction | | | | | | | |--------------------------------|---|---|---|-----|------|-----| | Cranes ¹ | | 1 | 1 | 231 | 0.29 | | | Forklifts | | 3 | 8 | 89 | 0.2 | | | Generator Sets | | 1 | 8 | 84 | 0.74 | | | Tractors/Loaders/Backhoes | | 3 | 7 | 97 | 0.37 | | | Welders | | 1 | 8 | 46 | 0.45 | | | Worker Trips | | | | | | 138 | | Vendor Trips | | | | | | 57 | | Hauling Trips | | | | | | | | Paving | | | | | | | | Pavers | | 2 | 8 | 130 | 0.42 | | | Paving equipment | | 2 | 8 | 132 | 0.36 | | | Rollers | | 2 | 8 | 80 | 0.38 | | | | | | | | | | | Worker Trips | | | | | | 15 | | Vendor Trips | | | | | | | | Hauling Trips | | | | | | | | Architectural Coating | | | | | | | | Air Compressors | | 1 | 6 | 78 | 0.48 | | | Worker Trips | · | | | | | 28 | | Vendor Trips | | | | | | | | Hauling Trips | | | | | | | | Finishing/Landscaping | | | | | | | | Excavator | | 1 | 8 | | | | | Worker Trips | | | | | | 3 | | Vendor Trips | | | | | | | | Hauling Trips | | | | | | | ¹ Assume that crane will only be used onsite for approximately 6 weeks total. For most conservative results, crane is assumed to operate 1 hour per day, 5 days per week for entire duration of the building and parking garagae construction phases. Averaged hours of use over duration of building construction phase and parking construction phase are rounded to the nearest hour. ## **Construction Trips Worksheet** ## Worker Trip Ends Per Vendor Trip Ends Per Haul Truck Trip Ends Total Haul Truck Trip | Phase Name | Day | Day | Per Day | Ends | Start Date | End Date | Workdays | |---|-----|-----|---------|------|------------|-----------------|----------| | Demolition (Building & Asphalt) | 15 | 0 | 0 | 0 | 5/1/2023 | 5/26/2023 | 20 | | Building Demolition Debris Haul | 0 | 0 | 130 | 649 | 5/17/2023 | 5/23/2023 | 5 | | Asphalt Demolition Debris Haul | 0 | 0 | 43 | 337 | 5/17/2023 | 5/26/2023 | 8 | | Site Preparation | 18 | 0 | 0 | 0 | 5/27/2023 | 6/2/2023 | 5 | | Rough Grading | 15 | 0 | 0 | 0 | 6/3/2023 | 6/30/2023 | 20 | | Rough Grading Soil Haul (Import & Export) | 0 | 0 | 245 | 7346 | 6/3/2023 | 7/15/2023 | 30 | | Fine Grading/Trenching | 15 | 0 | 1 | 4 | 7/1/2023 | 11/3/2023 | 90 | | Building Construction | 138 | 57 | 0 | 0 | 11/4/2023 | 8/23/2024 | 210 | | Parking Structure Construction | 138 | 57 | 0 | 0 | 1/28/2024 | 10/4/2024 | 180 | | Paving | 15 | 0 | 0 | 0 | 8/24/2024 | 9/6/2024 | 10 | | Architectural Coating | 28 | 0 | 0 | 0 | 9/7/2024 | 10/4/2024 | 20 | | Finishing/Landscaping | 3 | 0 | 0 | 0 | 10/5/2024 | 11/1/2024 | 20 | | | Norker Trip Ends Per Ver | · · · · · · · · · · · · · · · · · · · | · • | Total Trip Ends Per | Charles Date | E. I.B. II. | 144 | |---|--------------------------|---------------------------------------|---------|---------------------|--------------|-------------|----------| | Construction Scenarios | Day | Day | Per Day | Day | Start Date | End Date | Workdays | | Demolition | 15 | 0 | 0 | 0 | 5/1/2023 | 5/16/2023 | 12 | | Demolition, Building Demolition Debris Haul, and Asphalt Demolition Debris Haul | 15 | 0 | 173 | 986 | 5/17/2023 | 5/23/2023 | 5 | | Demolition and Asphalt Demolition Debris Haul | 15 | 0 | 43 | 337 | 5/24/2023 | 5/26/2023 | 3 | | Site Preparation | 18 | 0 | 0 | 0 | 5/27/2023 | 6/2/2023 | 5 | | Rough Grading and Soil Haul | 15 | 0 | 245 | 7346 | 6/3/2023 | 6/30/2023 | 20 | | Rough Grading Soil Haul and Fine Grading/Trenching | 15 | 0 | 246 | 7350 | 7/1/2023 | 7/15/2023 | 10 | | Fine Grading/Trenching | 15 | 0 | 1 | 4 | 7/16/2023 | 11/3/2023 | 80 | | Building Construction 2023 | 138 | 57 | 0 | 0 | 11/4/2023 | 12/31/2023 | 40 | | Building Construction 2024 | 138 | 57 | 0 | 0 | 1/1/2024 | 1/27/2024 | 20 | | Building Construction 2024 and Parking Structure Construction 2024 | 276 | 114 | 0 | 0 | 1/28/2024 | 8/23/2024 | 150 | | Parking Structure Construction 2024 and Paving | 153 | 57 | 0 | 0 | 8/24/2024 | 9/6/2024 | 10 | | Parking Structure Construction 2024 and Architectural Coating | 166 | 57 | 0 | 0 | 9/7/2024 | 10/4/2024 | 20 | | Finishing/Landscaping | 3 | 0 | 0 | 0 | 10/5/2024 | 11/1/2024 | 20 | | Maximum Daily Trips | 276 | 114 | 246 | 7350 | | | | # **Pavement Volume to Weight Conversion: VP1 Apple Office Project** | | | | | Weight of | | | |--------------|----------------------------------|---|---------------------------|---|------------------|----------------| | Component | Total SF of
Area ¹ | Assumed
Thickness
(foot) ² | Debris Volume
(cu. ft) | Crushed
Asphalt
(lbs/cf) ³ | AC Mass
(Ibs) | AC Mass (tons) | | Asphalt Demo | 168,000 | 0.451 | 75,740 | 89 | 6,732,444 | 3,366 | | Total | 168.000 | | | | | 3.366 | ¹ Total square feet to be demolished provided by Applicant. ² Based on average thickness of 5.41 inches as provided for a previous roadway widening project. ³ https://www.delmar.ca.us/DocumentCenter/View/5668/CalRecycle-Conversion-Table ## **Demo Haul Trip Calculation** Source: CalEEMod User's Guide Version 2020.4, Appendix A <u>Conversion factors</u> 0.046 ton/SF 1.2641662 tons/cy 20 tons 15.82070459 CY 0.791035229 CY/ton | Building | BSF Demo | Tons/SF | Tons | Haul Truck (CY) ¹ | Haul Truck (Ton) ¹ | Round Trips | Total Trip Ends | |------------------------|----------|---------|-------|------------------------------|-------------------------------|-------------|-----------------| | Combined Building Demo | 141,024 | 0.046 | 6,487 | 16 | 20 | 324 | 649 | ¹ CalEEMod default # **Changes to the CalEEMod Defaults - Fleet Mix Operation 2024** Trips 3,948 | General Office Building | | | | | | | | | | | | | | | |--------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------| | Default | LDA | LDT1 | LDT2 | MDV | LHD1 | LHD2 | MHD | HHD | OBUS | UBUS | MCY | SBUS | MH | | | FleetMix (Model Default) | 0.572464 | 0.055653 | 0.18706 | 0.115672 | 0.020329 | 0.005102 | 0.007934 | 0.006404 | 0.0009 | 0.00038 | 0.024412 | 0.000914 | 0.002776 | 100% | | Trips | 2,260
| 220 | 739 | 457 | 80 | 20 | 31 | 25 | 4 | 2 | 96 | 4 | 11 | 3,948 | | Percent | 84% | | | 12% | 4% | | | | | | | | | 100% | | | | | | | | | | | | | | | | | | without buses/MH | 0.572464 | 0.055653 | 0.187060 | 0.115672 | 0.020329 | 0.005102 | 0.007934 | 0.006404 | 0 | 0 | 0.024412 | 0 | 0 | 100% | | Percent | 84% | | | 12% | 4% | | | | | | | | | 100% | | Adjusted without buses/MH | 0.572464 | 0.055653 | 0.187060 | 0.115672 | 0.022870 | 0.005740 | 0.008926 | 0.007204 | 0.000000 | 0.000000 | 0.027463 | 0.000000 | 0.000000 | | | Percent adjusted | 84% | | | 12% | 4% | | | | | | | | | 100% | | | | | | | | | | | | | | | | | | Assumed Mix | 97.0% | | | 2.00% | 1.00% | | | | | | | | | 100% | | adjusted with Assumed | 0.658989 | 0.064065 | 0.215333 | 0.020000 | 0.005112 | 0.001283 | 0.001995 | 0.001610 | 0.000000 | 0.000000 | 0.031614 | 0.000000 | 0.000000 | 100% | | Percent Check: | 97% | | | 2% | 1% | Trips | 2,602 | 253 | 850 | 79 | 20 | 5 | 8 | 6 | 0 | 0 | 125 | 0 | 0 | 3,948 | | | 3,830 | | | 79 | 39 | | | | • | | | • | | -,00 | | | 0,000 | | | | | | | | | | | | | | Fleet mix for the project is based on the Caltrans Annual Average Daily Traffic near the project site during year 2019. Assumes a mix of approximately 97% passenger vehicles, 2% medium duty trucks, and 1% heavy duty trucks and buses. | | | | | | | 0,0.0 | | | | | | | | | |---------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------| | Retail Space | | | | | | | | | | | | | | | | Default | LDA | LDT1 | LDT2 | MDV | LHD1 | LHD2 | MHD | HHD | OBUS | UBUS | MCY | SBUS | MH | | | FleetMix (Model Default) | 0.572464 | 0.055653 | 0.18706 | 0.115672 | 0.020329 | 0.005102 | 0.007934 | 0.006404 | 0.0009 | 0.00038 | 0.024412 | 0.000914 | 0.002776 | 100% | | Trips | 2,260 | 220 | 739 | 457 | 80 | 20 | 31 | 25 | 4 | 2 | 96 | 4 | 11 | 3,948 | | Percent | 84% | | | 12% | 4% | | | | | | | | | 100% | | | | | | | | | | | | | | | | | | without buses/MH | 0.572464 | 0.055653 | 0.187060 | 0.115672 | 0.020329 | 0.005102 | 0.007934 | 0.006404 | 0 | 0 | 0.024412 | 0 | 0 | 100% | | Percent | 84% | | | 12% | 4% | | | | | | | | | 100% | | Adjusted without buses/MH | 0.572464 | 0.055653 | 0.187060 | 0.115672 | 0.022870 | 0.005740 | 0.008926 | 0.007204 | 0.000000 | 0.000000 | 0.027463 | 0.000000 | 0.000000 | | | Percent adjusted | 84% | | | 12% | 4% | | | | | | | | | 100% | | | | | | | | | | | | | | | | | | Assumed Mix | 97.0% | | | 2.00% | 1.00% | | | | | | | | | 100% | | adjusted with Assumed | 0.658989 | 0.064065 | 0.215333 | 0.020000 | 0.005112 | 0.001283 | 0.001995 | 0.001610 | 0.000000 | 0.000000 | 0.031614 | 0.000000 | 0.000000 | 100% | | Percent Check: | 97% | | | 2% | 1% | Trips | 2,602 | 253 | 850 | 79 | 20 | 5 | 8 | 6 | 0 | 0 | 125 | 0 | 0 | 3,948 | | r - | 3,830 | | | 79 | 39 | · | | | | | | · | | -,• | | | 0,000 | | | | | | | | | | | | | | Fleet mix for the project is based on the Caltrans Annual Average Daily Traffic near the project site during year 2019. Assumes a mix of approximately 97% passenger vehicles, 2% medium duty trucks, and 1% heavy duty trucks and buses. # **Changes to the CalEEMod Defaults - Fleet Mix Existing Baseline 2024** Trips 1,823 | Default | LDA | LDT1 | LDT2 | MDV | LHD1 | LHD2 | MHD | HHD | OBUS | UBUS | MCY | SBUS | MH | | |---------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------| | FleetMix (Model Default) | 0.567742 | 0.054883 | 0.190502 | 0.11688 | 0.020652 | 0.004894 | 0.008289 | 0.006425 | 0.000966 | 0.000407 | 0.024432 | 0.00095 | 0.002978 | 100% | | Trips | 1,035 | 100 | 347 | 213 | 38 | 9 | 15 | 12 | 2 | 1 | 45 | 2 | 5 | 1,823 | | Percent | 84% | | | 12% | 5% | | | | | | | | | 100% | | | | | | | | | | | | | | | | | | without buses/MH | 0.567742 | 0.054883 | 0.190502 | 0.116880 | 0.020652 | 0.004894 | 0.008289 | 0.006425 | 0 | 0 | 0.024432 | 0 | 0 | 99% | | Percent | 84% | | | 12% | 4% | | | | | | | | | 99% | | Adjusted without buses/MH | 0.567742 | 0.054883 | 0.190502 | 0.116880 | 0.023371 | 0.005538 | 0.009380 | 0.007271 | 0.000000 | 0.000000 | 0.027649 | 0.000000 | 0.000000 | | | Percent adjusted | 84% | | | 12% | 5% | | | | | | | | | 100% | | | | | | | | | | | | | | | | | | Assumed Mix | 97.0% | | | 2.00% | 1.00% | | | | | | | | | 100% | | adjusted with Assumed | 0.655002 | 0.063318 | 0.219781 | 0.020000 | 0.005130 | 0.001216 | 0.002059 | 0.001596 | 0.000000 | 0.000000 | 0.031898 | 0.000000 | 0.000000 | 100% | | Percent Check: | 97% | | | 2% | 1% | Trips | 1,194 | 115 | 401 | 36 | 9 | 2 | 4 | 3 | 0 | 0 | 58 | 0 | 0 | 1,823 | | | 1,768 | | | 36 | 18 | _ | · | · | · | · | | · | • | .,020 | | | 1,7.00 | | | | .0 | | | | | | | | | | Fleet mix for the project is based on the Caltrans Annual Average Daily Traffic near the project site during year 2019. Assumes a mix of approximately 97% passenger vehicles, 2% medium duty trucks, and 1% heavy duty trucks and buses. | Emissions Wo | orksheet | | |--------------|----------|--| | | | | | | | | | | | | | | | | # Construction Emissions - DPM Input to Risk Tables | | tons/year | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust PM2.5 | PM2.5 To | |---|---|---|--|--|--|--|--|--|--|---|---| | Total Unmitigated | | 0.73 | 4.59 | 4.95 | 0.01 | 0.59 | 0.17 | 0.76 | 0.19 | 0.16 | 0.35 | | | | | | | | | | | | | | | TIGATED (Onsite) | | | | | | | | | | | | | (0) | tons/year | ROG | NOx | СО | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive | Exhaust PM2.5 | PM2.5 To | | | (0110) y Ca. | | | | | | | | PM2.5 | | | | Total Onsite | | 0.64
0.09 | 3.47
1.12 | 4.07
0.88 | 0.01
0.01 | 0.25
0.34 | 0.16
0.01 | 0.41
0.35 | 0.10
0.09 | 0.15
0.01 | 0.25
0.10 | | Total Offsite
check | | 0.09 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.33 | 0.09 | 0.01 | 0.10 | | CHECK | | | | | | | | | | | | | ONSTRUCTION RISK ASS | | ated Run | | | | | | | Eugitivo | | | | | tons/year | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust PM2.5 | PM2.5 T | | 2023 Onsite | | 0.15 | 1.50 | 1.35 | 0.00 | 0.25 | 0.07 | 0.32 | 0.10 | 0.06 | 0.16 | | 2023 Offsite | | 0.02 | 0.64 | 0.24 | 0.00 | 0.10 | 0.01 | 0.11 | 0.03 | 0.00 | 0.03 | | 2024 Onsite | | 0.49 | 1.97 | 2.72 | 0.00 | 0.00 | 0.09 | 0.09 | 0.00 | 0.09 | 0.09 | | 2024 Offsite | | 0.07 | 0.48 | 0.65 | 0.00 | 0.24 | 0.00 | 0.24 | 0.07 | 0.00 | 0.07 | | | | | | | | | | | | | | | ONSTRUCTION REGIONA | L EMISSIONS - Unm | itigated Run | | | | | | | | | | | | tons/year | ROG | NOx | СО | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust PM2.5 | PM2.5 | | Total 2023 | | 0.17 | 2.14 | 1.59 | 0.01 | 0.35 | 0.07 | 0.42 | 0.13 | 0.07 | 0.20 | | Total 2024 | | 0.56 | 2.45 | 3.37 | 0.01 | 0.24 | 0.10 | 0.34 | 0.07 | 0.09 | 0.16 | | Construction Total | | 0.73 | 4.59 | 4.95 | 0.01 | 0.59 | 0.17 | 0.76 | 0.19 | 0.16 | 0.35 | | Check | | | | | | | | | | | | | 3.2 Demolition (Buildin | | | | | | | | | | | | | Unmitigated Construct | ion On-Site | | | | | | | | | | | | | | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust PM2.5 | PM2.5 | | Category | tons/yr | | | | | | | | | | | | Fugitive Dust | | 0.03 | 0.24 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offroad
Total | | 0.02
0.02 | 0.21
0.21 | 0.20
0.20 | 0.00
0.00 | 0.00 | 0.01
0.01 | 0.01
0.01 | 0.00 | 0.01
0.01 | 0.0 | | | | | | | | | | | | | | | Unmitigated Construct | ion Off-Site | | | | | | | | | | | | | | ROG | NOx | СО | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust PM2.5 | PM2.5 | | Category | tons/yr | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling
Vendor | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | | Worker | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | 0.00 | | | | | | | 3.3 Building Demolition | | | | | | 0.00 | | | | | | | 3.3 Building Demolition Unmitigated Construct | | POG | NOv | CO | so2 | | Exhaust DM10 | DM10 Total | Fugitive | Exhaust DM2 F | DN/12 E : | | Unmitigated Construct | ion On-Site | ROG | NOx | со | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust PM2.5 | PM2.5 | | - | | ROG | NOx | СО | SO2 | | Exhaust PM10
0.00 | PM10 Total
0.02 | | Exhaust PM2.5 | | | Unmitigated Construct Category | ion On-Site |
0.00 | 0.00 | 0.00 | 0.00 | Fugitive PM10
0.02 | 0.00
0.00 | 0.02
0.00 | PM2.5
0.00 | 0.00
0.00 | 0.00
0.00 | | Unmitigated Construct Category Fugitive Dust | ion On-Site | | | | | Fugitive PM10 | 0.00 | 0.02 | PM2.5 | 0.00 | 0.00
0.00 | | Unmitigated Construct Category Fugitive Dust Off-Road | ion On-Site
tons/yr | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | Fugitive PM10
0.02
0.02 | 0.00
0.00
0.00 | 0.02
0.00
0.02 | 0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | | Category Fugitive Dust Off-Road Total Unmitigated Construct | ion On-Site tons/yr ion Off-Site | 0.00 | 0.00 | 0.00 | 0.00 | Fugitive PM10
0.02 | 0.00
0.00 | 0.02
0.00 | PM2.5
0.00 | 0.00
0.00 | 0.00
0.00
0.00 | | Category Fugitive Dust Off-Road Total Unmitigated Construct Category | ion On-Site
tons/yr | 0.00
0.00
ROG | 0.00
0.00
NOx | 0.00
0.00
CO | 0.00
0.00
SO2 | Fugitive PM10 0.02 0.02 Fugitive PM10 | 0.00
0.00
0.00
Exhaust PM10 | 0.02
0.00
0.02
PM10 Total | 0.00
0.00
Fugitive
PM2.5 | 0.00
0.00
0.00
Exhaust PM2.5 | 0.00
0.00
0.00
PM2.5 | | Category Fugitive Dust Off-Road Total Unmitigated Construct | ion On-Site tons/yr ion Off-Site | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | Fugitive PM10
0.02
0.02 | 0.00
0.00
0.00 | 0.02
0.00
0.02 | 9M2.5
0.00
0.00
Fugitive | 0.00
0.00
0.00 | 0.00
0.00
0.00
PM2.5 | | Category Fugitive Dust Off-Road Total Unmitigated Construct Category Hauling Vendor Worker | ion On-Site tons/yr ion Off-Site | 0.00
0.00
ROG
0.00
0.00
0.00 | 0.00
0.00
NOx
0.04
0.00
0.00 | 0.00
0.00
CO
0.01
0.00
0.00 | 0.00
0.00
SO2
0.00
0.00
0.00 | Fugitive PM10 0.02 0.02 Fugitive PM10 0.01 0.00 0.00 | 0.00
0.00
0.00
Exhaust PM10
0.00
0.00
0.00 | 0.02
0.00
0.02
PM10 Total
0.01
0.00
0.00 | PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 | 0.00
0.00
0.00
Exhaust PM2.5
0.00
0.00 | 0.00
0.00
0.00
PM2.5 | | Category Fugitive Dust Off-Road Total Unmitigated Construct Category Hauling Vendor | ion On-Site tons/yr ion Off-Site | 0.00
0.00
ROG
0.00
0.00 | 0.00
0.00
NOx
0.04
0.00 | 0.00
0.00
CO
0.01
0.00 | 0.00
0.00
SO2
0.00
0.00 | Fugitive PM10 0.02 0.02 Fugitive PM10 0.01 0.00 | 0.00
0.00
0.00
Exhaust PM10
0.00
0.00 | 0.02
0.00
0.02
PM10 Total
0.01
0.00 | PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 | 0.00
0.00
0.00
Exhaust PM2.5
0.00
0.00 | 0.00
0.00
0.00
PM2.5 | | Category Fugitive Dust Off-Road Total Unmitigated Construct Category Hauling Vendor Worker Total 3.4 Asphalt Demolition | tons/yr ion Off-Site tons/yr Debris Haul - 2023 | 0.00
0.00
ROG
0.00
0.00
0.00 | 0.00
0.00
NOx
0.04
0.00
0.00 | 0.00
0.00
CO
0.01
0.00
0.00 | 0.00
0.00
SO2
0.00
0.00
0.00 | Fugitive PM10 0.02 0.02 Fugitive PM10 0.01 0.00 0.00 | 0.00
0.00
0.00
Exhaust PM10
0.00
0.00
0.00 | 0.02
0.00
0.02
PM10 Total
0.01
0.00
0.00 | PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 | 0.00
0.00
0.00
Exhaust PM2.5
0.00
0.00 | 0.00
0.00
0.00
PM2.5 | | Category Fugitive Dust Off-Road Total Unmitigated Construct Category Hauling Vendor Worker Total | tons/yr ion Off-Site tons/yr Debris Haul - 2023 | 0.00
0.00
ROG
0.00
0.00
0.00 | 0.00
0.00
NOx
0.04
0.00
0.00 | 0.00
0.00
CO
0.01
0.00
0.00 | 0.00
0.00
SO2
0.00
0.00
0.00 | Fugitive PM10 0.02 0.02 Fugitive PM10 0.01 0.00 0.00 | 0.00
0.00
0.00
Exhaust PM10
0.00
0.00
0.00 | 0.02
0.00
0.02
PM10 Total
0.01
0.00
0.00 | PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 Fugitive | 0.00
0.00
0.00
Exhaust PM2.5
0.00
0.00 | 0.00
0.00
0.00
PM2.5 - | | Category Fugitive Dust Off-Road Total Unmitigated Construct Category Hauling Vendor Worker Total 3.4 Asphalt Demolition Unmitigated Construct | tons/yr ion Off-Site tons/yr Debris Haul - 2023 | 0.00
0.00
ROG
0.00
0.00
0.00
0.00 | 0.00
0.00
NOx
0.04
0.00
0.00
0.04 | 0.00
0.00
CO
0.01
0.00
0.00
0.01 | 0.00
0.00
SO2
0.00
0.00
0.00
0.00 | Fugitive PM10 0.02 0.02 Fugitive PM10 0.01 0.00 0.00 0.00 Tugitive PM10 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.02
0.00
0.02
PM10 Total
0.01
0.00
0.00
0.01 | PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 Fugitive PM2.5 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.00
0.00
0.00
0.00
0.00
0.00 | | Category Fugitive Dust Off-Road Total Unmitigated Construct Category Hauling Vendor Worker Total 3.4 Asphalt Demolition Unmitigated Construct Category Fugitive Dust | tons/yr ion Off-Site tons/yr Debris Haul - 2023 ion On-Site | 0.00
0.00
ROG
0.00
0.00
0.00
0.00 | 0.00
0.00
NOx
0.04
0.00
0.00
0.04 | 0.00
0.00
CO
0.01
0.00
0.00
0.01 | 0.00
0.00
SO2
0.00
0.00
0.00
0.00 | Fugitive PM10 0.02 0.02 Fugitive PM10 0.01 0.00 0.00 0.00 0.01 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.02
0.00
0.02
PM10 Total 0.01
0.00
0.00
0.01 PM10 Total 0.05 | PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 Fugitive | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | | Category Fugitive Dust Off-Road Total Unmitigated Construct Category Hauling Vendor Worker Total 3.4 Asphalt Demolition Unmitigated Construct Category Fugitive Dust Off-Road | tons/yr ion Off-Site tons/yr Debris Haul - 2023 ion On-Site | 0.00
0.00
ROG
0.00
0.00
0.00
0.00 | 0.00
0.00
NOx
0.04
0.00
0.00
0.04 | 0.00
0.00
CO
0.01
0.00
0.00
0.01 | 0.00
0.00
SO2
0.00
0.00
0.00
0.00 | Fugitive PM10 0.02 0.02 Fugitive PM10 0.01 0.00 0.00 0.00 Tugitive PM10 0.05 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.02
0.00
0.02
PM10 Total
0.01
0.00
0.00
0.01
PM10 Total
0.05
0.00 | PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 Fugitive PM2.5 0.01 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.00
0.00
0.00
0.00
0.00
0.00
PM2.5 | | Category Fugitive Dust Off-Road Total Unmitigated Construct Category Hauling Vendor Worker Total 3.4 Asphalt Demolition Unmitigated Construct Category Fugitive Dust Off-Road Total | tons/yr ion Off-Site tons/yr Debris Haul - 2023 ion On-Site tons/yr | 0.00
0.00
ROG
0.00
0.00
0.00
0.00 | 0.00
0.00
NOx
0.04
0.00
0.00
0.04 | 0.00
0.00
CO
0.01
0.00
0.00
0.01 | 0.00
0.00
SO2
0.00
0.00
0.00
0.00 | Fugitive PM10 0.02 0.02 Fugitive PM10 0.01 0.00 0.00 0.00 Tugitive PM10 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.02
0.00
0.02
PM10 Total 0.01
0.00
0.00
0.01 PM10 Total 0.05 | PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 Fugitive PM2.5 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
PM2.5 | | Category Fugitive Dust Off-Road Total Unmitigated Construct Category Hauling Vendor Worker Total 3.4 Asphalt Demolition Unmitigated Construct Category Fugitive Dust Off-Road | tons/yr ion Off-Site tons/yr Debris Haul - 2023 ion On-Site tons/yr | 0.00
0.00
ROG
0.00
0.00
0.00
0.00 | 0.00
0.00
NOx
0.04
0.00
0.00
0.04
NOx | 0.00
0.00
CO
0.01
0.00
0.00
0.01 | 0.00
0.00
SO2
0.00
0.00
0.00
0.00 | Fugitive PM10 0.02 0.02 Fugitive PM10 0.01 0.00 0.00 0.01 Fugitive PM10 0.05 0.05 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.02
0.00
0.02
PM10 Total 0.01
0.00
0.00
0.01 PM10 Total 0.05
0.00
0.05 | PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 Fugitive PM2.5 0.01 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | | Category Fugitive Dust Off-Road Total Unmitigated Construct Category Hauling Vendor Worker Total 3.4 Asphalt Demolition Unmitigated Construct Category Fugitive Dust Off-Road Total Unmitigated Construct | tons/yr ion Off-Site tons/yr Debris Haul - 2023 ion On-Site tons/yr | 0.00
0.00
ROG
0.00
0.00
0.00
0.00 | 0.00
0.00
NOx
0.04
0.00
0.00
0.04 | 0.00
0.00
CO
0.01
0.00
0.00
0.01 | 0.00
0.00
SO2
0.00
0.00
0.00
0.00 | Fugitive PM10 0.02 0.02 Fugitive PM10 0.01 0.00 0.00 0.00 Tugitive PM10 0.05 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.02
0.00
0.02
PM10 Total
0.01
0.00
0.00
0.01
PM10 Total
0.05
0.00 | PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 Fugitive PM2.5 0.01 0.01 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | | Category Fugitive Dust Off-Road Total Unmitigated Construct Category Hauling Vendor Worker Total 3.4 Asphalt Demolition Unmitigated Construct Category Fugitive Dust Off-Road Total | tons/yr ion Off-Site tons/yr Debris Haul - 2023 ion On-Site tons/yr | 0.00
0.00
ROG
0.00
0.00
0.00
0.00 | 0.00
0.00
NOx
0.04
0.00
0.00
0.04
NOx | 0.00
0.00
CO
0.01
0.00
0.00
0.01 | 0.00
0.00
SO2
0.00
0.00
0.00
0.00 | Fugitive PM10 0.02 0.02 Fugitive PM10 0.01 0.00 0.00 0.01 Fugitive PM10 0.05 0.05 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.02
0.00
0.02
PM10 Total 0.01
0.00
0.00
0.01 PM10 Total 0.05
0.00
0.05 | PM2.5 0.00
0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 Fugitive PM2.5 0.01 0.01 Fugitive | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | | Category Fugitive Dust Off-Road Total Unmitigated Construct Category Hauling Vendor Worker Total 3.4 Asphalt Demolition Unmitigated Construct Category Fugitive Dust Off-Road Total Unmitigated Construct Category | tons/yr ion Off-Site tons/yr Debris Haul - 2023 ion On-Site tons/yr | 0.00
0.00
ROG
0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
NOx
0.04
0.00
0.00
0.04
NOx | 0.00
0.00
CO
0.01
0.00
0.00
0.01
CO | 0.00
0.00
SO2
0.00
0.00
0.00
0.00
SO2 | Fugitive PM10 0.02 0.02 Fugitive PM10 0.01 0.00 0.00 0.01 Fugitive PM10 0.05 0.05 Fugitive PM10 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.02
0.00
0.02
PM10 Total 0.01
0.00
0.00
0.01 PM10 Total 0.05
0.00
0.05 PM10 Total | PM2.5 0.00 0.00 Fugitive PM2.5 0.00 0.00 0.00 0.00 Fugitive PM2.5 0.01 0.01 Fugitive PM2.5 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | PM2.5 T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | | Part | 3.5 Site Preparation - 2023 Unmitigated Construction On-Site | | | | | | | | | | | |--|--|------|------|------|------|-------------------|-----------------|---------------|---------|-------------------|-------------| | Control Cont | ommitigated construction on-site | ROG | NOx | СО | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | _ | Exhaust PM2.5 | PM2 | | Figure 1. | Category tons/yr | | | | | - | | | PIVIZ.5 | | | | Tree tree to 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | 0.02 | 0.00 | 0.02 | 0.01 | 0.00 | 0 | | Company Comp | Off-Road | 0.01 | 0.07 | 0.05 | 0.00 | | 0.00 | 0.00 | | 0.00 | 0 | | Region R | Total | 0.01 | 0.07 | 0.05 | 0.00 | 0.02 | 0.00 | 0.02 | 0.01 | 0.00 | C | | Cargon No. | Unmitigated Construction Off-Site | | | | | | | | | | | | Company Comp | | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | | Exhaust PM2.5 | PM2 | | Name | Category tons/yr | | | | | | | | | | | | March Marc | _ | | | | | | | | | | C | | Table 1 | | | | | | | | | | | (| | Manuface 2013 | | | | | | | | | | | (| | Design Control Design | । отаі | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | C | | Part | | | | | | | | | | | | | Company Comp | ommitigated construction on-site | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | | Exhaust PM2 5 | PM2 | | Figure F | Category tons/yr | NOG | NOX | CO | 302 | Tugitive Tivi10 | EXHAUST IVIIO | T WILD TOTAL | PM2.5 | EXHLUSE FIVIZ.S | 1 1412 | | Campage Camp | - · | | | | | 0.03 | 0.00 | 0.03 | 0.01 | 0.00 | C | | Marcia | Off-Road | 0.02 | 0.18 | 0.15 | 0.00 | | 0.01 | 0.01 | | 0.01 | C | | ROS | Total | 0.02 | 0.18 | 0.15 | 0.00 | 0.03 | 0.01 | 0.04 | 0.01 | 0.01 | C | | ROS | Unmitigated Construction Off-Site | | | | | | | | | | | | Category Content | | ROG | NOx | СО | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | | Exhaust PM2.5 | PM2. | | Vermine | Category tons/yr | | | | | - | | | PIVIZ.5 | | | | Marche | Hauling | | | | | | | | | | 0 | | Total Decision D | | | | | | | | | | | 0 | | Second Process Seco | | | | | | | | | | | 0 | | Caregory Construction On-Site Page P | | | | | | | | | | | | | Category 101111111111111111111111111111111111 | | | | | | | | | | | | | Category 10ms/yr 10m | | ROG | NOx | СО | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | | Exhaust PM2.5 | PM2 | | | Category tons/yr | | | | | | | | PIVIZ.3 | | | | Category | | | | | | 0.00 | | | 0.00 | | C | | Unitigated Construction Off-Site RDG NDx CD SD2 Fugitive PM10 Fuhuat PM10 PM10 Total Fugitive PM10 Fundament PM10 PM10 Total Fugitive PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10 | Off-Road | | | | | | | | | | C | | Rog | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | (| | Category Constyr Categor | Unmitigated Construction Off-Site | | | | | | | | | | | | Haufing | | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | | Exhaust PM2.5 | PM2 | | Vendor 0.00 | | 0.01 | 0.50 | 0.13 | 0.00 | 0.00 | 0.00 | 0.05 | 0.03 | 0.00 | | | Morker 0.00 | | | | | | | | | | | (| | | | | | | | | | | | | 0 | | Trigging | | | | | | | | | | | 0 | | Segan | 2.9 Fine Crading/Transhing 2022 | | | | | | | | | | | | Category Tons/yr Ton | | | | | | | | | | | | | Category Cons/yr Cingitive Dust | | ROG | NOx | СО | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | | Exhaust PM2.5 | PM2 | | Off-Road 0,08 0.81 0.66 0.00 0.03 0.00 | | | | | | 0.4.4 | 0.00 | 0.44 | | 0.00 | _ | | Total | _ | 0.08 | 0.81 | 0.66 | 0.00 | 0.14 | | | 0.07 | | 0 | | Unmitigated Construction Off-Site ROG NOX CO SO2 Fugitive PM10 Exhaust PM10 PM10 Total Fugitive PM2.5 Exhaust PM2.5 PM2 | | | | | | 0.14 | | | 0.07 | | C | | ROG | | | | | | | | | | | | | Category tons/yr Hauling 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. | Onmitigated Construction On-Site | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | | Exhaust PM2 5 | PM2 | | Hauling 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. | Category tons/vr | NOG | NOX | CO | 302 | r agitive r ivito | EXHAUST I WITO | T WITO TOTAL | PM2.5 | EXHAUST I WIZ.S | 1 1412 | | Vendor 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | C | | Total 0.00 0.01 0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.00
0.00 | | | | | | 0.00 | | 0.00 | | | C | | 3.9 Building Construction -2023 Unmittigated Construction On-Site ROG NOX CO SO2 Fugitive PM10 Exhaust PM10 PM10 Total Fugitive PM2.5 Exhaust PM2.5 P | | | | | | | | | | | 0 | | ROG NOx CO SO2 Fugitive PM10 Exhaust PM10 PM10 Total Fugitive PM2.5 Exhaust PM2.5 PM2.5 PM2.5 Exhaust PM2.5 PM2.5 Exhaust PM2.5 PM2.5 Exhaust PM2.5 PM2.5 PM2.5 Exhaust PM2.5 | ιοται | 0.00 | 0.01 | 0.02 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | C | | ROG NOX CO SO2 Fugitive PM10 Exhaust PM10 PM10 Total Fugitive PM2.5 Exhaust PM2.5 P Category tons/yr Off-Road 0.03 0.23 0.30 0.00 0.00 0.01 0.01 0.00 0.01 Total 0.03 0.23 0.30 0.30 0.00 0.00 0.01 0.01 0.01 0.0 | | | | | | | | | | | | | Category tons/yr Off-Road | ommitigated construction on-site | ROG | N∩x | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | | Exhaust PM2 5 | PM2 | | Off-Road 0.03 0.23 0.30 0.00 0.00 0.01 0.01 0.00 0.01 Total 0.03 0.23 0.30 0.00 0.00 0.01 0.01 0.00 0.01 Unmitigated Construction Off-Site ROG NOx CO SO2 Fugitive PM10 Exhaust PM10 PM10 Total Fugitive PM2.5 PM2.5 Exhaust PM2.5 PM2.5 PM2.5 Exhaust PM2.5 PM3.5 PM3.5 Exhaust PM2.5 PM3.5 PM3.5 Exhaust PM2.5 PM3.5 Exhaust PM3.5 Exhaust PM3.5 PM3.5 < | Category tons/ur | 1100 | NOA | | JUZ | I ABILING FIVITO | EATIGUSE FIVITU | i ivito iotal | PM2.5 | EATIGUSE F IVIZ.J | 1 1VIZ | | Total 0.03 0.23 0.30 0.00 0.00 0.01 0.01 0.01 0.00 0.01 Unmitigated Construction Off-Site ROG NOx CO SO2 Fugitive PM10 Exhaust PM10 PM10 Total Fugitive PM2.5 Exhaust PM2.5 P Category tons/yr Hauling 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. | - · | 0.03 | 0.23 | 0.30 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0 | | ROG NOX CO SO2 Fugitive PM10 Exhaust PM10 PM10 Total Fugitive PM2.5 Exhaust PM2.5 P Category tons/yr Hauling 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. | | | | | | | | | | | 0 | | ROG NOX CO SO2 Fugitive PM10 Exhaust PM10 PM10 Total Fugitive PM2.5 Exhaust PM2.5 P Category tons/yr Hauling 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. | Unmitigated Construction Off-Site | | | | | | | | | | | | Category tons/yr Hauling 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. | | ROG | NOx | СО | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | | Exhaust PM2.5 | PM2 | | Hauling 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Vendor 0.00 0.05 0.02 0.00 0.01 0.00 0.01 0.00 0.00 0.00 | | | | | | - | | | PM2.5 | | | | | Category tons/yr | | | | | | | | | | | | vvorker 0.01 0.00 0.00 0.02 0.00 0.02 0.01 0.00 | Hauling | | | | | | | | | | | | | Hauling
Vendor | 0.00 | 0.05 | 0.02 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0
0
0 | | | Hauling
Vendor | 0.00 | 0.05 | 0.02 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | | | 3.9 Building Construction - | 2024 | | | | | | | | | | | |---------------------------------|------------------|---------------|--------------|--------------|--------------|---------------------|----------------|---------------|--------------|------------------|----------------| | | | | | | | | | | | | | | Unmitigated Construction | On-Site | | | | | | | | Fugitive | | | | | | ROG | NOx | СО | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | PM2.5 | Exhaust PM2.5 | PM2.5 Total | | Category | tons/yr | | | | | | | | | | | | | | 0.10 | 0.92 | 1.26 | 0.00 | 0.00 | 0.04 | 0.04 | 0.00 | 0.04 | 0.04 | | Off-Road | | | | | | | | | | | | | Total | | 0.10 | 0.92 | 1.26 | 0.00 | 0.00 | 0.04 | 0.04 | 0.00 | 0.04 | 0.04 | | | - CC - AL- | | | | | | | | | | | | Unmitigated Construction | Off-Site | Fugitive | | | | | | ROG | NOx | СО | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | PM2.5 | Exhaust PM2.5 | PM2.5 Total | | Category | tons/yr | | | | | | | | | | | | Hauling | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Vendor | | 0.01 | 0.22 | 0.07 | 0.00 | 0.03 | 0.00 | 0.03 | 0.01 | 0.00 | 0.01 | | Worker | | 0.03 | 0.02 | 0.24 | 0.00 | 0.09 | 0.00 | 0.09 | 0.02 | 0.00 | 0.02 | | Total | | 0.03 | 0.23 | 0.31 | 0.00 | 0.12 | 0.00 | 0.12 | 0.03 | 0.00 | 0.03 | | 3.10 Parking Structure Con | struction - 2024 | | | | | | | | | | | | Unmitigated Construction | | | | | | | | | | | | | . 0 | | 000 | NO. | 60 | 603 | Finalistical DA 440 | Fyka = D8440 | D1440 T-1-1 | Fugitive | Fyba+ 0840 F | DN42 E 7 - 1 | | | | ROG | NOx | СО | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | PM2.5 | Exhaust PM2.5 | PM2.5 Total | | Category | tons/yr | | | | | | | | | | | | Off-Road | | 0.11 | 0.97 | 1.34 | 0.00 | 0.00 | 0.05 | 0.05 | 0.00 | 0.04 | 0.04 | | Total | | 0.11 | 0.97 | 1.34 | 0.00 | 0.00 | 0.05 | 0.05 | 0.00 | 0.04 | 0.04 | | Unmitigated Construction | Off-Sita | | | | | | | | | | | | ommugated Construction | OII-3ILE | | | | | | | | | | | | | | | | | | | - 1 | | Fugitive | | | | | | ROG | NOx | СО | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | PM2.5 | Exhaust PM2.5 | PM2.5 Total | | Category | tons/yr | | | | | | | | | | | | Hauling | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Vendor | | 0.01 | 0.23 | 0.07 | 0.00 | 0.03 | 0.00 | 0.03 | 0.01 | 0.00 | 0.01 | | Worker
Total | | 0.03 | 0.02 | 0.26 | 0.00 | 0.09 | 0.00 | 0.09 | 0.02 | 0.00 | 0.02 | | Total | | 0.03 | 0.25 | 0.33 | 0.00 | 0.12 | 0.00 | 0.12 | 0.03 | 0.00 | 0.04 | | 3.11 Paving - 2024 | | | | | | | | | | | | | Unmitigated Construction | On-Site | | | | | | | | | | | | | | ROG | NOx | СО | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive | Exhaust PM2.5 | PM2.5 Total | | Colores | 1 | | | | 332 | | | 20 .000. | PM2.5 | | | | Category
Off-Road | tons/yr | 0.00 | 0.05 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Paving | | 0.00 | 0.03 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | | 0.01 | 0.05 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | | Unmitigated Construction | Off-Site | Fugitive | | | | | | ROG | NOx | СО | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | PM2.5 | Exhaust PM2.5 | PM2.5 Total | | Category | tons/yr | | | | | | | | - | | | | Hauling | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Vendor | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Worker | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 3.12 Architectural Coating | - 2024 | | | | | | | | | | | | Unmitigated Construction | | | | | | | | | | | | | | | ROG | NOx | СО | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive | Exhaust PM2.5 | PM2.5 Total | | Cala | | 1.00 | INOX | 20 | 302 | I ABILIVE FIVITO | EXHAUST FIVITO | i ivito iotal | PM2.5 | EARIGUST FIVIZ.J | 1 1412.5 10(0) | | Category | tons/yr | 0.27 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Architectural Coating Off Road | | 0.27
0.00 | 0.01 | 0.02 | 0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | Total | | 0.27 | 0.01 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 3. <u>—</u> . | <u>-</u> | <u>-</u> | 5.50 | 2.00 | 2.30 | 0.00 | 2.00 | 2.00 | 2.30 | | Unmitigated Construction | Off-Site | | | | | | | | | | | | | | ROG | NOx | СО | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive | Exhaust PM2.5 | PM2.5 Total | | Cohons | tou d | | | 33 | 302 | . 25.6140 1 141110 | | 20 10tal | PM2.5 | | 2.3 10tal | | Category | tons/yr | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling
Vendor | | 0.00
0.00 | Worker | | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | TOtal | | 0.00 | | | | | | | | 0.00 | | | 3.13 Finishing/Land | dscaping - 2024 | | | | | | | | | | | |---------------------|-------------------|------|------|------|------|---------------|--------------|------------|-------------------|---------------|-------------| | Unmitigated Consti | truction On-Site | | | | | | | | | | | | | | ROG | NOx | СО | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust PM2.5 | PM2.5 Total | | Category | tons/yr | | | | | | | | | | | | Off-Road | | 0.00 | 0.01 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | | 0.00 | 0.01 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Unmitigated Consti | truction Off-Site | | | | | | | | | | | | | | ROG | NOx | СО | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust PM2.5 | PM2.5 Total | | Category | tons/yr | | | | | | | | |
 | | Hauling | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Vendor | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Worker | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # **Criteria Air Pollutant Emissions Summary - Construction Unmitigated** Annual emissions divided by total construction duration to obtain average daily emissions. Average construction emissions accounts for the duration of each construction phase and the time each piece of construction equipment is onsite. **Total Construction** | Days | 2023 | 2024 | |------|------|------| | 395 | 175 | 220 | | Unmigated Run - with Best Control Measures for Fugitive Dust | | | | | | | | | | | |--|-----|-----|----|-----|----------|---------|-------|----------|---------|-------| | average lbs/day | ROG | NOx | CO | SO2 | Fugitive | Exhaust | PM10 | Fugitive | Exhaust | PM2.5 | | average ibs/day | RUG | NOX | CO | 302 | PM10 | PM10 | Total | PM2.5 | PM2.5 | Total | | Total | 4 | 23 | 25 | 0 | 3.00 | 0.85 | 4 | 0.99 | 0.80 | 2 | | BAAQMD Threshold | 54 | 54 | NA | NA | ВМР | 82 | 54 | BMP | 54 | NA | | Exceeds Threshold | No | No | NA | NA | NA | No | No | NA | No | NA | | | | | | | | | | | | | # **Average Daily Emissions and Emission Rates** | Onsite Construction PM10 Exhaust Emissions ¹ | | | | | | | | | |---|--------------------------|----------------------|---------------------------------|--|--|--|--|--| | | | | | | | | | | | | Average Daily | Average Daily | | | | | | | | | | | | | | | | | | Year | Emissions (lbs/day) | Emissions (lbs/hr) | Emission Rate (g/s) | | | | | | | Year 2023 | Emissions (lbs/day) 0.77 | 9.63E-02 | Emission Rate (g/s)
1.21E-02 | | | | | | | Onsite Construction PM2.5 Exhaust Emissions ² | | | | | | | | |--|----------------------|----------------------|--|--|--|--|--| | Average Daily | Average Daily | | | | | | | | Emissions | Emissions | Emission Rate | | | | | | | /Iba/da\ | /Iba/ba/\ | (~/~) | | | | | | | (lbs/day) | (lbs/hr) | (g/s) | | | | | | | 0.71 | 8.92E-02 | 1.12E-02 | | | | | | | Offsite Co | nstruction PM10 Exh | aust Emissions ¹ | Offsite Construction PM2.5 Exhaust Emissions ² | | | | | | |------------|----------------------|-----------------------------|---|----------------------|---------------|------------------|----------------------|------------| | | | | | | | Hauling | | | | | | Hauling Emissions | | | Average Daily | Emissions | | | | | Average Daily | w/in 1,000ft | Emission Rate | Emission Rate | Emissions | w/in 1,000ft | Emission Rate | Emission | | Year | Emissions (lbs/day) | (lbs/day) ³ | (lbs/hr) | (g/s) | (lbs/day) | (lbs/day) 3 | (lbs/hr) | Rate (g/s) | | 2023 | 5.85E-02 | 2.09E-03 | 2.62E-04 | 3.30E-05 | 5.58E-02 | 2.00E-03 | 2.49E-04 | 3.14E-05 | | 2024 | 3.22E-02 | 1.15E-03 | 1.44E-04 | 1.81E-05 | 3.05E-02 | 1.09E-03 | 1.37E-04 | 1.72E-05 | Note: Emissions evenly distributed over 52 modeled volume sources. | | | | Year | Workdays | Risk Scalar ⁵ | |---|------|-------|------|----------|--------------------------| | Hauling Length (miles) | 20 | miles | 2023 | 175 | 0.67 | | Haul Length within 1,000 ft of Site (mile) ³ | 0.72 | miles | 2024 | 220 | 0.84 | | Hours per work day (7:00 AM to 4:00 PM, 1-hour of | 8 | hours | | | | | breaks) ⁴ | | | | | | $^{^{\}rm 1}$ DPM emissions taken as ${\rm PM_{10}}$ exhaust emissions from CalEEMod average daily emissions. $^{^2\,\}mathrm{PM}_{2.5}$ emissions taken as $\mathrm{PM}_{2.5}$ exhaust emissions from CalEEMod average daily emissions. ³ Emissions from CalEEMod offsite average daily emissions, which is based on proportioned haul truck trip distances, are adjusted to evaluate emissions from the 0.72-mile route within 1,000 of the project site. ⁴ Work hours applied in By Hour/Day (HRDOW) variable emissions module in air dispersion model (see App B - Air Dispersion Model Output). ⁵ Risk scalars determined for each year of construction to adjust receptor exposures to the exposure durations for each construction year (see App C - Risk Calculations). | Phase Name | Start Date | End Date | CalEEMod Days | Total Days | |-----------------------------------|------------|------------|---------------|------------| | Demolition (Building + Asphalt) | 5/1/2023 | 5/26/2023 | 20 | 25 | | Building Demolition Debris Haul | 5/17/2023 | 5/23/2023 | 5 | 6 | | Asphalt Demolition Debris Haul | 5/17/2023 | 5/26/2023 | 8 | 9 | | Site Preparation | 5/27/2023 | 6/2/2023 | 5 | 6 | | Rough Grading | 6/3/2023 | 6/30/2023 | 20 | 27 | | Rough Grading Soil Haul (import & | | | | | | export) | 6/3/2023 | 7/15/2023 | 30 | 42 | | Fine Grading/Trenching | 7/1/2023 | 11/3/2023 | 90 | 125 | | Building Construction 2023 | 11/4/2023 | 12/31/2023 | 40 | 57 | | Building Construction 2024 | 1/1/2024 | 8/23/2024 | 170 | 235 | | Parking Structure Construction | 1/28/2024 | 10/4/2024 | 180 | 250 | | Paving | 8/24/2024 | 9/6/2024 | 10 | 13 | | Architectural Coating | 9/7/2024 | 10/4/2024 | 20 | 27 | | Finishing/Landscaping | 10/5/2024 | 11/1/2024 | 20 | 27 | | | Number of Construction Days Per Year | | | | | | | | | |------|--------------------------------------|------------------|-----|--|--|--|--|--|--| | 2023 | 5/1/2023 | 12/31/2023 | 175 | | | | | | | | 2024 | 1/1/2024 | 11/1/2024 | 220 | | | | | | | | | C | ONSTRUCTION DAYS | 395 | | | | | | | | struction Days Per Year | | | Total Construction Days Per Year | | | |-------------------------|-----|---|----------------------------------|------------|-----| | 12/31/2023 | 175 | _ | 1/1/2023 | 12/31/2023 | 260 | | 11/1/2024 | 220 | _ | 1/1/2024 | 12/31/2024 | 262 | | CONSTRUCTION DAYS | 395 | - | | TOTAL DAYS | 522 | | | | | | | | # Criteria Air Pollutant Emissions Summary - Existing Buildout (Year 2024) #### **Existing Office Building** Mitigated Operational PM10 PM2.5 ROG NOx Total Total tons/yr Category 0 Area 1 0 0 Energy 0 0 0 0 Mobile 1 1 2 1 Waste 0 0 Water 0 0 Total 2 1 1 1 BAAQMD Threshold (T/YR) 10 10 15 10 **Exceeds thresholds** No No No No # Criteria Air Pollutant Emissions Summary - Existing Buildout (Year 2024) Annual emissions divided by 365 days/year to obtain average daily emissions. | Proposed Project | | | | | | | | | | | |--------------------------|-----|-----|------|-----|----------|---------|-------|----------|---------|-------| | | ROG | NOx | СО | SO2 | Fugitive | Exhaust | PM10 | Fugitive | Exhaust | PM2.5 | | lbs/day | NOU | NOX | , CO | 302 | PM10 | PM10 | Total | PM2.5 | PM2.5 | Total | | Area | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Energy | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mobile | 4 | 3 | 45 | 0 | 11 | 0 | 11 | 3 | 0 | 3 | | Waste | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total | 8 | 4 | 46 | 0 | 11 | 0 | 11 | 3 | 0 | 3 | | BAAQMD Threshold (Daily) | 54 | 54 | | | | | 82 | | | 54 | | Exceeds Threshold | No | No | | | | | No | | | No | # Criteria Air Pollutant Emissions Summary - Operations, 2024 # **Proposed Office Building** Mitigated Operational | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | |-------------------------|------|-----|----|-----|------------------|-----------------|---------------|-------------------|------------------|----------------| | Category tons | s/yr | | | | | | | | | | | Area | 1 | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | | Energy | 0 | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | | Mobile | 2 | 1 | 16 | 0 | 4 | 0 | 4 | 1 | 0 | 1 | | Waste | | | | | | 0 | 0 | | 0 | 0 | | Water | | | | | | 0 | 0 | | 0 | 0 | | Total | 3 | 1 | 16 | 0 | 4 | 0 | 4 | 1 | 0 | 1 | | BAAQMD Threshold (T/YR) | 10 | 10 | NA | NA | NA | NA | 15 | NA | NA | 10 | | Exceeds thresholds | No | No | | | | | No | | | No | # **Criteria Air Pollutant Emissions Summary - Operations** Annual emissions divided by 365 days/year to obtain average daily emissions. | Proposed Project | | | | | | | | | | | |--------------------------|-----|-----|----|-----|----------|---------|-------|----------|---------|-------| | | ROG | NOx | СО | SO2 | Fugitive | Exhaust | PM10 | Fugitive | Exhaust | PM2.5 | | lbs/day | KUG | NOX | CO | 302 | PM10 | PM10 | Total | PM2.5 | PM2.5 | Total | | Area | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Energy | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Mobile | 8 | 6 | 86 | 0 | 20 | 0 | 20 | 5 | 0 | 5 | | Waste | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total | 15 | 8 | 87 | 0 | 20 | 0 | 20 | 5 | 0 | 6 | | BAAQMD Threshold (Daily) | 54 | 54 | | | | | 82 | | | 54 | | Exceeds Threshold | No | No | | | | | No | | | No | # **GHG Emissions Inventory** # Operation* | | Existing Conditions (2021) | | Proposed Project (2024) | | | Percent | |-------------|----------------------------|----------------------|-------------------------|----------------------|-------------------|------------| | | MTCO₂e ^{**} | Percent of Emissions | MTCO₂e** | Percent of Emissions | Net Change | Proportion | | Area | 0 | 0.0% | 0 | 0.0% | 0 | 0.0% | | Energy | 154 | 9.2% | 249 | 7.7% | 95 | 6.1% | | Mobile | 1,413 | 84.2% | 2,762 | 85.2% | 1,349 | 86.4% | | Solid Waste | 112 | 6.7% | 224 | 6.9% | 112 | 7.1% | | Water | 0 | 0.0% | 6 | 0.2% | 6 | 0.4% | | Total | 1,679 | 100% | 3,241 | 100% | 1,562 | 100% | ^{*}CalEEMod, Version 2020.4 ^{**} $MTCO_2e$ =metric tons of carbon dioxide equivalent. Date: 11/22/2021 5:20 PM #### VP1 Apple Office Project - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to
Account for the SAFE Vehicle Rule Not Applied # VP1 Apple Office Project Santa Clara County, Annual #### 1.0 Project Characteristics #### 1.1 Land Usage | Land Uses | Size | Metric | Lot Acreage | Floor Surface Area | Population | |--------------------------------|--------|----------|-------------|--------------------|------------| | General Office Building | 282.32 | 1000sqft | 1.78 | 282,320.00 | 0 | | Enclosed Parking with Elevator | 213.08 | 1000sqft | 0.81 | 213,080.00 | 0 | | Other Non-Asphalt Surfaces | 104.60 | 1000sqft | 2.40 | 104,602.00 | 0 | | Parking Lot | 129.59 | 1000sqft | 2.98 | 129,591.00 | 0 | #### 1.2 Other Project Characteristics | Urbanization | Urban | Wind Speed (m/s) | 2.2 | Precipitation Freq (Days) | 58 | |----------------------------|-----------------------------|----------------------------|-----|----------------------------|------| | Climate Zone | 4 | | | Operational Year | 2024 | | Utility Company | Silicon Valley Clean Energy | | | | | | CO2 Intensity
(lb/MWhr) | 2 | CH4 Intensity
(lb/MWhr) | 0 | N2O Intensity
(lb/MWhr) | 0 | #### 1.3 User Entered Comments & Non-Default Data Project Characteristics - Land Use - Based on applicant info., see assumptions file. Construction Phase - See assumptions file Off-road Equipment - Off-road Equipment - No additional equipment required for debris haul Off-road Equipment - Crane is assumed to operate 1 hour per day, 5 days per week for duration of building construction phase, see assumptions file. Off-road Equipment - No additional equipment required for debris haul #### VP1 Apple Office Project - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied Off-road Equipment - Off-road Equipment - Off-road Equipment - 1 excavator added based on equipment mix of projects of a similar size. Off-road Equipment - Crane is assumed to operate 1 hour per day, 5 days per week for duration of the parking structure construction phase, see assumptions file. Off-road Equipment - Off-road Equipment - Off-road Equipment - No additional equipment required for soil haul Off-road Equipment - Trips and VMT - Assume 4 vt/day/water truck, see assumptions file Demolition - Grading - Architectural Coating - VOC content provided by Applicant, see assumptions file Construction Off-road Equipment Mitigation - BAAQMD Construction BMPs, see assumptions file | Table Name | Column Name | Default Value | New Value | |-------------------------|-----------------------------------|---------------|------------| | tblArchitecturalCoating | ConstArea_Nonresidential_Exterior | 141,160.00 | 5,327.00 | | tblArchitecturalCoating | ConstArea_Nonresidential_Interior | 423,480.00 | 189,048.00 | | tblArchitecturalCoating | ConstArea_Parking | 26,836.00 | 7,775.00 | | tblArchitecturalCoating | EF_Nonresidential_Exterior | 150.00 | 157.00 | | tblArchitecturalCoating | EF_Nonresidential_Interior | 100.00 | 50.00 | | tblAreaCoating | Area_Nonresidential_Exterior | 141160 | 38865 | | tblAreaCoating | Area_Nonresidential_Interior | 423480 | 116595 | | tblAreaCoating | Area_Parking | 26836 | 16167 | | tblConstDustMitigation | CleanPavedRoadPercentReduction | 0 | 9 | | tblConstDustMitigation | WaterUnpavedRoadVehicleSpeed | O | 15 | | tblConstructionPhase | NumDays | 230.00 | 210.00 | | tblConstructionPhase | NumDays | 230.00 | 180.00 | | tblConstructionPhase | NumDays | 20.00 | 5.00 | Page 1 of 1 VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied | tblConstructionPhase | NumDays | 20.00 | 8.00 | |----------------------|----------------------------|------------|------------| | tblConstructionPhase | NumDays | 20.00 | 30.00 | | tblConstructionPhase | NumDays | 20.00 | 90.00 | | tblConstructionPhase | NumDays | 20.00 | 10.00 | | tblConstructionPhase | NumDays | 10.00 | 5.00 | | tblGrading | MaterialExported | 0.00 | 58,393.00 | | tblGrading | MaterialImported | 0.00 | 364.00 | | tblLandUse | LandUseSquareFeet | 104,600.00 | 104,602.00 | | tblLandUse | LandUseSquareFeet | 129,590.00 | 129,591.00 | | tblLandUse | LotAcreage | 6.48 | 1.78 | | tblLandUse | LotAcreage | 4.89 | 0.81 | | tblLandUse | LotAcreage | 2.97 | 2.98 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 0.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 0.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 3.00 | 0.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 3.00 | 0.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 0.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 0.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 2.00 | 0.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 2.00 | 0.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 0.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 3.00 | 0.00 | | tblOffRoadEquipment | UsageHours | 7.00 | 1.00 | | tblOffRoadEquipment | UsageHours | 7.00 | 1.00 | | tblSolidWaste | SolidWasteGenerationRate | 262.56 | 72.29 | | tblTripsAndVMT | HaulingTripNumber | 333.00 | 649.00 | | tblTripsAndVMT | HaulingTripNumber | 974.00 | 337.00 | | I | l | | | # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied | tblTripsAndVMT | HaulingTripNumber | 7,345.00 | 7,346.00 | |----------------|---------------------|---------------|---------------| | tblTripsAndVMT | VendorTripNumber | 0.00 | 4.00 | | tblTripsAndVMT | VendorTripNumber | 0.00 | 4.00 | | tblTripsAndVMT | VendorTripNumber | 0.00 | 4.00 | | tblTripsAndVMT | VendorTripNumber | 0.00 | 4.00 | | tblTripsAndVMT | VendorTripNumber | 120.00 | 57.00 | | tblTripsAndVMT | VendorTripNumber | 120.00 | 57.00 | | tblTripsAndVMT | WorkerTripNumber | 56.00 | 28.00 | | tblTripsAndVMT | WorkerTripNumber | 278.00 | 138.00 | | tblTripsAndVMT | WorkerTripNumber | 278.00 | 138.00 | | tblWater | IndoorWaterUseRate | 50,177,791.73 | 13,815,244.23 | | tblWater | OutdoorWaterUseRate | 30,754,130.42 | 8,467,407.75 | # 2.0 Emissions Summary # 2.1 Overall Construction Unmitigated Construction | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------|---------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------| | Year | tons/yr | | | | | | | | | | MT/yr | | | | | | | 2023 | 0.1693 | 2.1362 | 1.5862 | 5.6200e-
003 | 0.6934 | 0.0725 | 0.7659 | 0.2656 | 0.0672 | 0.3329 | 0.0000 | 524.7851 | 524.7851 | 0.0769 | 0.0443 | 539.9114 | | 2024 | 0.5600 | 2.4492 | 3.3686 | 7.7300e-
003 | 0.2603 | 0.0954 | 0.3556 | 0.0707 | 0.0901 | 0.1609 | 0.0000 | 695.1266 | 695.1266 | 0.0873 | 0.0325 | 706.9951 | | Maximum | 0.5600 | 2.4492 | 3.3686 | 7.7300e-
003 | 0.6934 | 0.0954 | 0.7659 | 0.2656 | 0.0901 | 0.3329 | 0.0000 | 695.1266 | 695.1266 | 0.0873 | 0.0443 | 706.9951 | **Mitigated Construction** # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------|---------------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------| | Year | tons/yr MT/yr | | | | | | | | | | | | | | | | | 2023 | 0.1693 | 2.1362 | 1.5862 | 5.6200e-
003 | 0.3517 | 0.0725 | 0.4242 | 0.1289 | 0.0672 | 0.1962 | 0.0000 | 524.7848 | 524.7848 | 0.0769 | 0.0443 | 539.9111 | | 2024 | 0.5600 | 2.4492 | 3.3686 | 7.7300e-
003 | 0.2410 | 0.0954 | 0.3363 | 0.0660 | 0.0901 | 0.1561 | 0.0000 | 695.1261 | 695.1261 | 0.0873 | 0.0325 | 706.9946 | | Maximum | 0.5600 | 2.4492 | 3.3686 | 7.7300e-
003 | 0.3517 | 0.0954 | 0.4242 | 0.1289 | 0.0901 | 0.1962 | 0.0000 | 695.1261 | 695.1261 | 0.0873 | 0.0443 | 706.9946 | | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4 | N20 | CO2e | |-------------------|------|------|------|------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|----------|-----------|------|------|------| | Percent Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 37.86 | 0.00 | 32.19 | 42.06 | 0.00 | 28.65 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Quarter | Start Date | End Date | Maximum Unmitigated ROG + NOX (tons/quarter) | Maximum Mitigated ROG + NOX (tons/quarter) | |---------|------------|------------|--|--| | 1 | 5-1-2023 | 7-31-2023 | 1.6079 | 1.6079 | | 2 | 8-1-2023 | 10-31-2023 | 0.6536 | 0.6536 | | 3 | 11-1-2023 | 1-31-2024 | 0.5463 | 0.5463 | | 4 | 2-1-2024 | 4-30-2024 | 0.9779 | 0.9779 | | 5 | 5-1-2024 | 7-31-2024 | 0.9912 | 0.9912 | | 6 | 8-1-2024 | 9-30-2024 | 0.7497 | 0.7497 | | | | Highest | 1.6079 | 1.6079 | Date: 11/22/2021 5:20 PM #### VP1 Apple Office Project - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied #### 3.0 Construction Detail #### **Construction Phase** | Phase
Number | Phase Name | Phase Type | Start Date | End Date | Num Days
Week | Num Days | Phase Description | |-----------------|---------------------------------
-----------------------|------------|-----------|------------------|----------|-------------------| | 1 | Demolition (Building + Asphalt) | Demolition | 5/1/2023 | 5/26/2023 | 5 | 20 | а | | 2 | Building Demolition Debris Haul | Demolition | 5/17/2023 | 5/23/2023 | 5 | 5 | b | | 3 | Asphalt Demolition Debris Haul | Demolition | 5/17/2023 | 5/26/2023 | 5 | 8 | С | | 4 | Site Preparation | Site Preparation | 5/27/2023 | 6/2/2023 | 5 | 5 | d | | 5 | Rough Grading | Grading | 6/3/2023 | 6/30/2023 | 5 | 20 | е | | 6 | Rough Grading Soil Haul | Grading | 6/3/2023 | 7/15/2023 | 5 | 30 | f | | 7 | Fine Grading/Trenching | Grading | 7/1/2023 | 11/3/2023 | 5 | 90 | 9 | | 8 | Building Construction | Building Construction | 11/4/2023 | 8/23/2024 | 5 | 210 | h | | 9 | Parking Structure Construction | Building Construction | 1/28/2024 | 10/4/2024 | 5 | 180 | į | | 10 | Paving | Paving | 8/24/2024 | 9/6/2024 | 5 | 10 | j | | 11 | Architectural Coating | Architectural Coating | 9/7/2024 | 10/4/2024 | 5 | 20 | k | | 12 | Finishing/Landscaping | Trenching | 10/5/2024 | 11/1/2024 | 5 | 20 | | Acres of Grading (Site Preparation Phase): 7.5 Acres of Grading (Grading Phase): 20 Acres of Paving: 6.19 Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 189,048; Non-Residential Outdoor: 5,327; Striped Parking Area: 7,775 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied #### OffRoad Equipment | Phase Name | Offroad Equipment Type | Amount | Usage Hours | Horse Power | Load Factor | |---------------------------------|---------------------------|--------|-------------|-------------|-------------| | Demolition (Building + Asphalt) | Concrete/Industrial Saws | 1 | 8.00 | 81 | 0.73 | | Demolition (Building + Asphalt) | Excavators | 3 | 8.00 | 158 | 0.38 | | Demolition (Building + Asphalt) | Rubber Tired Dozers | 2 | 8.00 | 247 | 0.40 | | Building Demolition Debris Haul | Concrete/Industrial Saws | 0 | 8.00 | 81 | 0.73 | | Building Demolition Debris Haul | Excavators | 0 | 8.00 | 158 | 0.38 | | Building Demolition Debris Haul | Rubber Tired Dozers | 0 | 8.00 | 247 | 0.40 | | Asphalt Demolition Debris Haul | Concrete/Industrial Saws | 0 | 8.00 | 81 | 0.73 | | Asphalt Demolition Debris Haul | Excavators | 0 | 8.00 | 158 | 0.38 | | Asphalt Demolition Debris Haul | Rubber Tired Dozers | 0 | 8.00 | 247 | 0.40 | | Site Preparation | Rubber Tired Dozers | 3 | 8.00 | 247 | 0.40 | | Site Preparation | Tractors/Loaders/Backhoes | 4 | 8.00 | 97 | 0.37 | | Rough Grading | Excavators | 1 | 8.00 | 158 | 0.38 | | Rough Grading | Graders | 1 | 8.00 | 187 | 0.41 | | Rough Grading | Rubber Tired Dozers | 1 | 8.00 | 247 | 0.40 | | Rough Grading | Tractors/Loaders/Backhoes | 3 | 8.00 | 97 | 0.37 | | Rough Grading Soil Haul | Excavators | 0 | 8.00 | 158 | 0.38 | | Rough Grading Soil Haul | Graders | 0 | 8.00 | 187 | 0.41 | | Rough Grading Soil Haul | Rubber Tired Dozers | 0 | 8.00 | 247 | 0.40 | | Rough Grading Soil Haul | Tractors/Loaders/Backhoes | 0 | 8.00 | 97 | 0.37 | | Fine Grading/Trenching | Excavators | 1 | 8.00 | 158 | 0.38 | | Fine Grading/Trenching | Graders | 1 | 8.00 | 187 | 0.41 | | Fine Grading/Trenching | Rubber Tired Dozers | 1 | 8.00 | 247 | 0.40 | | Fine Grading/Trenching | Tractors/Loaders/Backhoes | 3 | 8.00 | 97 | 0.37 | | Building Construction | Cranes | 1 | 1.00 | 231 | 0.29 | | Building Construction | Forklifts | 3 | 8.00 | 89 | 0.20 | Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied | Building Construction | Generator Sets | 1 | 8.00 | 84 | 0.74 | |--------------------------------|---------------------------|---|------|-----|------| | Building Construction | Tractors/Loaders/Backhoes | 3 | 7.00 | 97 | 0.37 | | Building Construction | Welders | 1 | 8.00 | 46 | 0.45 | | Parking Structure Construction | Cranes | 1 | 1.00 | 231 | 0.29 | | Parking Structure Construction | Forklifts | 3 | 8.00 | 89 | 0.20 | | Parking Structure Construction | Generator Sets | 1 | 8.00 | 84 | 0.74 | | Parking Structure Construction | Tractors/Loaders/Backhoes | 3 | 7.00 | 97 | 0.37 | | Parking Structure Construction | Welders | 1 | 8.00 | 46 | 0.45 | | Paving | Pavers | 2 | 8.00 | 130 | 0.42 | | Paving | Paving Equipment | 2 | 8.00 | 132 | 0.36 | | Paving | Rollers | 2 | 8.00 | 80 | 0.38 | | Architectural Coating | Air Compressors | 1 | 6.00 | 78 | 0.48 | | Finishing/Landscaping | Excavators | 1 | 8.00 | 158 | 0.38 | Date: 11/22/2021 5:20 PM #### VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied #### **Trips and VMT** | Phase Name | Offroad Equipment
Count | Worker Trip
Number | Vendor Trip
Number | Hauling Trip
Number | Worker Trip
Length | Vendor Trip
Length | Hauling Trip
Length | Worker Vehicle
Class | Vendor
Vehicle Class | Hauling Vehicle
Class | |------------------------------------|----------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|--------------------------| | Demolition (Building +
Asphalt) | 6 | 15.00 | 4.00 | 0.00 | 10.80 | 7.30 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Building Demolition
Debris Haul | 0 | 0.00 | 0.00 | 649.00 | 10.80 | 7.30 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Asphalt Demolition
Debris Haul | 0 | 0.00 | 0.00 | 337.00 | 10.80 | 7.30 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Site Preparation | 7 | 18.00 | 4.00 | 0.00 | 10.80 | 7.30 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Rough Grading | 6 | 15.00 | 4.00 | 0.00 | 10.80 | 7.30 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Rough Grading Soil
Haul | 0 | 0.00 | 0.00 | 7,346.00 | 10.80 | 7.30 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Fine Grading/Trenching | 6 | 15.00 | 4.00 | 0.00 | 10.80 | 7.30 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Building Construction | 9 | 138.00 | 57.00 | 0.00 | 10.80 | 7.30 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Parking Structure
Construction | 9 | 138.00 | 57.00 | 0.00 | 10.80 | 7.30 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Paving | 6 | 15.00 | 0.00 | 0.00 | 10.80 | 7.30 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Architectural Coating | 1 | 28.00 | 0.00 | 0.00 | 10.80 | 7.30 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Finishing/Landscaping | 1 | 3.00 | 0.00 | 0.00 | 10.80 | 7.30 | 20.00 | LD_Mix | HDT_Mix | HHDT | #### **3.1 Mitigation Measures Construction** Replace Ground Cover Water Exposed Area Reduce Vehicle Speed on Unpaved Roads Clean Paved Roads Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied # 3.2 Demolition (Building + Asphalt) - 2023 <u>Unmitigated Construction On-Site</u> | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|--------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|---------| | Category | | | | | ton | s/yr | | | | | | | МТ | √yr | | | | Fugitive Dust | | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 0.0227 | 0.2148 | 0.1964 | 3.9000e-
004 | | 9.9800e-
003 | 9.9800e-
003 | | 9.2800e-
003 | 9.2800e-003 | 0.0000 | 33.9921 | 33.9921 | 9.5200e-
003 | 0.0000 | 34.2301 | | Total | 0.0227 | 0.2148 | 0.1964 | 3.9000e-
004 | 0.0000 | 9.9800e-
003 | 9.9800e-
003 | 0.0000 | 9.2800e-
003 | 9.2800e-003 | 0.0000 | 33.9921 | 33.9921 | 9.5200e-
003 | 0.0000 | 34.2301 | | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|--------| | Category | | | | | tons | s/yr | | | | | | | MT | Г/уг | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 4.0000e-
005 | 1.7800e-
003 | 5.6000e-004 | 1.0000e-
005 | 2.6000e-004 | 1.0000e-
005 | 2.7000e-
004 | 8.0000e-
005 | 1.0000e-
005 | 9.0000e-005 | 0.0000 | 0.7953 | 0.7953 | 2.0000e-
005 | 1.2000e-004 | 0.8306 | | Worker | 3.7000e-
004 | 2.6000e-
004 | 3.3500e-003 | 1.0000e-
005 | 1.1900e-003 | 1.0000e-
005 | 1.2000e-
003 | 3.2000e-
004 | 1.0000e-
005 | 3.2000e-004 | 0.0000 | 0.9057 | 0.9057 | 3.0000e-
005 | 3.0000e-005 | 0.9139 | | Total | 4.1000e-
004 | 2.0400e-
003 | 3.9100e-003 | 2.0000e-
005 | 1.4500e-003 | 2.0000e-
005 | 1.4700e-
003 | 4.0000e-
004 | 2.0000e-
005 | 4.1000e-004 | 0.0000 | 1.7010 | 1.7010 | 5.0000e-
005 | 1.5000e-004 | 1.7444 | Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied #### **Mitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O
 CO2e | |---------------|--------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|---------| | Category | | | | | ton | s/yr | | | | | | | МТ | √yr | | | | Fugitive Dust | | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 0.0227 | 0.2148 | 0.1964 | 3.9000e-
004 | | 9.9800e-
003 | 9.9800e-
003 | | 9.2800e-
003 | 9.2800e-003 | 0.0000 | 33.9920 | 33.9920 | 9.5200e-
003 | 0.0000 | 34.2300 | | Total | 0.0227 | 0.2148 | 0.1964 | 3.9000e-
004 | 0.0000 | 9.9800e-
003 | 9.9800e-
003 | 0.0000 | 9.2800e-
003 | 9.2800e-003 | 0.0000 | 33.9920 | 33.9920 | 9.5200e-
003 | 0.0000 | 34.2300 | | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|--------| | Category | | | | | tons | s/yr | | | | | | | МТ | √yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 4.0000e-
005 | 1.7800e-
003 | 5.6000e-004 | 1.0000e-
005 | 2.5000e-004 | 1.0000e-
005 | 2.6000e-
004 | 7.0000e-
005 | 1.0000e-
005 | 8.0000e-005 | 0.0000 | 0.7953 | 0.7953 | 2.0000e-
005 | 1.2000e-004 | 0.8306 | | Worker | 3.7000e-
004 | 2.6000e-
004 | 3.3500e-003 | 1.0000e-
005 | 1.1000e-003 | 1.0000e-
005 | 1.1000e-
003 | 2.9000e-
004 | 1.0000e-
005 | 3.0000e-004 | 0.0000 | 0.9057 | 0.9057 | 3.0000e-
005 | 3.0000e-005 | 0.9139 | | Total | 4.1000e-
004 | 2.0400e-
003 | 3.9100e-003 | 2.0000e-
005 | 1.3500e-003 | 2.0000e-
005 | 1.3600e-
003 | 3.6000e-
004 | 2.0000e-
005 | 3.8000e-004 | 0.0000 | 1.7010 | 1.7010 | 5.0000e-
005 | 1.5000e-004 | 1.7444 | Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied # 3.3 Building Demolition Debris Haul - 2023 Unmitigated Construction On-Site | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------| | Category | | | | | tons | s/yr | | | | | | | МТ | -/yr | | | | Fugitive Dust | | | | | 0.0360 | 0.0000 | 0.0360 | 5.4500e-
003 | 0.0000 | 5.4500e-003 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0360 | 0.0000 | 0.0360 | 5.4500e-
003 | 0.0000 | 5.4500e-003 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.0000
6.8000e - | 0.0000
0.0441 | 0.0000
0.0102 | 0.0000
2.0000e - | 0.0000
5.5100e-003 | 0.0000
3.6000 e- | 0.0000
5.8600 e- | 0.0000
1.5100 e- | 0.0000
3.4000 e- | 0.0000
1.8600e-003 | 0.0000 | 0.0000
19.4328 | 0.0000
19.4328 | 0.0000
6.6000e- | 0.0000
3.0800e-003 | 0.0000
20.3674 | |----------|----------------------------|-------------------------|-------------------------|----------------------------|------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------|----------|--------------------------|--------------------------|---------------------------|------------------------------|--------------------------| | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Hauling | 6.8000e-
004 | 0.0441 | 0.0102 | 2.0000e-
004 | 5.5100e-003 | 3.6000e-
004 | 5.8600e-
003 | 1.5100e-
003 | 3.4000e-
004 | 1.8600e-003 | 0.0000 | 19.4328 | 19.4328 | 6.6000e-
004 | 3.0800e-003 | 20.3674 | | Category | | | | | ton | s/yr | | | | | | | МТ | -/yr | | | | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied #### **Mitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Fugitive Dust | | | | | 0.0154 | 0.0000 | 0.0154 | 2.3300e-
003 | 0.0000 | 2.3300e-003 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0154 | 0.0000 | 0.0154 | 2.3300e-
003 | 0.0000 | 2.3300e-003 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|---------| | Category | | | | | tons | s/yr | | | | | | | МТ | /yr | | | | Hauling | 6.8000e-
004 | 0.0441 | 0.0102 | 2.0000e-
004 | 5.1400e-003 | 3.6000e-
004 | 5.4900e-
003 | 1.4200e-
003 | 3.4000e-
004 | 1.7600e-003 | 0.0000 | 19.4328 | 19.4328 | 6.6000e-
004 | 3.0800e-003 | 20.3674 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | 6.8000e-
004 | 0.0441 | 0.0102 | 2.0000e-
004 | 5.1400e-003 | 3.6000e-
004 | 5.4900e-
003 | 1.4200e-
003 | 3.4000e-
004 | 1.7600e-003 | 0.0000 | 19.4328 | 19.4328 | 6.6000e-
004 | 3.0800e-003 | 20.3674 | Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied # 3.4 Asphalt Demolition Debris Haul - 2023 Unmitigated Construction On-Site | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------| | Category | | | | | tons | s/yr | | | | | | | MT | -/yr | | | | Fugitive Dust | | | | | 0.1054 | 0.0000 | 0.1054 | 0.0160 | 0.0000 | 0.0160 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1054 | 0.0000 | 0.1054 | 0.0160 | 0.0000 | 0.0160 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|--------|-------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|---------| | Category | | | | | tons | s/yr | | | | | | | MT | -/yr | | | | Hauling | 3.5000e-
004 | 0.0229 | 5.3100e-003 | 1.0000e-
004 | 2.8600e-003 | 1.9000e-
004 | 3.0400e-
003 | 7.9000e-
004 | 1.8000e-
004 | 9.6000e-004 | 0.0000 | 10.0907 | 10.0907 | 3.4000e-
004 | 1.6000e-003 | 10.5760 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | 3.5000e-
004 | 0.0229 | 5.3100e-003 | 1.0000e-
004 | 2.8600e-003 | 1.9000e-
004 | 3.0400e-
003 | 7.9000e-
004 | 1.8000e-
004 | 9.6000e-004 | 0.0000 | 10.0907 | 10.0907 | 3.4000e-
004 | 1.6000e-003 | 10.5760 | Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project -
Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied #### **Mitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------| | Category | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Fugitive Dust | | | | | 0.0451 | 0.0000 | 0.0451 | 6.8200e-
003 | 0.0000 | 6.8200e-003 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0451 | 0.0000 | 0.0451 | 6.8200e-
003 | 0.0000 | 6.8200e-003 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|--------|-------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|---------| | Category | | | | | tons | s/yr | | | | | | | МТ | -/yr | | | | Hauling | 3.5000e-
004 | 0.0229 | 5.3100e-003 | 1.0000e-
004 | 2.6700e-003 | 1.9000e-
004 | 2.8500e-
003 | 7.4000e-
004 | 1.8000e-
004 | 9.2000e-004 | 0.0000 | 10.0907 | 10.0907 | 3.4000e-
004 | 1.6000e-003 | 10.5760 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | 3.5000e-
004 | 0.0229 | 5.3100e-003 | 1.0000e-
004 | 2.6700e-003 | 1.9000e-
004 | 2.8500e-
003 | 7.4000e-
004 | 1.8000e-
004 | 9.2000e-004 | 0.0000 | 10.0907 | 10.0907 | 3.4000e-
004 | 1.6000e-003 | 10.5760 | Page 1 of 1 Date: 11/22/2021 5:20 PM #### VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied # 3.5 Site Preparation - 2023 Unmitigated Construction On-Site | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------| | Category | | | | | ton | s/yr | | | | | | | МТ | √yr | | | | Fugitive Dust | | | | | 0.0491 | 0.0000 | 0.0491 | 0.0253 | 0.0000 | 0.0253 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 6.6500e-
003 | 0.0688 | 0.0456 | 1.0000e-
004 | | 3.1700e-
003 | 3.1700e-
003 | | 2.9100e-
003 | 2.9100e-003 | 0.0000 | 8.3627 | 8.3627 | 2.7000e-
003 | 0.0000 | 8.4303 | | Total | 6.6500e-
003 | 0.0688 | 0.0456 | 1.0000e-
004 | 0.0491 | 3.1700e-
003 | 0.0523 | 0.0253 | 2.9100e-
003 | 0.0282 | 0.0000 | 8.3627 | 8.3627 | 2.7000e-
003 | 0.0000 | 8.4303 | | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|--------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|--------| | Category | | | | | tons | s/yr | | | | | | | МТ | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 1.0000e-
005 | 4.5000e-
004 | 1.4000e-004 | 0.0000 | 7.0000e-005 | 0.0000 | 7.0000e-
005 | 2.0000e-
005 | 0.0000 | 2.0000e-005 | 0.0000 | 0.1988 | 0.1988 | 0.0000 | 3.0000e-005 | 0.2076 | | Worker | 1.1000e-
004 | 8.0000e-
005 | 1.0000e-003 | 0.0000 | 3.6000e-004 | 0.0000 | 3.6000e-
004 | 9.0000e-
005 | 0.0000 | 1.0000e-004 | 0.0000 | 0.2717 | 0.2717 | 1.0000e-
005 | 1.0000e-005 | 0.2742 | | Total | 1.2000e-
004 | 5.3000e-
004 | 1.1400e-003 | 0.0000 | 4.3000e-004 | 0.0000 | 4.3000e-
004 | 1.1000e-
004 | 0.0000 | 1.2000e-004 | 0.0000 | 0.4705 | 0.4705 | 1.0000e-
005 | 4.0000e-005 | 0.4818 | Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied #### **Mitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------| | Category | | | | | ton | s/yr | | | | | | | МТ | √yr | | | | Fugitive Dust | | | | | 0.0210 | 0.0000 | 0.0210 | 0.0108 | 0.0000 | 0.0108 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 6.6500e-
003 | 0.0688 | 0.0456 | 1.0000e-
004 | | 3.1700e-
003 | 3.1700e-
003 | | 2.9100e-
003 | 2.9100e-003 | 0.0000 | 8.3627 | 8.3627 | 2.7000e-
003 | 0.0000 | 8.4303 | | Total | 6.6500e-
003 | 0.0688 | 0.0456 | 1.0000e-
004 | 0.0210 | 3.1700e-
003 | 0.0242 | 0.0108 | 2.9100e-
003 | 0.0137 | 0.0000 | 8.3627 | 8.3627 | 2.7000e-
003 | 0.0000 | 8.4303 | | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|--------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|--------| | Category | | | | | tons | s/yr | | | | | | | МТ | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 1.0000e-
005 | 4.5000e-
004 | 1.4000e-004 | 0.0000 | 6.0000e-005 | 0.0000 | 6.0000e-
005 | 2.0000e-
005 | 0.0000 | 2.0000e-005 | 0.0000 | 0.1988 | 0.1988 | 0.0000 | 3.0000e-005 | 0.2076 | | Worker | 1.1000e-
004 | 8.0000e-
005 | 1.0000e-003 | 0.0000 | 3.3000e-004 | 0.0000 | 3.3000e-
004 | 9.0000e-
005 | 0.0000 | 9.0000e-005 | 0.0000 | 0.2717 | 0.2717 | 1.0000e-
005 | 1.0000e-005 | 0.2742 | | Total | 1.2000e-
004 | 5.3000e-
004 | 1.1400e-003 | 0.0000 | 3.9000e-004 | 0.0000 | 3.9000e-
004 | 1.1000e-
004 | 0.0000 | 1.1000e-004 | 0.0000 | 0.4705 | 0.4705 | 1.0000e-
005 | 4.0000e-005 | 0.4818 | Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied # 3.6 Rough Grading - 2023 <u>Unmitigated Construction On-Site</u> | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|--------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|---------| | Category | | | | | ton | s/yr | | | | | | | МТ | -/yr | | | | Fugitive Dust | | | | | 0.0708 | 0.0000 | 0.0708 | 0.0343 | 0.0000 | 0.0343 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 0.0171 | 0.1794 | 0.1475 | 3.0000e-
004 | | 7.7500e-
003 | 7.7500e-
003 | | 7.1300e-
003 | 7.1300e-003 | 0.0000 | 26.0606 | 26.0606 | 8.4300e-
003 | 0.0000 | 26.2713 | | Total | 0.0171 | 0.1794 | 0.1475 | 3.0000e-
004 | 0.0708 | 7.7500e-
003 | 0.0786 | 0.0343 | 7.1300e-
003 | 0.0414 | 0.0000 | 26.0606 | 26.0606 | 8.4300e-
003 | 0.0000 | 26.2713 | | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|--------| | Category | | | | | tons | s/yr | | | | | | | МТ | -/yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 4.0000e-
005 | 1.7800e-
003 | 5.6000e-004 | 1.0000e-
005 | 2.6000e-004 | 1.0000e-
005 | 2.7000e-
004 | 8.0000e-
005 | 1.0000e-
005 | 9.0000e-005 | 0.0000 | 0.7953 | 0.7953 | 2.0000e-
005 | 1.2000e-004 | 0.8306 | | Worker | 3.7000e-
004 | 2.6000e-
004 | 3.3500e-003 | 1.0000e-
005 | 1.1900e-003 | 1.0000e-
005 | 1.2000e-
003 | 3.2000e-
004 | 1.0000e-
005 | 3.2000e-004 |
0.0000 | 0.9057 | 0.9057 | 3.0000e-
005 | 3.0000e-005 | 0.9139 | | Total | 4.1000e-
004 | 2.0400e-
003 | 3.9100e-003 | 2.0000e-
005 | 1.4500e-003 | 2.0000e-
005 | 1.4700e-
003 | 4.0000e-
004 | 2.0000e-
005 | 4.1000e-004 | 0.0000 | 1.7010 | 1.7010 | 5.0000e-
005 | 1.5000e-004 | 1.7444 | Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied #### **Mitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|--------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|---------| | Category | | | | | ton | s/yr | | | | | | | МТ | √yr | | | | Fugitive Dust | | | | | 0.0303 | 0.0000 | 0.0303 | 0.0146 | 0.0000 | 0.0146 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 0.0171 | 0.1794 | 0.1475 | 3.0000e-
004 | | 7.7500e-
003 | 7.7500e-
003 | | 7.1300e-
003 | 7.1300e-003 | 0.0000 | 26.0606 | 26.0606 | 8.4300e-
003 | 0.0000 | 26.2713 | | Total | 0.0171 | 0.1794 | 0.1475 | 3.0000e-
004 | 0.0303 | 7.7500e-
003 | 0.0380 | 0.0146 | 7.1300e-
003 | 0.0218 | 0.0000 | 26.0606 | 26.0606 | 8.4300e-
003 | 0.0000 | 26.2713 | | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|--------| | Category | | | | | tons | s/yr | | | | | | | МТ | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 4.0000e-
005 | 1.7800e-
003 | 5.6000e-004 | 1.0000e-
005 | 2.5000e-004 | 1.0000e-
005 | 2.6000e-
004 | 7.0000e-
005 | 1.0000e-
005 | 8.0000e-005 | 0.0000 | 0.7953 | 0.7953 | 2.0000e-
005 | 1.2000e-004 | 0.8306 | | Worker | 3.7000e-
004 | 2.6000e-
004 | 3.3500e-003 | 1.0000e-
005 | 1.1000e-003 | 1.0000e-
005 | 1.1000e-
003 | 2.9000e-
004 | 1.0000e-
005 | 3.0000e-004 | 0.0000 | 0.9057 | 0.9057 | 3.0000e-
005 | 3.0000e-005 | 0.9139 | | Total | 4.1000e-
004 | 2.0400e-
003 | 3.9100e-003 | 2.0000e-
005 | 1.3500e-003 | 2.0000e-
005 | 1.3600e-
003 | 3.6000e-
004 | 2.0000e-
005 | 3.8000e-004 | 0.0000 | 1.7010 | 1.7010 | 5.0000e-
005 | 1.5000e-004 | 1.7444 | Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied # 3.7 Rough Grading Soil Haul - 2023 #### **Unmitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|--------|--------|--------|--------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------| | Category | | | | | tons | s/yr | | | | | | | МТ | -/yr | | | | Fugitive Dust | | | | | 3.3200e-003 | 0.0000 | 3.3200e-
003 | 5.0000e-
004 | 0.0000 | 5.0000e-004 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3.3200e-003 | 0.0000 | 3.3200e-
003 | 5.0000e-
004 | 0.0000 | 5.0000e-004 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|----------| | Category | | | | | ton | s/yr | | | | | | | МТ | Г/yr | | | | Hauling | 7.6800e-
003 | 0.4992 | 0.1158 | 2.2200e-
003 | 0.0623 | 4.0400e-
003 | 0.0664 | 0.0171 | 3.8600e-
003 | 0.0210 | 0.0000 | 219.9584 | 219.9584 | 7.5000e-
003 | 0.0349 | 230.5380 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | 7.6800e-
003 | 0.4992 | 0.1158 | 2.2200e-
003 | 0.0623 | 4.0400e-
003 | 0.0664 | 0.0171 | 3.8600e-
003 | 0.0210 | 0.0000 | 219.9584 | 219.9584 | 7.5000e-
003 | 0.0349 | 230.5380 | Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied #### **Mitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|--------|--------|--------|--------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------| | Category | | | | | tons | s/yr | | | | | | | МТ | √yr | | | | Fugitive Dust | | | | | 1.4200e-003 | 0.0000 | 1.4200e-
003 | 2.2000e-
004 | 0.0000 | 2.2000e-004 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.4200e-003 | 0.0000 | 1.4200e-
003 | 2.2000e-
004 | 0.0000 | 2.2000e-004 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|----------| | Category | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Hauling | 7.6800e-
003 | 0.4992 | 0.1158 | 2.2200e-
003 | 0.0581 | 4.0400e-
003 | 0.0622 | 0.0161 | 3.8600e-
003 | 0.0200 | 0.0000 | 219.9584 | 219.9584 | 7.5000e-
003 | 0.0349 | 230.5380 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | 7.6800e-
003 | 0.4992 | 0.1158 | 2.2200e-
003 | 0.0581 | 4.0400e-
003 | 0.0622 | 0.0161 | 3.8600e-
003 | 0.0200 | 0.0000 | 219.9584 | 219.9584 | 7.5000e-
003 | 0.0349 | 230.5380 | Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied # 3.8 Fine Grading/Trenching - 2023 <u>Unmitigated Construction On-Site</u> | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|--------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------| | Category | | | | | tons | s/yr | | | | | | | МТ | /yr | | | | Fugitive Dust | | | | | 0.3187 | 0.0000 | 0.3187 | 0.1541 | 0.0000 | 0.1541 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 0.0770 | 0.8071 | 0.6638 | 1.3300e-
003 | | 0.0349 | 0.0349 | | 0.0321 | 0.0321 | 0.0000 | 117.2728 | 117.2728 | 0.0379 | 0.0000 | 118.2210 | | Total | 0.0770 | 0.8071 | 0.6638 | 1.3300e-
003 | 0.3187 | 0.0349 | 0.3536 | 0.1541 | 0.0321 | 0.1862 | 0.0000 | 117.2728 | 117.2728 | 0.0379 | 0.0000 | 118.2210 | | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|--------| | Category | | | | | tons | s/yr | | | | | | | МТ | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 2.0000e-
004 | 8.0200e-
003 | 2.5300e-003 | 4.0000e-
005 | 1.1800e-003 | 5.0000e-
005 | 1.2300e-
003 | 3.4000e-
004 | 5.0000e-
005 | 3.9000e-004 | 0.0000 | 3.5790 | 3.5790 | 8.0000e-
005 | 5.3000e-004 | 3.7375 |
| Worker | 1.6900e-
003 | 1.1700e-
003 | 0.0151 | 4.0000e-
005 | 5.3500e-003 | 3.0000e-
005 | 5.3800e-
003 | 1.4200e-
003 | 2.0000e-
005 | 1.4500e-003 | 0.0000 | 4.0756 | 4.0756 | 1.2000e-
004 | 1.1000e-004 | 4.1124 | | Total | 1.8900e-
003 | 9.1900e-
003 | 0.0176 | 8.0000e-
005 | 6.5300e-003 | 8.0000e-
005 | 6.6100e-
003 | 1.7600e-
003 | 7.0000e-
005 | 1.8400e-003 | 0.0000 | 7.6545 | 7.6545 | 2.0000e-
004 | 6.4000e-004 | 7.8499 | Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied #### **Mitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|--------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------| | Category | | | | | ton | s/yr | | | | | | | МТ | -/yr | | | | Fugitive Dust | | | | | 0.1363 | 0.0000 | 0.1363 | 0.0659 | 0.0000 | 0.0659 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 0.0770 | 0.8071 | 0.6638 | 1.3300e-
003 | | 0.0349 | 0.0349 | | 0.0321 | 0.0321 | 0.0000 | 117.2726 | 117.2726 | 0.0379 | 0.0000 | 118.2208 | | Total | 0.0770 | 0.8071 | 0.6638 | 1.3300e-
003 | 0.1363 | 0.0349 | 0.1711 | 0.0659 | 0.0321 | 0.0980 | 0.0000 | 117.2726 | 117.2726 | 0.0379 | 0.0000 | 118.2208 | | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|--------| | Category | | | | | tons | s/yr | | | | | | | МТ | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 2.0000e-
004 | 8.0200e-
003 | 2.5300e-003 | 4.0000e-
005 | 1.1100e-003 | 5.0000e-
005 | 1.1600e-
003 | 3.2000e-
004 | 5.0000e-
005 | 3.7000e-004 | 0.0000 | 3.5790 | 3.5790 | 8.0000e-
005 | 5.3000e-004 | 3.7375 | | Worker | 1.6900e-
003 | 1.1700e-
003 | 0.0151 | 4.0000e-
005 | 4.9400e-003 | 3.0000e-
005 | 4.9600e-
003 | 1.3200e-
003 | 2.0000e-
005 | 1.3500e-003 | 0.0000 | 4.0756 | 4.0756 | 1.2000e-
004 | 1.1000e-004 | 4.1124 | | Total | 1.8900e-
003 | 9.1900e-
003 | 0.0176 | 8.0000e-
005 | 6.0500e-003 | 8.0000e-
005 | 6.1200e-
003 | 1.6400e-
003 | 7.0000e-
005 | 1.7200e-003 | 0.0000 | 7.6545 | 7.6545 | 2.0000e-
004 | 6.4000e-004 | 7.8499 | Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied # 3.9 Building Construction - 2023 <u>Unmitigated Construction On-Site</u> | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|------------------|--------|---------| | Category | | | | | ton | s/yr | | | | | | | МТ | ⁻ /yr | | | | Off-Road | 0.0262 | 0.2305 | 0.2974 | 4.5000e-
004 | | 0.0116 | 0.0116 | | 0.0110 | 0.0110 | 0.0000 | 38.7567 | 38.7567 | 8.5700e-
003 | 0.0000 | 38.9709 | | Total | 0.0262 | 0.2305 | 0.2974 | 4.5000e-
004 | | 0.0116 | 0.0116 | | 0.0110 | 0.0110 | 0.0000 | 38.7567 | 38.7567 | 8.5700e-
003 | 0.0000 | 38.9709 | | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|---------| | Category | | | | | tons | s/yr | | | | | | | МТ | -/yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 1.2500e-
003 | 0.0508 | 0.0160 | 2.3000e-
004 | 7.5000e-003 | 3.0000e-
004 | 7.8000e-
003 | 2.1700e-
003 | 2.9000e-
004 | 2.4500e-003 | 0.0000 | 22.6667 | 22.6667 | 4.8000e-
004 | 3.3300e-003 | 23.6709 | | Worker | 6.8900e-
003 | 4.8000e-
003 | 0.0616 | 1.8000e-
004 | 0.0219 | 1.1000e-
004 | 0.0220 | 5.8200e-
003 | 1.0000e-
004 | 5.9200e-003 | 0.0000 | 16.6647 | 16.6647 | 4.8000e-
004 | 4.6000e-004 | 16.8150 | | Total | 8.1400e-
003 | 0.0556 | 0.0776 | 4.1000e-
004 | 0.0294 | 4.1000e-
004 | 0.0298 | 7.9900e-
003 | 3.9000e-
004 | 8.3700e-003 | 0.0000 | 39.3313 | 39.3313 | 9.6000e-
004 | 3.7900e-003 | 40.4859 | Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied # **Mitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|---------| | Category | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Off-Road | 0.0262 | 0.2305 | 0.2974 | 4.5000e-
004 | | 0.0116 | 0.0116 | | 0.0110 | 0.0110 | 0.0000 | 38.7566 | 38.7566 | 8.5700e-
003 | 0.0000 | 38.9709 | | Total | 0.0262 | 0.2305 | 0.2974 | 4.5000e-
004 | | 0.0116 | 0.0116 | | 0.0110 | 0.0110 | 0.0000 | 38.7566 | 38.7566 | 8.5700e-
003 | 0.0000 | 38.9709 | | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|---------| | Category | | | | | tons | s/yr | | | | | | | МТ | -/yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 1.2500e-
003 | 0.0508 | 0.0160 | 2.3000e-
004 | 7.0300e-003 | 3.0000e-
004 | 7.3300e-
003 | 2.0500e-
003 | 2.9000e-
004 | 2.3400e-003 | 0.0000 | 22.6667 | 22.6667 | 4.8000e-
004 | 3.3300e-003 | 23.6709 | | Worker | 6.8900e-
003 | 4.8000e-
003 | 0.0616 | 1.8000e-
004 | 0.0202 | 1.1000e-
004 | 0.0203 | 5.4000e-
003 | 1.0000e-
004 | 5.5000e-003 | 0.0000 | 16.6647 | 16.6647 | 4.8000e-
004 | 4.6000e-004 | 16.8150 | | Total | 8.1400e-
003 | 0.0556 | 0.0776 | 4.1000e-
004 | 0.0272 | 4.1000e-
004 | 0.0276 | 7.4500e-
003 | 3.9000e-
004 | 7.8400e-003 | 0.0000 | 39.3313 | 39.3313 | 9.6000e-
004 | 3.7900e-003 | 40.4859 | Page 1 of 1 Date: 11/22/2021 5:20 PM #### VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied # 3.9 Building Construction - 2024 <u>Unmitigated Construction On-Site</u> | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------| | Category | | | | | ton | s/yr | | | | | | | МТ | 7yr | | | | Off-Road | 0.1039 | 0.9193 | 1.2610 | 1.9200e-
003 | | 0.0428 | 0.0428 | | 0.0405 | 0.0405 | 0.0000 | 164.7542 | 164.7542 | 0.0362 | 0.0000 | 165.6580 | | Total | 0.1039 | 0.9193 | 1.2610 | 1.9200e-
003 | | 0.0428 | 0.0428 | | 0.0405 | 0.0405 | 0.0000 | 164.7542 | 164.7542 | 0.0362 | 0.0000 | 165.6580 | | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|----------| | Category | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 5.1800e-
003 | 0.2159 | 0.0667 | 9.7000e-
004 | 0.0319 | 1.2800e-
003 | 0.0332 | 9.2200e-
003 | 1.2200e-
003 | 0.0104 | 0.0000 | 94.9165 | 94.9165 | 2.0000e-
003 | 0.0139 | 99.1144 | | Worker | 0.0275 | 0.0183 | 0.2444 | 7.5000e-
004 | 0.0930 | 4.4000e-
004 | 0.0935 | 0.0247 | 4.0000e-
004 | 0.0252 | 0.0000 | 68.5611 |
68.5611 | 1.8500e-
003 | 1.8400e-003 | 69.1558 | | Total | 0.0327 | 0.2341 | 0.3111 | 1.7200e-
003 | 0.1249 | 1.7200e-
003 | 0.1266 | 0.0340 | 1.6200e-
003 | 0.0356 | 0.0000 | 163.4776 | 163.4776 | 3.8500e-
003 | 0.0158 | 168.2702 | Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied # **Mitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Off-Road | 0.1039 | 0.9193 | 1.2610 | 1.9200e-
003 | | 0.0428 | 0.0428 | | 0.0405 | 0.0405 | 0.0000 | 164.7540 | 164.7540 | 0.0362 | 0.0000 | 165.6578 | | Total | 0.1039 | 0.9193 | 1.2610 | 1.9200e-
003 | | 0.0428 | 0.0428 | | 0.0405 | 0.0405 | 0.0000 | 164.7540 | 164.7540 | 0.0362 | 0.0000 | 165.6578 | | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|----------| | Category | | | | | ton | s/yr | | | | | | | МТ | -/yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 5.1800e-
003 | 0.2159 | 0.0667 | 9.7000e-
004 | 0.0299 | 1.2800e-
003 | 0.0312 | 8.7200e-
003 | 1.2200e-
003 | 9.9500e-003 | 0.0000 | 94.9165 | 94.9165 | 2.0000e-
003 | 0.0139 | 99.1144 | | Worker | 0.0275 | 0.0183 | 0.2444 | 7.5000e-
004 | 0.0858 | 4.4000e-
004 | 0.0862 | 0.0230 | 4.0000e-
004 | 0.0234 | 0.0000 | 68.5611 | 68.5611 | 1.8500e-
003 | 1.8400e-003 | 69.1558 | | Total | 0.0327 | 0.2341 | 0.3111 | 1.7200e-
003 | 0.1157 | 1.7200e-
003 | 0.1174 | 0.0317 | 1.6200e-
003 | 0.0333 | 0.0000 | 163.4776 | 163.4776 | 3.8500e-
003 | 0.0158 | 168.2702 | Page 1 of 1 Date: 11/22/2021 5:20 PM #### VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied # 3.10 Parking Structure Construction - 2024 <u>Unmitigated Construction On-Site</u> | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------| | Category | | | | | ton | s/yr | | | | | | | МТ | -/yr | | | | Off-Road | 0.1101 | 0.9734 | 1.3352 | 2.0400e-
003 | | 0.0454 | 0.0454 | | 0.0429 | 0.0429 | 0.0000 | 174.4456 | 174.4456 | 0.0383 | 0.0000 | 175.4026 | | Total | 0.1101 | 0.9734 | 1.3352 | 2.0400e-
003 | | 0.0454 | 0.0454 | | 0.0429 | 0.0429 | 0.0000 | 174.4456 | 174.4456 | 0.0383 | 0.0000 | 175.4026 | | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|----------| | Category | | | | | ton | s/yr | | | | | | | МТ | √yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 5.4800e-
003 | 0.2286 | 0.0706 | 1.0300e-
003 | 0.0338 | 1.3500e-
003 | 0.0351 | 9.7600e-
003 | 1.3000e-
003 | 0.0111 | 0.0000 | 100.4998 | 100.4998 | 2.1200e-
003 | 0.0147 | 104.9447 | | Worker | 0.0291 | 0.0193 | 0.2588 | 7.9000e-
004 | 0.0985 | 4.6000e-
004 | 0.0990 | 0.0262 | 4.3000e-
004 | 0.0266 | 0.0000 | 72.5941 | 72.5941 | 1.9600e-
003 | 1.9500e-003 | 73.2238 | | Total | 0.0346 | 0.2479 | 0.3294 | 1.8200e-
003 | 0.1323 | 1.8100e-
003 | 0.1341 | 0.0360 | 1.7300e-
003 | 0.0377 | 0.0000 | 173.0939 | 173.0939 | 4.0800e-
003 | 0.0167 | 178.1684 | Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied # **Mitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Off-Road | 0.1101 | 0.9734 | 1.3352 | 2.0400e-
003 | | 0.0454 | 0.0454 | | 0.0429 | 0.0429 | 0.0000 | 174.4454 | 174.4454 | 0.0383 | 0.0000 | 175.4023 | | Total | 0.1101 | 0.9734 | 1.3352 | 2.0400e-
003 | - | 0.0454 | 0.0454 | | 0.0429 | 0.0429 | 0.0000 | 174.4454 | 174.4454 | 0.0383 | 0.0000 | 175.4023 | | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|----------| | Category | | | | | ton | s/yr | | | | | | | МТ | -/yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 5.4800e-
003 | 0.2286 | 0.0706 | 1.0300e-
003 | 0.0316 | 1.3500e-
003 | 0.0330 | 9.2400e-
003 | 1.3000e-
003 | 0.0105 | 0.0000 | 100.4998 | 100.4998 | 2.1200e-
003 | 0.0147 | 104.9447 | | Worker | 0.0291 | 0.0193 | 0.2588 | 7.9000e-
004 | 0.0908 | 4.6000e-
004 | 0.0913 | 0.0243 | 4.3000e-
004 | 0.0247 | 0.0000 | 72.5941 | 72.5941 | 1.9600e-
003 | 1.9500e-003 | 73.2238 | | Total | 0.0346 | 0.2479 | 0.3294 | 1.8200e-
003 | 0.1225 | 1.8100e-
003 | 0.1243 | 0.0336 | 1.7300e-
003 | 0.0353 | 0.0000 | 173.0939 | 173.0939 | 4.0800e-
003 | 0.0167 | 178.1684 | Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied 3.11 Paving - 2024 <u>Unmitigated Construction On-Site</u> | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|---------| | Category | | | | | ton | s/yr | | | | | | | МТ | Г/уг | | | | Off-Road | 4.9400e-
003 | 0.0476 | 0.0731 | 1.1000e-
004 | | 2.3400e-
003 | 2.3400e-
003 | | 2.1600e-
003 | 2.1600e-003 | 0.0000 | 10.0133 | 10.0133 | 3.2400e-
003 | 0.0000 | 10.0942 | | Paving | 3.9000e-
003 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | 8.8400e-
003 | 0.0476 | 0.0731 | 1.1000e-
004 | | 2.3400e-
003 | 2.3400e-
003 | | 2.1600e-
003 | 2.1600e-003 | 0.0000 | 10.0133 | 10.0133 | 3.2400e-
003 | 0.0000 | 10.0942 | | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|--------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|--------| | Category | | | | | tons | s/yr | | | | | | | MT | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 1.8000e-
004 | 1.2000e-
004 | 1.5600e-003 | 0.0000 | 5.9000e-004 | 0.0000 | 6.0000e-
004 | 1.6000e-
004 | 0.0000 | 1.6000e-004 | 0.0000 | 0.4384 | 0.4384 | 1.0000e-
005 | 1.0000e-005 | 0.4422 | | Total | 1.8000e-
004 | 1.2000e-
004 | 1.5600e-003 | 0.0000 | 5.9000e-004 | 0.0000 | 6.0000e-
004 | 1.6000e-
004 | 0.0000 | 1.6000e-004 | 0.0000 | 0.4384 | 0.4384 | 1.0000e-
005 | 1.0000e-005 | 0.4422 | Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied #### **Mitigated Construction On-Site** | | ROG | NOx | СО |
SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|---------| | Category | | | | | tons | s/yr | | | | | | | МТ | √yr | | | | Off-Road | 4.9400e-
003 | 0.0476 | 0.0731 | 1.1000e-
004 | | 2.3400e-
003 | 2.3400e-
003 | | 2.1600e-
003 | 2.1600e-003 | 0.0000 | 10.0133 | 10.0133 | 3.2400e-
003 | 0.0000 | 10.0942 | | Paving | 3.9000e-
003 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | 8.8400e-
003 | 0.0476 | 0.0731 | 1.1000e-
004 | | 2.3400e-
003 | 2.3400e-
003 | | 2.1600e-
003 | 2.1600e-003 | 0.0000 | 10.0133 | 10.0133 | 3.2400e-
003 | 0.0000 | 10.0942 | | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|--------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|--------| | Category | | | | | tons | s/yr | | | | | | | MT | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 1.8000e-
004 | 1.2000e-
004 | 1.5600e-003 | 0.0000 | 5.5000e-004 | 0.0000 | 5.5000e-
004 | 1.5000e-
004 | 0.0000 | 1.5000e-004 | 0.0000 | 0.4384 | 0.4384 | 1.0000e-
005 | 1.0000e-005 | 0.4422 | | Total | 1.8000e-
004 | 1.2000e-
004 | 1.5600e-003 | 0.0000 | 5.5000e-004 | 0.0000 | 5.5000e-
004 | 1.5000e-
004 | 0.0000 | 1.5000e-004 | 0.0000 | 0.4384 | 0.4384 | 1.0000e-
005 | 1.0000e-005 | 0.4422 | Page 1 of 1 Date: 11/22/2021 5:20 PM # VP1 Apple Office Project - Santa Clara County, Annual # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied # 3.12 Architectural Coating - 2024 Unmitigated Construction On-Site | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-----------------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------| | Category | tons/yr | | | | | | | | | MT/yr | | | | | | | | Archit. Coating | 0.2655 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 1.8100e-
003 | 0.0122 | 0.0181 | 3.0000e-
005 | | 6.1000e-
004 | 6.1000e-
004 | | 6.1000e-
004 | 6.1000e-004 | 0.0000 | 2.5533 | 2.5533 | 1.4000e-
004 | 0.0000 | 2.5569 | | Total | 0.2673 | 0.0122 | 0.0181 | 3.0000e-
005 | | 6.1000e-
004 | 6.1000e-
004 | | 6.1000e-
004 | 6.1000e-004 | 0.0000 | 2.5533 | 2.5533 | 1.4000e-
004 | 0.0000 | 2.5569 | | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|--------| | Category | tons/yr | | | | | | | | | MT/yr | | | | | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 6.6000e-
004 | 4.4000e-
004 | 5.8300e-003 | 2.0000e-
005 | 2.2200e-003 | 1.0000e-
005 | 2.2300e-
003 | 5.9000e-
004 | 1.0000e-
005 | 6.0000e-004 | 0.0000 | 1.6366 | 1.6366 | 4.0000e-
005 | 4.0000e-005 | 1.6508 | | Total | 6.6000e-
004 | 4.4000e-
004 | 5.8300e-003 | 2.0000e-
005 | 2.2200e-003 | 1.0000e-
005 | 2.2300e-
003 | 5.9000e-
004 | 1.0000e-
005 | 6.0000e-004 | 0.0000 | 1.6366 | 1.6366 | 4.0000e-
005 | 4.0000e-005 | 1.6508 | CalEEMod Version: CalEEMod.2020.4.0 Page 1 of 1 Date: 11/22/2021 5:20 PM #### VP1 Apple Office Project - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied #### **Mitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-----------------|-----------------|---------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------| | Category | | tons/yr | | | | | | | | | | | МТ | √yr | | | | Archit. Coating | 0.2655 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 1.8100e-
003 | 0.0122 | 0.0181 | 3.0000e-
005 | | 6.1000e-
004 | 6.1000e-
004 | | 6.1000e-
004 | 6.1000e-004 | 0.0000 | 2.5533 | 2.5533 | 1.4000e-
004 | 0.0000 | 2.5568 | | Total | 0.2673 | 0.0122 | 0.0181 | 3.0000e-
005 | | 6.1000e-
004 | 6.1000e-
004 | | 6.1000e-
004 | 6.1000e-004 | 0.0000 | 2.5533 | 2.5533 | 1.4000e-
004 | 0.0000 | 2.5568 | #### **Mitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|--------| | Category | | | | | tons | s/yr | | | | | | | MT | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 6.6000e-
004 | 4.4000e-
004 | 5.8300e-003 | 2.0000e-
005 | 2.0500e-003 | 1.0000e-
005 | 2.0600e-
003 | 5.5000e-
004 | 1.0000e-
005 | 5.6000e-004 | 0.0000 | 1.6366 | 1.6366 | 4.0000e-
005 | 4.0000e-005 | 1.6508 | | Total | 6.6000e-
004 | 4.4000e-
004 | 5.8300e-003 | 2.0000e-
005 | 2.0500e-003 | 1.0000e-
005 | 2.0600e-
003 | 5.5000e-
004 | 1.0000e-
005 | 5.6000e-004 | 0.0000 | 1.6366 | 1.6366 | 4.0000e-
005 | 4.0000e-005 | 1.6508 | CalEEMod Version: CalEEMod.2020.4.0 Page 1 of 1 Date: 11/22/2021 5:20 PM #### VP1 Apple Office Project - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied # 3.13 Finishing/Landscaping - 2024 **Unmitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------| | Category | | | | | tons | s/yr | | | | | | | МТ | -/yr | | | | Off-Road | 1.8000e-
003 | 0.0140 | 0.0327 | 5.0000e-
005 | | 6.9000e-
004 | 6.9000e-
004 | | 6.4000e-
004 | 6.4000e-004 | 0.0000 | 4.5383 | 4.5383 | 1.4700e-
003 | 0.0000 | 4.5750 | | Total | 1.8000e-
003 | 0.0140 | 0.0327 | 5.0000e-
005 | | 6.9000e-
004 | 6.9000e-
004 | | 6.4000e-
004 | 6.4000e-004 | 0.0000 | 4.5383 | 4.5383 | 1.4700e-
003 | 0.0000 | 4.5750 | #### **Unmitigated Construction Off-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|--------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------| | Category | | | | | tons | s/yr | | | | | | | МТ | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 7.0000e-
005 | 5.0000e-
005 | 6.2000e-004 | 0.0000 | 2.4000e-004 | 0.0000 | 2.4000e-
004 | 6.0000e-
005 | 0.0000 | 6.0000e-005 | 0.0000 | 0.1754 | 0.1754 | 0.0000 | 0.0000 | 0.1769 | | Total | 7.0000e-
005 | 5.0000e-
005 | 6.2000e-004 | 0.0000 | 2.4000e-004 | 0.0000 | 2.4000e-
004 | 6.0000e-
005 | 0.0000 | 6.0000e-005 | 0.0000 | 0.1754 | 0.1754 | 0.0000 | 0.0000
 0.1769 | Date: 11/22/2021 5:20 PM #### VP1 Apple Office Project - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied #### **Mitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------| | Category | | | | | ton | s/yr | | | | | | | МТ | T/yr | | | | Off-Road | 1.8000e-
003 | 0.0140 | 0.0327 | 5.0000e-
005 | | 6.9000e-
004 | 6.9000e-
004 | | 6.4000e-
004 | 6.4000e-004 | 0.0000 | 4.5383 | 4.5383 | 1.4700e-
003 | 0.0000 | 4.5750 | | Total | 1.8000e-
003 | 0.0140 | 0.0327 | 5.0000e-
005 | | 6.9000e-
004 | 6.9000e-
004 | | 6.4000e-
004 | 6.4000e-004 | 0.0000 | 4.5383 | 4.5383 | 1.4700e-
003 | 0.0000 | 4.5750 | **Mitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|--------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------| | Category | | | | | tons | s/yr | | | | | | | МТ | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 7.0000e-
005 | 5.0000e-
005 | 6.2000e-004 | 0.0000 | 2.2000e-004 | 0.0000 | 2.2000e-
004 | 6.0000e-
005 | 0.0000 | 6.0000e-005 | 0.0000 | 0.1754 | 0.1754 | 0.0000 | 0.0000 | 0.1769 | | Total | 7.0000e-
005 | 5.0000e-
005 | 6.2000e-004 | 0.0000 | 2.2000e-004 | 0.0000 | 2.2000e-
004 | 6.0000e-
005 | 0.0000 | 6.0000e-005 | 0.0000 | 0.1754 | 0.1754 | 0.0000 | 0.0000 | 0.1769 | Page 1 of 1 Date: 6/18/2022 8:50 AM VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # **VP1 Apple Office Project, Existing Current (2021)** Santa Clara County, Annual #### 1.0 Project Characteristics #### 1.1 Land Usage | Land Uses | Size | Metric | Lot Acreage | Floor Surface Area | Population | |----------------------------|--------|----------|-------------|--------------------|------------| | General Office Building | 141.02 | 1000sqft | 3.24 | 141,024.00 | 0 | | Other Non-Asphalt Surfaces | 64.86 | 1000sqft | 1.49 | 64,857.00 | 0 | | Parking Lot | 141.29 | 1000sqft | 3.24 | 141,292.00 | 0 | #### 1.2 Other Project Characteristics | Urbanization | Urban | Wind Speed (m/s) | 2.2 | Precipitation Freq (Days) | 58 | |----------------------------|-----------------------------|----------------------------|-----|----------------------------|------| | Climate Zone | 4 | | | Operational Year | 2021 | | Utility Company | Silicon Valley Clean Energy | | | | | | CO2 Intensity
(lb/MWhr) | 2 | CH4 Intensity
(lb/MWhr) | 0 | N2O Intensity
(lb/MWhr) | 0 | #### 1.3 User Entered Comments & Non-Default Data Project Characteristics - Land Use - Based on applicant info., see assumptions file Construction Phase - Vehicle Trips - Assume 100% primary trips, see assumptions file Area Coating - Based on square footage in site plan, see assumptions file Energy Use - Water And Wastewater - Assume 100% aerobic treatment, see assumptions file Solid Waste - Based on per capital disposal for employees -Cal Recycle, 2020, see assumptions file #### VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied Fleet Mix - See fleet mix adjustment in assumptions file | Table Name | Column Name | Default Value | New Value | |-----------------|--------------------------|---------------|-------------| | tblAreaCoating | Area_Parking | 12369 | 8478 | | tblFleetMix | HHD | 6.4250e-003 | 1.5960e-003 | | tblFleetMix | LDA | 0.57 | 0.66 | | tblFleetMix | LDT1 | 0.05 | 0.06 | | tblFleetMix | LDT2 | 0.19 | 0.22 | | tblFleetMix | LHD1 | 0.02 | 5.1300e-003 | | tblFleetMix | LHD2 | 4.8940e-003 | 1.2160e-003 | | tblFleetMix | MCY | 0.02 | 0.03 | | tblFleetMix | MDV | 0.12 | 0.02 | | tblFleetMix | MH | 2.9780e-003 | 0.00 | | tblFleetMix | MHD | 8.2890e-003 | 2.0590e-003 | | tblFleetMix | OBUS | 9.6600e-004 | 0.00 | | tblFleetMix | SBUS | 9.5000e-004 | 0.00 | | tblFleetMix | UBUS | 4.0700e-004 | 0.00 | | tblLandUse | LandUseSquareFeet | 141,020.00 | 141,024.00 | | tblLandUse | LandUseSquareFeet | 64,860.00 | 64,857.00 | | tblLandUse | LandUseSquareFeet | 141,290.00 | 141,292.00 | | tblSolidWaste | SolidWasteGenerationRate | 131.15 | 223.00 | | tblVehicleTrips | CW_TL | 9.50 | 15.60 | | tblVehicleTrips | DV_TP | 19.00 | 0.00 | | tblVehicleTrips | PB_TP | 4.00 | 0.00 | | tblVehicleTrips | PR_TP | 77.00 | 100.00 | | tblVehicleTrips | ST_TR | 2.21 | 0.00 | | tblVehicleTrips | SU_TR | 0.70 | 0.00 | | tblVehicleTrips | WD_TR | 9.74 | 12.93 | #### VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | tblWater | AerobicPercent | 87.46 | 100.00 | |----------|---------------------------------------|---------------|--------------| | tblWater | AnaerobicandFacultativeLagoonsPercent | 2.21 | 0.00 | | tblWater | IndoorWaterUseRate | 25,064,013.14 | 15,704.00 | | tblWater | OutdoorWaterUseRate | 15,361,814.51 | 5,731,957.00 | | tblWater | SepticTankPercent | 10.33 | 0.00 | # 2.0 Emissions Summary # 2.1 Overall Construction **Unmitigated Construction** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------|--------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|---------| | Year | | | | | tons | s/yr | | | | | | | MT | /yr | | | | 2021 | 0.0321 | 0.3147 | 0.2196 | 4.0000e-
004 | 1.1900e-003 | 0.0155 | 0.0167 | 3.2000e-
004 | 0.0144 | 0.0147 | 0.0000 | 34.9664 | 34.9664 | 9.6000e-
003 | 3.0000e-005 | 35.2153 | | Maximum | 0.0321 | 0.3147 | 0.2196 | 4.0000e-
004 | 1.1900e-003 | 0.0155 | 0.0167 | 3.2000e-
004 | 0.0144 | 0.0147 | 0.0000 | 34.9664 | 34.9664 | 9.6000e-
003 | 3.0000e-005 | 35.2153 | #### **Mitigated Construction** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------|--------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|---------| | Year | | | | | tons | s/yr | | | | | | | МТ | Γ/yr | | | | 2021 | 0.0321 | 0.3147 | 0.2196 | 4.0000e-
004 | 1.1900e-003 | 0.0155 | 0.0167 | 3.2000e-
004 | 0.0144 | 0.0147 | 0.0000 | 34.9664 | 34.9664 | 9.6000e-
003 | 3.0000e-005 | 35.2152 | | Maximum | 0.0321 | 0.3147 | 0.2196 | 4.0000e-
004 | 1.1900e-003 | 0.0155 | 0.0167 | 3.2000e-
004 | 0.0144 | 0.0147 | 0.0000 | 34.9664 | 34.9664 | 9.6000e-
003 | 3.0000e-005 | 35.2152 | Highest Date: 6/18/2022 8:50 AM #### VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | ROG | NOx | со | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4 | N20 | CO2e | |-------------------|------|----------|------|------|------------------|-----------------|--------------|-------------------|------------------|-------------|-------------|-------------|--------------|------|------|------| | Percent Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Quarter | Sta | art Date | End | Date | Maxim | um Unmitiga | ated ROG + N | OX (tons/qua | arter) | Maxir | num Mitigat | ed ROG + NC | X (tons/quar | ter) | | | # 2.2 Overall Operational **Unmitigated Operational** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|-----------------|-------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|-----------------|-----------------|-----------------|-----------------|-------------|-----------------| | Category | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Area | 0.6409 | 3.0000e-
005 | 3.2000e-003 | 0.0000 | | 1.0000e-
005 | 1.0000e-
005 | | 1.0000e-
005 | 1.0000e-005 | 0.0000 | 6.2000e-
003 | 6.2000e-
003 | 2.0000e-
005 | 0.0000 | 6.6200e-
003 | | Energy | 0.0152 | 0.1380 | 0.1159 | 8.3000e-
004 | | 0.0105 | 0.0105 | | 0.0105 | 0.0105 | 0.0000 | 152.9550 | 152.9550 | 2.8800e-
003 | 2.7500e-003 | 153.8476 | | Mobile | 0.8060 | 0.7211 | 8.5633 |
0.0152 | 1.7435 | 0.0108 | 1.7542 | 0.4632 | 0.0100 | 0.4732 | 0.0000 | 1,394.0578 | 1,394.0578 | 0.0981 | 0.0550 | 1,412.9039 | | Waste | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 45.2670 | 0.0000 | 45.2670 | 2.6752 | 0.0000 | 112.1470 | | Water | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 5.5600e-
003 | 0.0183 | 0.0238 | 2.0000e-
005 | 1.0000e-005 | 0.0279 | | Total | 1.4620 | 0.8592 | 8.6824 | 0.0160 | 1.7435 | 0.0213 | 1.7647 | 0.4632 | 0.0205 | 0.4837 | 45.2725 | 1,547.0372 | 1,592.3097 | 2.7763 | 0.0578 | 1,678.9330 | CalEEMod Version: CalEEMod.2020.4.0 Page 1 of 1 Date: 6/18/2022 8:50 AM #### VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### **Mitigated Operational** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|-----------------|-------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|-----------------|-----------------|-----------------|-----------------|-------------|-----------------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Area | 0.6409 | 3.0000e-
005 | 3.2000e-003 | 0.0000 | | 1.0000e-
005 | 1.0000e-
005 | | 1.0000e-
005 | 1.0000e-005 | 0.0000 | 6.2000e-
003 | 6.2000e-
003 | 2.0000e-
005 | 0.0000 | 6.6200e-
003 | | Energy | 0.0152 | 0.1380 | 0.1159 | 8.3000e-
004 | | 0.0105 | 0.0105 | | 0.0105 | 0.0105 | 0.0000 | 152.9550 | 152.9550 | 2.8800e-
003 | 2.7500e-003 | 153.8476 | | Mobile | 0.8060 | 0.7211 | 8.5633 | 0.0152 | 1.7435 | 0.0108 | 1.7542 | 0.4632 | 0.0100 | 0.4732 | 0.0000 | 1,394.0578 | 1,394.0578 | 0.0981 | 0.0550 | 1,412.9039 | | Waste | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 45.2670 | 0.0000 | 45.2670 | 2.6752 | 0.0000 | 112.1470 | | Water | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 5.5600e-
003 | 0.0183 | 0.0238 | 2.0000e-
005 | 1.0000e-005 | 0.0279 | | Total | 1.4620 | 0.8592 | 8.6824 | 0.0160 | 1.7435 | 0.0213 | 1.7647 | 0.4632 | 0.0205 | 0.4837 | 45.2725 | 1,547.0372 | 1,592.3097 | 2.7763 | 0.0578 | 1,678.9330 | | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4 | N20 | CO2e | |-------------------|------|------|------|------|------------------|-----------------|------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------| | Percent Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 4.0 Operational Detail - Mobile #### 4.1 Mitigation Measures Mobile | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----|-----|----|-----|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|------|-----|------| | Category | | | | | ton | s/yr | | | | | | | МТ | -/yr | | | #### VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | Mitigated | 0.8060 | 0.7211 | 8.5633 | 0.0152 | 1.7435 | 0.0108 | 1.7542 | 0.4632 | 0.0100 | 0.4732 | 0.0000 | 1,394.0578 | 1,394.0578 | 0.0981 | 0.0550 | 1,412.9039 | |-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|------------|--------|--------|------------| | Unmitigated | 0.8060 | 0.7211 | 8.5633 | 0.0152 | 1.7435 | 0.0108 | 1.7542 | 0.4632 | 0.0100 | 0.4732 | 0.0000 | 1,394.0578 | 1,394.0578 | 0.0981 | 0.0550 | 1,412.9039 | # **4.2 Trip Summary Information** | | Ave | erage Daily Trip Ra | te | Unmitigated | Mitigated | |----------------------------|----------|---------------------|--------|-------------|------------| | Land Use | Weekday | Saturday | Sunday | Annual VMT | Annual VMT | | General Office Building | 1,823.39 | 0.00 | 0.00 | 4,759,300 | 4,759,300 | | Other Non-Asphalt Surfaces | 0.00 | 0.00 | 0.00 | | | | Parking Lot | 0.00 | 0.00 | 0.00 | | | | Total | 1,823.39 | 0.00 | 0.00 | 4,759,300 | 4,759,300 | #### 4.3 Trip Type Information | | | Miles | | | Trip % | | | Trip Purpos | e % | |----------------------------|------------|------------|-------------|------------|------------|-------------|---------|-------------|---------| | Land Use | H-W or C-W | H-S or C-C | H-O or C-NW | H-W or C-W | H-S or C-C | H-O or C-NW | Primary | Diverted | Pass-by | | General Office Building | 15.60 | 7.30 | 7.30 | 33.00 | 48.00 | 19.00 | 100 | 0 | 0 | | Other Non-Asphalt Surfaces | 9.50 | 7.30 | 7.30 | 0.00 | 0.00 | 0.00 | 0 | 0 | 0 | | Parking Lot | 9.50 | 7.30 | 7.30 | 0.00 | 0.00 | 0.00 | 0 | 0 | 0 | #### 4.4 Fleet Mix | Land Use | LDA | LDT1 | LDT2 | MDV | LHD1 | LHD2 | MHD | HHD | OBUS | UBUS | MCY | SBUS | MH | |----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | General Office Building | 0.655002 | 0.063318 | 0.219781 | 0.020000 | 0.005130 | 0.001216 | 0.002059 | 0.001596 | 0.000000 | 0.000000 | 0.031898 | 0.000000 | 0.000000 | | Other Non-Asphalt Surfaces | 0.567742 | 0.054883 | 0.190502 | 0.116880 | 0.020652 | 0.004894 | 0.008289 | 0.006425 | 0.000966 | 0.000407 | 0.024432 | 0.000950 | 0.002978 | | Parking Lot | 0.567742 | 0.054883 | 0.190502 | 0.116880 | 0.020652 | 0.004894 | 0.008289 | 0.006425 | 0.000966 | 0.000407 | 0.024432 | 0.000950 | 0.002978 | #### VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # 5.0 Energy Detail Historical Energy Use: Y # **5.1 Mitigation Measures Energy** | | | | <u> </u> | | | | | | | | | | | | | | |----------------------------|--------|--------|----------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|----------| | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Electricity Mitigated | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 2.7444 | 2.7444 | 0.0000 | 0.0000 | 2.7444 | | Electricity
Unmitigated | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 2.7444 | 2.7444 | 0.0000 | 0.0000 | 2.7444 | | NaturalGas
Mitigated | 0.0152 | 0.1380 | 0.1159 | 8.3000e-
004 | | 0.0105 | 0.0105 | | 0.0105 | 0.0105 | 0.0000 | 150.2105 | 150.2105 | 2.8800e-
003 | 2.7500e-003 | 151.1032 | | NaturalGas
Unmitigated | 0.0152 | 0.1380 | 0.1159 | 8.3000e-
004 | | 0.0105 | 0.0105 | | 0.0105 | 0.0105 | 0.0000 | 150.2105 | 150.2105 | 2.8800e-
003 | 2.7500e-003 | 151.1032 | #### **5.2 Energy by Land Use - NaturalGas** #### **Unmitigated** | | NaturalGas
Use | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-------------------------------|-------------------|--------|--------|--------|-------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-----------------|----------| | Land Use | kBTU/yr | | | | | ton | s/yr | | | | | | | MT | /yr | | | | General Office
Building | 2.81484e+
006 | 0.0152 | 0.1380 | 0.1159 | 8.3000e-004 | | 0.0105 | 0.0105 | | 0.0105 | 0.0105 | 0.0000 | 150.2105 | 150.2105 | 2.8800e-
003 | 2.7500e-
003 | 151.1032 | | Other Non-Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Parking Lot | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | | 0.0152 | 0.1380 | 0.1159 | 8.3000e-004 | | 0.0105 | 0.0105 | | 0.0105 | 0.0105 | 0.0000 | 150.2105 | 150.2105 | 2.8800e-
003 | 2.7500e-
003 | 151.1032 | #### VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### **Mitigated** | | NaturalGas
Use | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-------------------------------|-------------------|--------|--------|--------|-------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-----------------|----------| | Land Use | kBTU/yr | | | | | ton | s/yr | | | | | | | МТ | -/yr | | | | General Office
Building | 2.81484e+
006 | 0.0152 | 0.1380 | 0.1159 | 8.3000e-004 | | 0.0105 | 0.0105 | | 0.0105 | 0.0105 | 0.0000 | 150.2105 | 150.2105 | 2.8800e-
003 | 2.7500e-
003 | 151.1032 | | Other Non-Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Parking Lot | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | | 0.0152 | 0.1380 | 0.1159 | 8.3000e-004 | | 0.0105 | 0.0105 | | 0.0105 | 0.0105 | 0.0000 | 150.2105 | 150.2105 | 2.8800e-
003 | 2.7500e-
003 | 151.1032 | # 5.3 Energy by Land Use - Electricity Unmitigated | | Electricity
Use | Total CO2 | CH4 | N2O | CO2e | |-------------------------------|--------------------|-----------|--------|--------|--------| | Land Use | kWh/yr | | МТ | ⁻/yr | | | General Office
Building | 2.90086e+
006 | 2.6316 | 0.0000 | 0.0000 | 2.6316 | | Other Non-Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Parking Lot | 124337 | 0.1128 | 0.0000 | 0.0000 | 0.1128 | | Total | | 2.7444 | 0.0000 | 0.0000 | 2.7444 | VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### **Mitigated** | | Electricity
Use | Total CO2 | CH4 | N2O | CO2e | |-------------------------------|--------------------|-----------|--------|--------|--------| | Land Use | kWh/yr | | МТ | ⁻/yr | | | General Office
Building | 2.90086e+
006 | 2.6316 | 0.0000 | 0.0000 | 2.6316 | | Other Non-Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Parking Lot | 124337 | 0.1128 | 0.0000 | 0.0000 | 0.1128 | | Total | | 2.7444 | 0.0000 | 0.0000 | 2.7444 | # 6.0 Area Detail #### **6.1 Mitigation Measures Area** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-------------|--------|-----------------|-------------|--------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------------|-----------------|-----------------|--------|-----------------| | Category | | | | | tons | s/yr | | | | | | | MT | /yr | | | | Mitigated | 0.6409 | 3.0000e-
005 | 3.2000e-003 | 0.0000 | | 1.0000e-
005 | 1.0000e-
005 | | 1.0000e-
005 | 1.0000e-005 | 0.0000 | 6.2000e-
003 | 6.2000e-
003 | 2.0000e-
005 | 0.0000 | 6.6200e-
003 | | Unmitigated | 0.6409 | 3.0000e-
005 | 3.2000e-003 | 0.0000 | | 1.0000e-
005 | 1.0000e-
005 | | 1.0000e-
005 | 1.0000e-005 | 0.0000 | 6.2000e-
003 | 6.2000e-
003 | 2.0000e-
005 | 0.0000 | 6.6200e-
003 | CalEEMod Version: CalEEMod.2020.4.0 Page 1 of 1 Date: 6/18/2022 8:50 AM #### VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # 6.2 Area by SubCategory Unmitigated | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--------------------------|-----------------|-----------------|-------------|--------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------------|-----------------|-----------------|--------|-----------------| | SubCategory | | | | | tons | s/yr | | | | | | | MT | /yr | | | | Architectural
Coating | 0.0765 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Consumer Products | 0.5641 | | 1 | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Landscaping | 3.0000e-
004 | 3.0000e-
005 | 3.2000e-003 | 0.0000 | | 1.0000e-
005 | 1.0000e-
005 | | 1.0000e-
005 | 1.0000e-005 | 0.0000 | 6.2000e-
003 | 6.2000e-
003 | 2.0000e-
005 | 0.0000 | 6.6200e-
003 | | Total | 0.6409 | 3.0000e-
005 | 3.2000e-003 | 0.0000 | | 1.0000e-
005 | 1.0000e-
005 | | 1.0000e-
005 | 1.0000e-005 | 0.0000 | 6.2000e-
003 | 6.2000e-
003 | 2.0000e-
005 | 0.0000 | 6.6200e-
003 | #### **Mitigated** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--------------------------|-----------------|-----------------|-------------|--------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------------|-----------------|-----------------|--------|-----------------| | SubCategory | | | | | tons | s/yr | | | | | | | MT | /yr | | | | Architectural
Coating | 0.0765 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Consumer Products | 0.5641 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Landscaping | 3.0000e-
004 | 3.0000e-
005 | 3.2000e-003 | 0.0000 | | 1.0000e-
005 | 1.0000e-
005 | | 1.0000e-
005 | 1.0000e-005 | 0.0000 | 6.2000e-
003 | 6.2000e-
003 | 2.0000e-
005 | 0.0000 | 6.6200e-
003 | | Total | 0.6409 | 3.0000e-
005 | 3.2000e-003 | 0.0000 | | 1.0000e-
005 | 1.0000e-
005 | | 1.0000e-
005 | 1.0000e-005 | 0.0000 | 6.2000e-
003 | 6.2000e-
003 | 2.0000e-
005 | 0.0000 | 6.6200e-
003 | VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### 7.0 Water Detail #### 7.1 Mitigation Measures Water | | Total CO2 | CH4 | N2O | CO2e | |-------------|-----------|-----------------|-------------|--------| | Category | | M | T/yr | | | Mitigated | 0.0238 | 2.0000e-
005 | 1.0000e-005 | 0.0279 | | Unmitigated | 0.0238 | 2.0000e-
005 | 1.0000e-005 | 0.0279 | # 7.2 Water by Land Use <u>Unmitigated</u> | | Indoor/Out
door Use | Total CO2 | CH4 | N2O | CO2e | |-------------------------------|------------------------|-----------|-------------|-----------------|--------| | Land Use | Mgal | | МТ | /yr | | | General Office
Building | 0.015704 /
5.73196 | 0.0238 | 2.0000e-005 | 1.0000e-
005 | 0.0279 | | Other Non-Asphalt
Surfaces | 0/0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Parking Lot | 0/0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | | 0.0238 | 2.0000e-005 | 1.0000e-
005 | 0.0279 | VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### **Mitigated** | | Indoor/Out
door Use | Total CO2 | CH4 | N2O | CO2e | |-------------------------------|------------------------|-----------|-------------|-----------------|--------| | Land Use | Mgal | | МТ | /yr | | | General Office
Building | 0.015704 /
5.73196 | 0.0238 | 2.0000e-005 | 1.0000e-
005 | 0.0279 | | Other Non-Asphalt
Surfaces | 0/0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Parking Lot | 0/0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | | 0.0238 | 2.0000e-005 | 1.0000e-
005 | 0.0279 | #### 8.0 Waste Detail #### 8.1 Mitigation Measures Waste #### Category/Year | | Total CO2 | CH4 | N2O | CO2e | |-----------|-----------|--------|--------|----------| | | | M | Г/уг | | | Mitigated | 45.2670 | 2.6752 | 0.0000 | 112.1470 | | _ | 45.2670 | 2.6752 | 0.0000 | 112.1470 | VP1 Apple Office Project, Existing Current (2021) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied 8.2 Waste by Land Use <u>Unmitigated</u> | | Waste
Disposed | Total CO2 | CH4 | N2O | CO2e | |-------------------------------|-------------------|-----------|--------|--------|----------| | Land Use | tons | | МТ | /yr | | | General Office
Building | 223 | 45.2670 | 2.6752 | 0.0000 | 112.1470 | | Other Non-Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Parking Lot | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | | 45.2670 | 2.6752 | 0.0000 | 112.1470 | #### Mitigated | | Waste
Disposed | Total CO2 | CH4 | N2O | CO2e | |-------------------------------|-------------------|-----------|--------|--------|----------| | Land Use | tons | | МТ | 7/yr | | | General Office
Building | 223 | 45.2670 | 2.6752 | 0.0000 | 112.1470 | | Other Non-Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Parking Lot | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | | 45.2670 | 2.6752 | 0.0000 | 112.1470 | # CalEEMod Operation Model Baseline Conditions (Year 2024) VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # **VP1 Apple Office Project, Baseline Conditions (2024)** Santa Clara County, Annual #### 1.0 Project Characteristics #### 1.1 Land Usage | Land Uses | Size | Metric | Lot Acreage | Floor Surface Area | Population | |----------------------------|--------|----------|-------------|--------------------|------------| | General Office Building | 141.02 | 1000sqft | 3.24 | 141,024.00 | 0 | | Other Non-Asphalt Surfaces | 64.86 | 1000sqft | 1.49 | 64,857.00 | 0 | | Parking Lot | 141.29 | 1000sqft | 3.24 | 141,292.00 | 0 | #### 1.2 Other Project Characteristics | Urbanization | Urban | Wind Speed (m/s) | 2.2 | Precipitation Freq (Days) | 58 | |----------------------------|-----------------------------|----------------------------|-----|----------------------------|------| | Climate Zone | 4 | | | Operational Year | 2024 | | Utility Company | Silicon Valley Clean Energy | | | | | | CO2 Intensity
(lb/MWhr) | 2 | CH4 Intensity
(lb/MWhr) | 0 | N2O Intensity
(lb/MWhr) | 0 | #### 1.3 User Entered Comments & Non-Default Data Project Characteristics - Land Use - Based on applicant info., see assumptions file Construction Phase - Vehicle Trips - Assume 100% primary trips, see assumptions file
Vehicle Emission Factors - Vehicle Emission Factors - Vehicle Emission Factors - Area Coating - Based on square footage in site plan, see assumptions file #### VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### Energy Use - Water And Wastewater - Assume 100% aerobic treatment, see assumptions file Solid Waste - Based on per capital disposal for employees -Cal Recycle, 2020, see assumptions file Fleet Mix - See fleet mix adjustment in assumptions file | Table Name | Column Name | Default Value | New Value | |-----------------|--------------------------|---------------|-------------| | tblAreaCoating | Area_Parking | 12369 | 8478 | | tblFleetMix | HHD | 6.4040e-003 | 1.5960e-003 | | tblFleetMix | LDA | 0.57 | 0.66 | | tblFleetMix | LDT1 | 0.06 | 0.06 | | tblFleetMix | LDT2 | 0.19 | 0.22 | | tblFleetMix | LHD1 | 0.02 | 5.1300e-003 | | tblFleetMix | LHD2 | 5.1020e-003 | 1.2160e-003 | | tblFleetMix | MCY | 0.02 | 0.03 | | tblFleetMix | MDV | 0.12 | 0.02 | | tblFleetMix | MH | 2.7760e-003 | 0.00 | | tblFleetMix | MHD | 7.9340e-003 | 2.0590e-003 | | tblFleetMix | OBUS | 9.0000e-004 | 0.00 | | tblFleetMix | SBUS | 9.1400e-004 | 0.00 | | tblFleetMix | UBUS | 3.8000e-004 | 0.00 | | tblLandUse | LandUseSquareFeet | 141,020.00 | 141,024.00 | | tblLandUse | LandUseSquareFeet | 64,860.00 | 64,857.00 | | tblLandUse | LandUseSquareFeet | 141,290.00 | 141,292.00 | | tblSolidWaste | SolidWasteGenerationRate | 131.15 | 223.00 | | tblVehicleTrips | CW_TL | 9.50 | 19.50 | | tblVehicleTrips | DV_TP | 19.00 | 0.00 | | tblVehicleTrips | PB_TP | 4.00 | 0.00 | | tblVehicleTrips | PR_TP | 77.00 | 100.00 | Page 1 of 1 Date: 6/18/2022 8:47 AM #### VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | tblVehicleTrips | ST_TR | 2.21 | 0.00 | |-----------------|---------------------------------------|---------------|--------------| | tblVehicleTrips | SU_TR | 0.70 | 0.00 | | tblVehicleTrips | WD_TR | 9.74 | 12.93 | | tblWater | AerobicPercent | 87.46 | 100.00 | | tblWater | AnaerobicandFacultativeLagoonsPercent | 2.21 | 0.00 | | tblWater | IndoorWaterUseRate | 25,064,013.14 | 15,704.00 | | tblWater | OutdoorWaterUseRate | 15,361,814.51 | 5,731,957.00 | | tblWater | SepticTankPercent | 10.33 | 0.00 | # 2.0 Emissions Summary # 2.2 Overall Operational #### **Unmitigated Operational** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|-----------------|-------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|-----------------|-----------------|-----------------|-----------------|-------------|---------------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Area | 0.6409 | 3.0000e-
005 | 3.1900e-003 | 0.0000 | | 1.0000e-
005 | 1.0000e-
005 | | 1.0000e-
005 | 1.0000e-005 | 0.0000 | 6.2000e-
003 | 6.2000e-
003 | 2.0000e-
005 | 0.0000 | 6.6100
003 | | Energy | 0.0152 | 0.1380 | 0.1159 | 8.3000e-
004 | | 0.0105 | 0.0105 | | 0.0105 | 0.0105 | 0.0000 | 152.9550 | 152.9550 | 2.8800e-
003 | 2.7500e-003 | 153.84 | | Mobile | 0.7628 | 0.6193 | 8.2370 | 0.0156 | 1.9670 | 9.5700e-
003 | 1.9765 | 0.5225 | 8.8400e-
003 | 0.5314 | 0.0000 | 1,454.7552 | 1,454.7552 | 0.0939 | 0.0516 | 1,472.4 | | Waste | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 45.2670 | 0.0000 | 45.2670 | 2.6752 | 0.0000 | 112.14 | | Water | | | ī | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 5.5600e-
003 | 0.0183 | 0.0238 | 2.0000e-
005 | 1.0000e-005 | 0.027 | | Total | 1.4188 | 0.7573 | 8.3561 | 0.0164 | 1.9670 | 0.0201 | 1.9870 | 0.5225 | 0.0193 | 0.5419 | 45.2725 | 1,607.7346 | 1,653.0072 | 2.7720 | 0.0544 | 1,738.5 | Page 1 of 1 Date: 6/18/2022 8:47 AM VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### **Mitigated Operational** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|-----------------|-------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|-----------------|-----------------|-----------------|-----------------|-------------|-----------------| | Category | | | | | | | | | | | | | МТ | /yr | | | | Area | 0.6409 | 3.0000e-
005 | 3.1900e-003 | 0.0000 | | 1.0000e-
005 | 1.0000e-
005 | | 1.0000e-
005 | 1.0000e-005 | 0.0000 | 6.2000e-
003 | 6.2000e-
003 | 2.0000e-
005 | 0.0000 | 6.6100e-
003 | | Energy | 0.0152 | 0.1380 | 0.1159 | 8.3000e-
004 | | 0.0105 | 0.0105 | | 0.0105 | 0.0105 | 0.0000 | 152.9550 | 152.9550 | 2.8800e-
003 | 2.7500e-003 | 153.8476 | | Mobile | 0.7628 | 0.6193 | 8.2370 | 0.0156 | 1.9670 | 9.5700e-
003 | 1.9765 | 0.5225 | 8.8400e-
003 | 0.5314 | 0.0000 | 1,454.7552 | 1,454.7552 | 0.0939 | 0.0516 | 1,472.4795 | | Waste | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 45.2670 | 0.0000 | 45.2670 | 2.6752 | 0.0000 | 112.1470 | | Water | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 5.5600e-
003 | 0.0183 | 0.0238 | 2.0000e-
005 | 1.0000e-005 | 0.0279 | | Total | 1.4188 | 0.7573 | 8.3561 | 0.0164 | 1.9670 | 0.0201 | 1.9870 | 0.5225 | 0.0193 | 0.5419 | 45.2725 | 1,607.7346 | 1,653.0072 | 2.7720 | 0.0544 | 1,738.5086 | | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4 | N20 | CO2e | |-------------------|------|------|------|------|------------------|-----------------|------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------| | Percent Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # 4.0 Operational Detail - Mobile #### 4.1 Mitigation Measures Mobile | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-------------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|------------|------------|--------|--------|------------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Mitigated | 0.7628 | 0.6193 | 8.2370 | 0.0156 | 1.9670 | 9.5700e-
003 | 1.9765 | 0.5225 | 8.8400e-
003 | 0.5314 | 0.0000 | 1,454.7552 | 1,454.7552 | 0.0939 | 0.0516 | 1,472.4795 | | Unmitigated | 0.7628 | 0.6193 | 8.2370 | 0.0156 | 1.9670 | 9.5700e-
003 | 1.9765 | 0.5225 | 8.8400e-
003 | 0.5314 | 0.0000 | 1,454.7552 | 1,454.7552 | 0.0939 | 0.0516 | 1,472.4795 | #### **4.2 Trip Summary Information** | | Ave | rage Daily Trip Ra | te | Unmitigated | Mitigated | |----------------------------|----------|--------------------|--------|-------------|------------| | Land Use | Weekday | Saturday | Sunday | Annual VMT | Annual VMT | | General Office Building | 1,823.39 | 0.00 | 0.00 | 5,369,442 | 5,369,442 | | Other Non-Asphalt Surfaces | 0.00 | 0.00 | 0.00 | | | | Parking Lot | 0.00 | 0.00 | 0.00 | | | | Total | 1,823.39 | 0.00 | 0.00 | 5,369,442 | 5,369,442 | #### 4.3 Trip Type Information | | | Miles | | | Trip % | | | Trip Purpos | e % | |----------------------------|------------|------------|-------------|------------|------------|-------------|---------|-------------|---------| | Land Use | H-W or C-W | H-S or C-C | H-O or C-NW | H-W or C-W | H-S or C-C | H-O or C-NW | Primary | Diverted | Pass-by | | General Office Building | 19.50 | 7.30 | 7.30 | 33.00 | 48.00 | 19.00 | 100 | 0 | 0 | | Other Non-Asphalt Surfaces | 9.50 | 7.30 | 7.30 | 0.00 | 0.00 | 0.00 | 0 | 0 | 0 | | Parking Lot | 9.50 | 7.30 | 7.30 | 0.00 | 0.00 | 0.00 | 0 | 0 | 0 | #### 4.4 Fleet Mix | Land Use | LDA | LDT1 | LDT2 | MDV | LHD1 | LHD2 | MHD | HHD | OBUS | UBUS | MCY | SBUS | MH | |----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | General Office Building | 0.655002 | 0.063318 | 0.219781 | 0.020000 | 0.005130 | 0.001216 | 0.002059 | 0.001596 | 0.000000 | 0.000000 | 0.031898 | 0.000000 | 0.000000 | | Other Non-Asphalt Surfaces | 0.572464 | 0.055653 | 0.187060 | 0.115672 | 0.020329 | 0.005102 | 0.007934 | 0.006404 | 0.000900 | 0.000380 | 0.024412 | 0.000914 | 0.002776 | | Parking Lot | 0.572464 | 0.055653 | 0.187060 | 0.115672 | 0.020329 | 0.005102 | 0.007934 | 0.006404 | 0.000900 | 0.000380 | 0.024412 | 0.000914 | 0.002776 | VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # 5.0 Energy Detail Historical Energy Use: Y # **5.1 Mitigation Measures Energy** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------------------------|--------|--------|--------|-----------------|------------------|-----------------
------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|----------| | Category | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Electricity Mitigated | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 2.7444 | 2.7444 | 0.0000 | 0.0000 | 2.7444 | | Electricity
Unmitigated | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 2.7444 | 2.7444 | 0.0000 | 0.0000 | 2.7444 | | NaturalGas
Mitigated | 0.0152 | 0.1380 | 0.1159 | 8.3000e-
004 | | 0.0105 | 0.0105 | | 0.0105 | 0.0105 | 0.0000 | 150.2105 | 150.2105 | 2.8800e-
003 | 2.7500e-003 | 151.1032 | | NaturalGas
Unmitigated | 0.0152 | 0.1380 | 0.1159 | 8.3000e-
004 | | 0.0105 | 0.0105 | | 0.0105 | 0.0105 | 0.0000 | 150.2105 | 150.2105 | 2.8800e-
003 | 2.7500e-003 | 151.1032 | # 5.2 Energy by Land Use - NaturalGas #### **Unmitigated** | | NaturalGas
Use | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-------------------------------|-------------------|--------|--------|--------|-------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-----------------|----------| | Land Use | kBTU/yr | | | | | ton | is/yr | | | | | | | MT | -/yr | | | | General Office
Building | 2.81484e+
006 | 0.0152 | 0.1380 | 0.1159 | 8.3000e-004 | | 0.0105 | 0.0105 | | 0.0105 | 0.0105 | 0.0000 | 150.2105 | 150.2105 | 2.8800e-
003 | 2.7500e-
003 | 151.1032 | | Other Non-Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Parking Lot | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | | 0.0152 | 0.1380 | 0.1159 | 8.3000e-004 | | 0.0105 | 0.0105 | | 0.0105 | 0.0105 | 0.0000 | 150.2105 | 150.2105 | 2.8800e-
003 | 2.7500e-
003 | 151.1032 | Mitigated CalEEMod Version: CalEEMod.2020.4.0 Page 1 of 1 Date: 6/18/2022 8:47 AM #### VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | NaturalGas
Use | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-------------------------------|-------------------|--------|--------|--------|-------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-----------------|----------| | Land Use | kBTU/yr | | | | | ton | s/yr | | | | | | | МТ | -/yr | | | | General Office
Building | 2.81484e+
006 | 0.0152 | 0.1380 | 0.1159 | 8.3000e-004 | | 0.0105 | 0.0105 | | 0.0105 | 0.0105 | 0.0000 | 150.2105 | 150.2105 | 2.8800e-
003 | 2.7500e-
003 | 151.1032 | | Other Non-Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Parking Lot | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | | 0.0152 | 0.1380 | 0.1159 | 8.3000e-004 | | 0.0105 | 0.0105 | | 0.0105 | 0.0105 | 0.0000 | 150.2105 | 150.2105 | 2.8800e-
003 | 2.7500e-
003 | 151.1032 | # 5.3 Energy by Land Use - Electricity Unmitigated | | Electricity
Use | Total CO2 | CH4 | N2O | CO2e | |-------------------------------|--------------------|-----------|--------|--------|--------| | Land Use | kWh/yr | | МТ | -/yr | | | General Office
Building | 2.90086e+
006 | 2.6316 | 0.0000 | 0.0000 | 2.6316 | | Other Non-Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Parking Lot | 124337 | 0.1128 | 0.0000 | 0.0000 | 0.1128 | | Total | | 2.7444 | 0.0000 | 0.0000 | 2.7444 | VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### **Mitigated** | | Electricity
Use | Total CO2 | CH4 | N2O | CO2e | |-------------------------------|--------------------|-----------|--------|--------|--------| | Land Use | kWh/yr | | MT | -/yr | | | General Office
Building | 2.90086e+
006 | 2.6316 | 0.0000 | 0.0000 | 2.6316 | | Other Non-Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Parking Lot | 124337 | 0.1128 | 0.0000 | 0.0000 | 0.1128 | | Total | | 2.7444 | 0.0000 | 0.0000 | 2.7444 | # 6.0 Area Detail #### **6.1 Mitigation Measures Area** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-------------|--------|-----------------|-------------|--------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------------|-----------------|-----------------|--------|-----------------| | Category | | | | | tons | s/yr | | | | | | | MT | /yr | | | | Mitigated | 0.6409 | 3.0000e-
005 | 3.1900e-003 | 0.0000 | | 1.0000e-
005 | 1.0000e-
005 | | 1.0000e-
005 | 1.0000e-005 | 0.0000 | 6.2000e-
003 | 6.2000e-
003 | 2.0000e-
005 | 0.0000 | 6.6100e-
003 | | Unmitigated | 0.6409 | | 3.1900e-003 | 0.0000 | | 1.0000e-
005 | 1.0000e-
005 | | 1.0000e-
005 | 1.0000e-005 | 0.0000 | 6.2000e-
003 | 6.2000e-
003 | 2.0000e-
005 | 0.0000 | 6.6100e-
003 | CalEEMod Version: CalEEMod.2020.4.0 Page 1 of 1 Date: 6/18/2022 8:47 AM VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # 6.2 Area by SubCategory Unmitigated | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--------------------------|-----------------|-----------------|-------------|--------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------------|-----------------|-----------------|--------|-----------------| | SubCategory | | | | | tons | s/yr | | | | | | | MT | /yr | | | | Architectural
Coating | 0.0765 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Consumer Products | 0.5641 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Landscaping | 2.9000e-
004 | 3.0000e-
005 | 3.1900e-003 | 0.0000 | | 1.0000e-
005 | 1.0000e-
005 | | 1.0000e-
005 | 1.0000e-005 | 0.0000 | 6.2000e-
003 | 6.2000e-
003 | 2.0000e-
005 | 0.0000 | 6.6100e-
003 | | Total | 0.6409 | 3.0000e-
005 | 3.1900e-003 | 0.0000 | | 1.0000e-
005 | 1.0000e-
005 | | 1.0000e-
005 | 1.0000e-005 | 0.0000 | 6.2000e-
003 | 6.2000e-
003 | 2.0000e-
005 | 0.0000 | 6.6100e-
003 | #### **Mitigated** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--------------------------|-----------------|-----------------|-------------|--------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------------|-----------------|-----------------|--------|-----------------| | SubCategory | | | | | tons | s/yr | | | | | | | MT | /yr | | | | Architectural
Coating | 0.0765 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Consumer Products | 0.5641 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Landscaping | 2.9000e-
004 | 3.0000e-
005 | 3.1900e-003 | 0.0000 | | 1.0000e-
005 | 1.0000e-
005 | | 1.0000e-
005 | 1.0000e-005 | 0.0000 | 6.2000e-
003 | 6.2000e-
003 | 2.0000e-
005 | 0.0000 | 6.6100e-
003 | | Total | 0.6409 | 3.0000e-
005 | 3.1900e-003 | 0.0000 | | 1.0000e-
005 | 1.0000e-
005 | | 1.0000e-
005 | 1.0000e-005 | 0.0000 | 6.2000e-
003 | 6.2000e-
003 | 2.0000e-
005 | 0.0000 | 6.6100e-
003 | VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### 7.0 Water Detail #### 7.1 Mitigation Measures Water | | Total CO2 | CH4 | N2O | CO2e | |-------------|-----------|-----------------|-------------|--------| | Category | | M ⁻ | I
Γ/yr | | | Mitigated | 0.0238 | 2.0000e-
005 | 1.0000e-005 | 0.0279 | | Unmitigated | 0.0238 | 2.0000e-
005 | 1.0000e-005 | 0.0279 | # 7.2 Water by Land Use Unmitigated | | Indoor/Out
door Use | Total CO2 | CH4 | N2O | CO2e | |-------------------------------|------------------------|-----------|-------------|-----------------|--------| | Land Use | Mgal | | МТ | /yr | | | General Office
Building | 0.015704 /
5.73196 | 0.0238 | 2.0000e-005 | 1.0000e-
005 | 0.0279 | | Other Non-Asphalt
Surfaces | 0/0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Parking Lot | 0/0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | | 0.0238 | 2.0000e-005 | 1.0000e-
005 | 0.0279 | VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle
Rule Applied #### **Mitigated** | | Indoor/Out
door Use | Total CO2 | CH4 | N2O | CO2e | |-------------------------------|------------------------|-----------|-------------|-----------------|--------| | Land Use | Mgal | | МТ | /yr | | | General Office
Building | 0.015704 /
5.73196 | 0.0238 | 2.0000e-005 | 1.0000e-
005 | 0.0279 | | Other Non-Asphalt
Surfaces | 0/0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Parking Lot | 0/0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | | 0.0238 | 2.0000e-005 | 1.0000e-
005 | 0.0279 | #### 8.0 Waste Detail #### 8.1 Mitigation Measures Waste #### Category/Year | | Total CO2 | CH4 | N2O | CO2e | |-----------|-----------|--------|--------|----------| | | | M٦ | Γ/yr | | | Mitigated | 45.2670 | 2.6752 | 0.0000 | 112.1470 | | | 45.2670 | 2.6752 | 0.0000 | 112.1470 | VP1 Apple Office Project, Baseline Conditions (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied 8.2 Waste by Land Use <u>Unmitigated</u> | | Waste
Disposed | Total CO2 | CH4 | N2O | CO2e | |-------------------------------|-------------------|-----------|--------|--------|----------| | Land Use | tons | | МТ | 7/yr | | | General Office
Building | 223 | 45.2670 | 2.6752 | 0.0000 | 112.1470 | | Other Non-Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Parking Lot | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | | 45.2670 | 2.6752 | 0.0000 | 112.1470 | #### **Mitigated** | | Waste
Disposed | Total CO2 | CH4 | N2O | CO2e | |-------------------------------|-------------------|-----------|--------|--------|----------| | Land Use | tons | | МТ | 7/yr | | | General Office
Building | 223 | 45.2670 | 2.6752 | 0.0000 | 112.1470 | | Other Non-Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Parking Lot | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | | 45.2670 | 2.6752 | 0.0000 | 112.1470 | Page 1 of 1 Date: 6/18/2022 9:02 AM VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # **VP1 Apple Office Project, Operation (2024)** Santa Clara County, Annual #### 1.0 Project Characteristics #### 1.1 Land Usage | Land Uses | Size | Metric | Lot Acreage | Floor Surface Area | Population | |--------------------------------|--------|----------|-------------|--------------------|------------| | General Office Building | 280.02 | 1000sqft | 1.73 | 280,020.00 | 0 | | Enclosed Parking with Elevator | 213.08 | 1000sqft | 0.81 | 213,080.00 | 0 | | Other Non-Asphalt Surfaces | 104.60 | 1000sqft | 2.40 | 104,602.00 | 0 | | Parking Lot | 129.59 | 1000sqft | 2.98 | 129,590.00 | 0 | | Convenience Market (24 hour) | 2.30 | 1000sqft | 0.05 | 2,300.00 | 0 | #### 1.2 Other Project Characteristics | Urbanization | Urban | Wind Speed (m/s) | 2.2 | Precipitation Freq (Days) | 58 | |----------------------------|-----------------------------|----------------------------|-----|----------------------------|------| | Climate Zone | 4 | | | Operational Year | 2024 | | Utility Company | Silicon Valley Clean Energy | | | | | | CO2 Intensity
(lb/MWhr) | 2 | CH4 Intensity
(lb/MWhr) | 0 | N2O Intensity
(lb/MWhr) | 0 | #### 1.3 User Entered Comments & Non-Default Data Project Characteristics - Land Use - Based on applicant info., see assumptions file Construction Phase - Vehicle Trips - Assume normal office operations of similar Apple Campus 2 buildings in which offices and retail space will be assumed to be closed on weekends, assume Area Coating - Based on applicant info, see assumptions file Water And Wastewater - Assume 100% aerobic treatment, see assumptions file #### VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied Solid Waste - This calculation includes General Office Building and Commercial Retail space, based on CalRecycle 2020, see assumptions file Energy Mitigation - PV system installed based on Applicant Fleet Mix - See fleet mix adjustment in assumptions file | Table Name | Column Name | Default Value | New Value | |----------------|------------------------------|---------------|-------------| | tblAreaCoating | Area_Nonresidential_Exterior | 141160 | 5327 | | tblAreaCoating | Area_Nonresidential_Interior | 423480 | 189048 | | tblAreaCoating | Area_Parking | 26836 | 7775 | | tblFleetMix | HHD | 6.4040e-003 | 1.6100e-003 | | tblFleetMix | HHD | 6.4040e-003 | 1.6100e-003 | | tblFleetMix | LDA | 0.57 | 0.66 | | tblFleetMix | LDA | 0.57 | 0.66 | | tblFleetMix | LDT1 | 0.06 | 0.06 | | tblFleetMix | LDT1 | 0.06 | 0.06 | | tblFleetMix | LDT2 | 0.19 | 0.22 | | tblFleetMix | LDT2 | 0.19 | 0.22 | | tblFleetMix | LHD1 | 0.02 | 5.1120e-003 | | tblFleetMix | LHD1 | 0.02 | 5.1120e-003 | | tblFleetMix | LHD2 | 5.1020e-003 | 1.2830e-003 | | tblFleetMix | LHD2 | 5.1020e-003 | 1.2830e-003 | | tblFleetMix | MCY | 0.02 | 0.03 | | tblFleetMix | MCY | 0.02 | 0.03 | | tblFleetMix | MDV | 0.12 | 0.02 | | tblFleetMix | MDV | 0.12 | 0.02 | | tblFleetMix | MH | 2.7760e-003 | 0.00 | | tblFleetMix | MH | 2.7760e-003 | 0.00 | | tblFleetMix | MHD | 7.9340e-003 | 1.9950e-003 | | tblFleetMix | MHD | 7.9340e-003 | 1.9950e-003 | | 4 | .a | | | Page 1 of 1 VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | tblFleetMix | OBUS | 9.0000e-004 | 0.00 | |-----------------|--------------------------|-------------|------------| | tblFleetMix | OBUS | 9.0000e-004 | 0.00 | | tblFleetMix | SBUS | 9.1400e-004 | 0.00 | | tblFleetMix | SBUS | 9.1400e-004 | 0.00 | | tblFleetMix | UBUS | 3.8000e-004 | 0.00 | | tblFleetMix | UBUS | 3.8000e-004 | 0.00 | | tblLandUse | LandUseSquareFeet | 104,600.00 | 104,602.00 | | tblLandUse | LotAcreage | 6.43 | 1.73 | | tblLandUse | LotAcreage | 4.89 | 0.81 | | tblLandUse | LotAcreage | 2.97 | 2.98 | | tblSolidWaste | SolidWasteGenerationRate | 6.91 | 0.00 | | tblSolidWaste | SolidWasteGenerationRate | 260.42 | 445.00 | | tblVehicleTrips | CW_TL | 9.50 | 15.51 | | tblVehicleTrips | CW_TL | 9.50 | 15.51 | | tblVehicleTrips | DV_TP | 15.00 | 0.00 | | tblVehicleTrips | DV_TP | 19.00 | 0.00 | | tblVehicleTrips | PB_TP | 61.00 | 0.00 | | tblVehicleTrips | PB_TP | 4.00 | 0.00 | | tblVehicleTrips | PR_TP | 24.00 | 100.00 | | tblVehicleTrips | PR_TP | 77.00 | 100.00 | | tblVehicleTrips | ST_TR | 1,084.17 | 0.00 | | tblVehicleTrips | ST_TR | 2.21 | 0.00 | | tblVehicleTrips | SU_TR | 901.17 | 0.00 | | tblVehicleTrips | SU_TR | 0.70 | 0.00 | | tblVehicleTrips | WD_TR | 762.28 | 142.17 | | tblVehicleTrips | WD_TR | 9.74 | 12.93 | | tblWater | AerobicPercent | 87.46 | 100.00 | #### VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | tblWater | AerobicPercent | 87.46 | 100.00 | |----------|---------------------------------------|---------------|--------------| | tblWater | AerobicPercent | 87.46 | 100.00 | | tblWater | AnaerobicandFacultativeLagoonsPercent | 2.21 | 0.00 | | tblWater | AnaerobicandFacultativeLagoonsPercent | 2.21 | 0.00 | | tblWater | AnaerobicandFacultativeLagoonsPercent | 2.21 | 0.00 | | tblWater | IndoorWaterUseRate | 170,366.80 | 179,945.00 | | tblWater | IndoorWaterUseRate | 49,769,004.11 | 9,965,230.00 | | tblWater | OutdoorWaterUseRate | 104,418.36 | 0.00 | | tblWater | OutdoorWaterUseRate | 30,503,583.17 | 0.00 | | tblWater | OutdoorWaterUseRate | 0.00 | 813,595.00 | | tblWater | SepticTankPercent | 10.33 | 0.00 | | tblWater | SepticTankPercent | 10.33 | 0.00 | | tblWater | SepticTankPercent | 10.33 | 0.00 | # 2.0 Emissions Summary #### 2.2 Overall Operational #### **Unmitigated Operational** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|------------------|-----------------|-------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|------------|------------|-----------------|-------------|-----------| | Category | Category tons/yr | | | | | | | | | | MT/yr | | | | | | | Area | 1.1805 | 6.0000e-
005 | 6.6900e-003 | 0.0000 | | 2.0000e-
005 | 2.0000e-
005 | | 2.0000e-
005 | 2.0000e-005 | 0.0000 | 0.0130 | 0.0130 | 3.0000e-
005 | 0.0000 | 0.0139 | | Energy | 0.0245 | 0.2226 | 0.1870 | 1.3400e-
003 | | 0.0169 | 0.0169 | | 0.0169 | 0.0169 | 0.0000 | 247.8388 | 247.8388 | 4.6500e-
003 | 4.4400e-003 | 249.2791 | | Mobile | 1.5058 | 1.1859 | 15.7260 | 0.0292 | 3.6814 | 0.0182 | 3.6996 | 0.9780 | 0.0168 | 0.9948 | 0.0000 | 2,727.8667 | 2,727.8667 | 0.1823 | 0.0998 | 2,762.158 | | Waste | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 90.3310 | 0.0000 | 90.3310 | 5.3384 | 0.0000 | 223.7912 | | Water | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 3.5894 | 0.0524 | 3.6418 | 0.0124 | 7.8100e-003 | 6.2767 | | Total | 2.7108 | 1.4086 | 15.9197 | 0.0305 | 3.6814 | 0.0351 | 3.7166 | 0.9780 | 0.0338 | 1.0117 | 93.9204 | 2,975.7709 | 3,069.6912 | 5.5378 | 0.1120 | 3,241.519 | #### VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### **Mitigated Operational** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|-----------------|-------------|-----------------|------------------|-----------------|-----------------
-------------------|------------------|-------------|----------|------------|------------|-----------------|-------------|------------| | Category | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Area | 1.1805 | 6.0000e-
005 | 6.6900e-003 | 0.0000 | | 2.0000e-
005 | 2.0000e-
005 | | 2.0000e-
005 | 2.0000e-005 | 0.0000 | 0.0130 | 0.0130 | 3.0000e-
005 | 0.0000 | 0.0139 | | Energy | 0.0245 | 0.2226 | 0.1870 | 1.3400e-
003 | | 0.0169 | 0.0169 | | 0.0169 | 0.0169 | 0.0000 | 247.0887 | 247.0887 | 4.6500e-
003 | 4.4400e-003 | 248.5290 | | Mobile | 1.5058 | 1.1859 | 15.7260 | 0.0292 | 3.6814 | 0.0182 | 3.6996 | 0.9780 | 0.0168 | 0.9948 | 0.0000 | 2,727.8667 | 2,727.8667 | 0.1823 | 0.0998 | 2,762.1585 | | Waste | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 90.3310 | 0.0000 | 90.3310 | 5.3384 | 0.0000 | 223.7912 | | Water | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 3.5894 | 0.0524 | 3.6418 | 0.0124 | 7.8100e-003 | 6.2767 | | Total | 2.7108 | 1.4086 | 15.9197 | 0.0305 | 3.6814 | 0.0351 | 3.7166 | 0.9780 | 0.0338 | 1.0117 | 93.9204 | 2,975.0208 | 3,068.9412 | 5.5378 | 0.1120 | 3,240.7693 | | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4 | N20 | CO2e | |-------------------|------|------|------|------|------------------|-----------------|------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------| | Percent Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.02 | 0.00 | 0.00 | 0.02 | #### 3.0 Construction Detail #### **Construction Phase** | | Phase
Number | Phase Name | Phase Type | Start Date | End Date | Num Days
Week | Num Days | Phase Description | |---|-----------------|------------|------------|------------|------------|------------------|----------|-------------------| | 1 | | Demolition | Demolition | 11/23/2021 | 12/20/2021 | 5 | 20 | | Acres of Grading (Site Preparation Phase): 0 VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied Acres of Grading (Grading Phase): 0 Acres of Paving: 6.19 Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating - #### OffRoad Equipment | Phase Name | Offroad Equipment Type | Amount | Usage Hours | Horse Power | Load Factor | |------------|--------------------------|--------|-------------|-------------|-------------| | Demolition | Concrete/Industrial Saws | 1 | 8.00 | 81 | 0.73 | | Demolition | Excavators | 3 | 8.00 | 158 | 0.38 | | Demolition | Rubber Tired Dozers | 2 | 8.00 | 247 | 0.40 | #### **Trips and VMT** | | Phase Name | Offroad Equipment
Count | Worker Trip
Number | Vendor Trip
Number | Hauling Trip
Number | Worker Trip
Length | Vendor Trip
Length | Hauling Trip
Length | Worker Vehicle
Class | Vendor
Vehicle Class | Hauling
Vehicle Class | |---|------------|----------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|--------------------------| | D | Demolition | 6 | 15.00 | 0.00 | 0.00 | 10.80 | 7.30 | 20.00 | LD_Mix | HDT_Mix | HHDT | #### **3.1 Mitigation Measures Construction** #### 3.2 Demolition - 2021 #### **Unmitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|---------| | Category | | | | | tons | s/yr | | | | | | | МТ | -/yr | | | | Off-Road | 0.0317 | 0.3144 | 0.2157 | 3.9000e-
004 | | 0.0155 | 0.0155 | | 0.0144 | 0.0144 | 0.0000 | 34.0008 | 34.0008 | 9.5700e-
003 | 0.0000 | 34.2400 | | Total | 0.0317 | 0.3144 | 0.2157 | 3.9000e-
004 | | 0.0155 | 0.0155 | | 0.0144 | 0.0144 | 0.0000 | 34.0008 | 34.0008 | 9.5700e-
003 | 0.0000 | 34.2400 | CalEEMod Version: CalEEMod.2020.4.0 Page 1 of 1 Date: 6/18/2022 9:02 AM #### VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### **Unmitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|--------| | Category | | | | | tons | s/yr | | | | | | | МТ | -/yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 4.3000e-
004 | 3.3000e-
004 | 3.9300e-003 | 1.0000e-
005 | 1.1900e-003 | 1.0000e-
005 | 1.2000e-
003 | 3.2000e-
004 | 1.0000e-
005 | 3.2000e-004 | 0.0000 | 0.9656 | 0.9656 | 3.0000e-
005 | 3.0000e-005 | 0.9752 | | Total | 4.3000e-
004 | 3.3000e-
004 | 3.9300e-003 | 1.0000e-
005 | 1.1900e-003 | 1.0000e-
005 | 1.2000e-
003 | 3.2000e-
004 | 1.0000e-
005 | 3.2000e-004 | 0.0000 | 0.9656 | 0.9656 | 3.0000e-
005 | 3.0000e-005 | 0.9752 | **Mitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|---------| | Category | | | | | ton | s/yr | | | | | | | МТ | -/yr | | | | Off-Road | 0.0317 | 0.3144 | 0.2157 | 3.9000e-
004 | | 0.0155 | 0.0155 | | 0.0144 | 0.0144 | 0.0000 | 34.0007 | 34.0007 | 9.5700e-
003 | 0.0000 | 34.2400 | | Total | 0.0317 | 0.3144 | 0.2157 | 3.9000e-
004 | | 0.0155 | 0.0155 | | 0.0144 | 0.0144 | 0.0000 | 34.0007 | 34.0007 | 9.5700e-
003 | 0.0000 | 34.2400 | CalEEMod Version: CalEEMod.2020.4.0 Page 1 of 1 Date: 6/18/2022 9:02 AM #### VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### **Mitigated Construction Off-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|--------| | Category | | | | | tons | s/yr | | | | | | | МТ | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 4.3000e-
004 | 3.3000e-
004 | 3.9300e-003 | 1.0000e-
005 | 1.1900e-003 | 1.0000e-
005 | 1.2000e-
003 | 3.2000e-
004 | 1.0000e-
005 | 3.2000e-004 | 0.0000 | 0.9656 | 0.9656 | 3.0000e-
005 | 3.0000e-005 | 0.9752 | | Total | 4.3000e-
004 | 3.3000e-
004 | 3.9300e-003 | 1.0000e-
005 | 1.1900e-003 | 1.0000e-
005 | 1.2000e-
003 | 3.2000e-
004 | 1.0000e-
005 | 3.2000e-004 | 0.0000 | 0.9656 | 0.9656 | 3.0000e-
005 | 3.0000e-005 | 0.9752 | #### 4.0 Operational Detail - Mobile #### 4.1 Mitigation Measures Mobile | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-------------|--------|--------|---------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|------------|------------|--------|--------|------------| | Category | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Mitigated | 1.5058 | 1.1859 | 15.7260 | 0.0292 | 3.6814 | 0.0182 | 3.6996 | 0.9780 | 0.0168 | 0.9948 | 0.0000 | 2,727.8667 | 2,727.8667 | 0.1823 | 0.0998 | 2,762.1585 | | Unmitigated | 1.5058 | 1.1859 | 15.7260 | 0.0292 | 3.6814 | 0.0182 | 3.6996 | 0.9780 | 0.0168 | 0.9948 | 0.0000 | 2,727.8667 | 2,727.8667 | 0.1823 | 0.0998 | 2,762.1585 | #### VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### **4.2 Trip Summary Information** | | Ave | rage Daily Trip Ra | te | Unmitigated | Mitigated | |--------------------------------|----------|--------------------|--------|-------------|------------| | Land Use | Weekday | Saturday | Sunday | Annual VMT | Annual VMT | | Convenience Market (24 hour) | 326.99 | 0.00 | 0.00 | 626,911 | 626,911 | | Enclosed Parking with Elevator | 0.00
| 0.00 | 0.00 | | | | General Office Building | 3,620.66 | 0.00 | 0.00 | 9,422,467 | 9,422,467 | | Other Non-Asphalt Surfaces | 0.00 | 0.00 | 0.00 | | | | Parking Lot | 0.00 | 0.00 | 0.00 | | | | Total | 3,947.65 | 0.00 | 0.00 | 10,049,378 | 10,049,378 | #### 4.3 Trip Type Information | | | Miles | | | Trip % | | | Trip Purpos | e % | |--------------------------------|------------|------------|-------------|------------|------------|-------------|---------|-------------|---------| | Land Use | H-W or C-W | H-S or C-C | H-O or C-NW | H-W or C-W | H-S or C-C | H-O or C-NW | Primary | Diverted | Pass-by | | Convenience Market (24 hour) | 15.51 | 7.30 | 7.30 | 0.90 | 80.10 | 19.00 | 100 | 0 | 0 | | Enclosed Parking with Elevator | 9.50 | 7.30 | 7.30 | 0.00 | 0.00 | 0.00 | 0 | 0 | 0 | | General Office Building | 15.51 | 7.30 | 7.30 | 33.00 | 48.00 | 19.00 | 100 | 0 | 0 | | Other Non-Asphalt Surfaces | 9.50 | 7.30 | 7.30 | 0.00 | 0.00 | 0.00 | 0 | 0 | 0 | | Parking Lot | 9.50 | 7.30 | 7.30 | 0.00 | 0.00 | 0.00 | 0 | 0 | 0 | #### 4.4 Fleet Mix | Land Use | LDA | LDT1 | LDT2 | MDV | LHD1 | LHD2 | MHD | HHD | OBUS | UBUS | MCY | SBUS | MH | |--------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Convenience Market (24 hour) | 0.658989 | 0.064065 | 0.215333 | 0.020000 | 0.005112 | 0.001283 | 0.001995 | 0.001610 | 0.000000 | 0.000000 | 0.031614 | 0.000000 | 0.000000 | | Enclosed Parking with Elevator | 0.572464 | 0.055653 | 0.187060 | 0.115672 | 0.020329 | 0.005102 | 0.007934 | 0.006404 | 0.000900 | 0.000380 | 0.024412 | 0.000914 | 0.002776 | | General Office Building | 0.658989 | 0.064065 | 0.215333 | 0.020000 | 0.005112 | 0.001283 | 0.001995 | 0.001610 | 0.000000 | 0.000000 | 0.031614 | 0.000000 | 0.000000 | | Other Non-Asphalt Surfaces | 0.572464 | 0.055653 | 0.187060 | 0.115672 | 0.020329 | 0.005102 | 0.007934 | 0.006404 | 0.000900 | 0.000380 | 0.024412 | 0.000914 | 0.002776 | | Parking Lot | 0.572464 | 0.055653 | 0.187060 | 0.115672 | 0.020329 | 0.005102 | 0.007934 | 0.006404 | 0.000900 | 0.000380 | 0.024412 | 0.000914 | 0.002776 | ### 5.0 Energy Detail Historical Energy Use: N VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### **5.1 Mitigation Measures Energy** Kilowatt Hours of Renewable Electricity Generated Percent of Electricity Use Generated with Renewable Energy | | - | | | | | | | | | | | | | | | | |----------------------------|--------|--------|--------|-----------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|----------| | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Electricity Mitigated | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 4.7260 | 4.7260 | 0.0000 | 0.0000 | 4.7260 | | Electricity
Unmitigated | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 5.4761 | 5.4761 | 0.0000 | 0.0000 | 5.4761 | | NaturalGas
Mitigated | 0.0245 | 0.2226 | 0.1870 | 1.3400e-
003 | | 0.0169 | 0.0169 | | 0.0169 | 0.0169 | 0.0000 | 242.3627 | 242.3627 | 4.6500e-
003 | 4.4400e-003 | 243.8030 | | NaturalGas
Unmitigated | 0.0245 | 0.2226 | 0.1870 | 1.3400e-
003 | | 0.0169 | 0.0169 | | 0.0169 | 0.0169 | 0.0000 | 242.3627 | 242.3627 | 4.6500e-
003 | 4.4400e-003 | 243.8030 | #### 5.2 Energy by Land Use - NaturalGas #### **Unmitigated** | | NaturalGas
Use | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------------------------|-------------------|-----------------|-------------|-----------------|-------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-----------------|----------| | Land Use | kBTU/yr | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Convenience
Market (24 hour) | 5382 | 3.0000e-
005 | 2.6000e-004 | 2.2000e-
004 | 0.0000 | | 2.0000e-
005 | 2.0000e-
005 | | 2.0000e-
005 | 2.0000e-005 | 0.0000 | 0.2872 | 0.2872 | 1.0000e-
005 | 1.0000e-
005 | 0.2889 | | Enclosed Parking with Elevator | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | General Office
Building | 4.53632e+
006 | 0.0245 | 0.2224 | 0.1868 | 1.3300e-003 | | 0.0169 | 0.0169 | | 0.0169 | 0.0169 | 0.0000 | 242.0755 | 242.0755 | 4.6400e-
003 | 4.4400e-
003 | 243.5141 | | Other Non-Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Parking Lot | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | | 0.0245 | 0.2226 | 0.1870 | 1.3300e-003 | | 0.0169 | 0.0169 | | 0.0169 | 0.0169 | 0.0000 | 242.3627 | 242.3627 | 4.6500e-
003 | 4.4500e-
003 | 243.8030 | CalEEMod Version: CalEEMod.2020.4.0 Page 1 of 1 Date: 6/18/2022 9:02 AM #### VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | NaturalGas
Use | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------------------------|-------------------|-----------------|-------------|-----------------|-------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-----------------|----------| | Land Use | kBTU/yr | | tons/yr | | | | | | | | MT/yr | | | | | | | | Convenience
Market (24 hour) | 5382 | 3.0000e-
005 | 2.6000e-004 | 2.2000e-
004 | 0.0000 | | 2.0000e-
005 | 2.0000e-
005 | | 2.0000e-
005 | 2.0000e-005 | 0.0000 | 0.2872 | 0.2872 | 1.0000e-
005 | 1.0000e-
005 | 0.2889 | | Enclosed Parking with Elevator | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | General Office
Building | 4.53632e+
006 | 0.0245 | 0.2224 | 0.1868 | 1.3300e-003 | | 0.0169 | 0.0169 | | 0.0169 | 0.0169 | 0.0000 | 242.0755 | 242.0755 | 4.6400e-
003 | 4.4400e-
003 | 243.5141 | | Other Non-Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Parking Lot | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | | 0.0245 | 0.2226 | 0.1870 | 1.3300e-003 | | 0.0169 | 0.0169 | | 0.0169 | 0.0169 | 0.0000 | 242.3627 | 242.3627 | 4.6500e-
003 | 4.4500e-
003 | 243.8030 | #### 5.3 Energy by Land Use - Electricity #### **Unmitigated** | | Electricity
Use | Total CO2 | CH4 | N2O | CO2e | |-----------------------------------|--------------------|-----------|--------|--------|--------| | Land Use | kWh/yr | | МТ | √yr | | | Convenience
Market (24 hour) | 23897 | 0.0217 | 0.0000 | 0.0000 | 0.0217 | | Enclosed Parking
with Elevator | 1.15916e+
006 | 1.0516 | 0.0000 | 0.0000 | 1.0516 | | General Office
Building | 4.80794e+
006 | 4.3617 | 0.0000 | 0.0000 | 4.3617 | | Parking Lot | 45356.5 | 0.0412 | 0.0000 | 0.0000 | 0.0412 | | Total | | 5.4761 | 0.0000 | 0.0000 | 5.4761 | #### VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | Electricity
Use | Total CO2 | CH4 | N2O | CO2e | |---------------------------------|--------------------|-----------|--------|--------|---------| | Land Use | kWh/yr | | МТ | √yr | | | Convenience
Market (24 hour) | -82297.9 | -0.0747 | 0.0000 | 0.0000 | -0.0747 | | Enclosed Parking with Elevator | 996197 | 0.9037 | 0.0000 | 0.0000 | 0.9037 | | General Office
Building | 4.46255e+
006 | 4.0484 | 0.0000 | 0.0000 | 4.0484 | | Other Non-Asphalt
Surfaces | -105000 | -0.0953 | 0.0000 | 0.0000 | -0.0953 | | Parking Lot | -61911.3 | -0.0562 | 0.0000 | 0.0000 | -0.0562 | | Total | | 4.7260 | 0.0000 | 0.0000 | 4.7260 | #### 6.0 Area Detail #### **6.1 Mitigation Measures Area** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-------------|--------|-----------------|-------------|--------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Mitigated | 1.1805 | 6.0000e-
005 | 6.6900e-003 | 0.0000 | | 2.0000e-
005 | 2.0000e-
005 | | 2.0000e-
005 | 2.0000e-005 | 0.0000 | 0.0130 | 0.0130 | 3.0000e-
005 | 0.0000 | 0.0139 | | Unmitigated | 1.1805 | 6.0000e-
005 | 6.6900e-003 | 0.0000 | | 2.0000e-
005 | 2.0000e-
005 | | 2.0000e-
005 | 2.0000e-005 | 0.0000 | 0.0130 | 0.0130 | 3.0000e-
005 | 0.0000 | 0.0139 | #### 6.2 Area by SubCategory VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual #### EMFAC Off-Model
Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### **Unmitigated** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--------------------------|-----------------|-----------------|-------------|--------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------| | SubCategory | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Architectural
Coating | 0.0484 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Consumer Products | 1.1315 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Landscaping | 6.2000e-
004 | 6.0000e-
005 | 6.6900e-003 | 0.0000 | | 2.0000e-
005 | 2.0000e-
005 | | 2.0000e-
005 | 2.0000e-005 | 0.0000 | 0.0130 | 0.0130 | 3.0000e-
005 | 0.0000 | 0.0139 | | Total | 1.1805 | 6.0000e-
005 | 6.6900e-003 | 0.0000 | | 2.0000e-
005 | 2.0000e-
005 | | 2.0000e-
005 | 2.0000e-005 | 0.0000 | 0.0130 | 0.0130 | 3.0000e-
005 | 0.0000 | 0.0139 | | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--------------------------|-----------------|-----------------|-------------|--------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------| | SubCategory tons/yr | | | | | | | MT/yr | | | | | | | | | | | Architectural
Coating | 0.0484 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Consumer Products | 1.1315 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Landscaping | 6.2000e-
004 | 6.0000e-
005 | 6.6900e-003 | 0.0000 | | 2.0000e-
005 | 2.0000e-
005 | | 2.0000e-
005 | 2.0000e-005 | 0.0000 | 0.0130 | 0.0130 | 3.0000e-
005 | 0.0000 | 0.0139 | | Total | 1.1805 | 6.0000e-
005 | 6.6900e-003 | 0.0000 | | 2.0000e-
005 | 2.0000e-
005 | | 2.0000e-
005 | 2.0000e-005 | 0.0000 | 0.0130 | 0.0130 | 3.0000e-
005 | 0.0000 | 0.0139 | VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### 7.0 Water Detail #### 7.1 Mitigation Measures Water | | Total CO2 | CH4 | N2O | CO2e | | | | | |-------------|-----------|--------|-------------|--------|--|--|--|--| | Category | MT/yr | | | | | | | | | Mitigated | 3.6418 | 0.0124 | 7.8100e-003 | 6.2767 | | | | | | Unmitigated | 3.6418 | 0.0124 | 7.8100e-003 | 6.2767 | | | | | #### 7.2 Water by Land Use #### **Unmitigated** | | Indoor/Out
door Use | Total CO2 | CH4 | N2O | CO2e | |---------------------------------|------------------------|-----------------|-------------|-----------------|-------------| | Land Use | Mgal | | МТ | /yr | | | Convenience
Market (24 hour) | 0.179945 /
0 | | 2.2000e-004 | 1.4000e-
004 | 0.1113 | | Enclosed Parking with Elevator | 0/0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | General Office
Building | 9.96523 / 0 | 3.5746 | 0.0121 | 7.6700e-
003 | 6.1629 | | Other Non-Asphalt
Surfaces | 0 /
0.813595 | 2.5800e-
003 | 0.0000 | 0.0000 | 2.5800e-003 | | Parking Lot | 0/0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | | 3.6418 | 0.0124 | 7.8100e-
003 | 6.2767 | VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### **Mitigated** | | Indoor/Out
door Use | Total CO2 | CH4 | N2O | CO2e | |---------------------------------|------------------------|-----------------|-------------|-----------------|-------------| | Land Use | Mgal | | MT. | /yr | | | Convenience
Market (24 hour) | 0.179945 /
0 | 0.0646 | 2.2000e-004 | 1.4000e-
004 | 0.1113 | | Enclosed Parking with Elevator | 0/0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | General Office
Building | 9.96523 / 0 | 3.5746 | 0.0121 | 7.6700e-
003 | 6.1629 | | Other Non-Asphalt
Surfaces | 0 /
0.813595 | 2.5800e-
003 | 0.0000 | 0.0000 | 2.5800e-003 | | Parking Lot | 0/0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | | 3.6418 | 0.0124 | 7.8100e-
003 | 6.2767 | #### 8.0 Waste Detail #### 8.1 Mitigation Measures Waste #### Category/Year | | Total CO2 | CH4 | N2O | CO2e | | | | | |-------------|-----------|--------|--------|----------|--|--|--|--| | | MT/yr | | | | | | | | | Mitigated | 90.3310 | 5.3384 | 0.0000 | 223.7912 | | | | | | Unmitigated | 90.3310 | 5.3384 | 0.0000 | 223.7912 | | | | | #### 8.2 Waste by Land Use VP1 Apple Office Project, Operation (2024) - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### **Unmitigated** | | Waste
Disposed | Total CO2 | CH4 | N2O | CO2e | | | |-----------------------------------|-------------------|-----------|--------|--------|----------|--|--| | Land Use | tons | MT/yr | | | | | | | Convenience
Market (24 hour) | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | Enclosed Parking
with Elevator | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | General Office
Building | 445 | 90.3310 | 5.3384 | 0.0000 | 223.7912 | | | | Other Non-Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | Parking Lot | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | Total | | 90.3310 | 5.3384 | 0.0000 | 223.7912 | | | | | Waste
Disposed | Total CO2 | CH4 | N2O | CO2e | | | | |---------------------------------|-------------------|-----------|--------|--------|----------|--|--|--| | Land Use | tons | MT/yr | | | | | | | | Convenience
Market (24 hour) | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | Enclosed Parking with Elevator | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | General Office
Building | 445 | 90.3310 | 5.3384 | 0.0000 | 223.7912 | | | | | Other Non-Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | Parking Lot | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | Total | | 90.3310 | 5.3384 | 0.0000 | 223.7912 | | | | #### Land Us | | Lai | nd Use | |--------------|-------------------------|-------------------------| | Vehicle type | Fleet percent | VMT | | | General Office Building | General Office Building | | LDA | 65.50% | 3,117,351 | | LDT1 | 6.33% | 301,349 | | LDT2 | 21.98% | 1,046,004 | | MDV | 2.00% | 95,186 | | LHD1 | 0.51% | 24,415 | | LHD2 | 0.12% | 5,787 | | MHD | 0.21% | 9,799 | | HHD | 0.16% | 7,596 | | OBUS | 0.00% | 0 | | UBUS | 0.00% | 0 | | MCY | 3.19% | 151,812 | | SBUS | 0.00% | 0 | | MH | 0.00% | 0 | | | 100.00% | 4,759,300 | ### 4.2 Trip Summary Information | | | Ave | rage Daily Trip R | ate | Unmitigated | Mitigated | |-----------------------|-----------------------------|-------------------------|-------------------|------|-------------|------------| | Land Use | | Weekday Saturday Sunday | | | Annual VMT | Annual VMT | | General Office Buildi | | 1,823.39 | 0.00 | 0.00 | 4,759,300 | 4,759,300 | | | r Non-Asphalt Surfaces 0.00 | | 0.00 | 0.00 | | | | Parking Lot | | 0.00 | 0.00 | 0.00 | | | | Total | | 1,823.39 | 0.00 | 0.00 | 4,759,300 | 4,759,300 | ### 4.4 Fleet Mix | Land Use | LDA | LDT1 | LDT2 | MDV | LHD1 | LHD2 | MHD | HHD | OBUS | UBUS | MCY | SBUS | MH | |----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | General Office Building | 0.655002 | 0.063318 | 0.219781 | 0.020000 | 0.005130 | 0.001216 | 0.002059 | 0.001596 | 0.000000 | 0.000000 | 0.031898 | 0.000000 | 0.000000 | | Other Non-Asphalt Surfaces | 0.567742 | 0.054883 | 0.190502 | 0.116880 | 0.020652 | 0.004894 | 0.008289 | 0.006425 | 0.000966 | 0.000407 | 0.024432 | 0.000950 | 0.002978 | | Parking Lot | 0.567742 | 0.054883 | 0.190502 | 0.116880 | 0.020652 | 0.004894 | 0.008289 | 0.006425 | 0.000966 | 0.000407 | 0.024432 | 0.000950 | 0.002978 | ### **EXISTING CONDITIONS** | Vehicle type | Gas percent | Diesel percent | CNG percent | Electricity percent | |--------------|-------------|----------------|-------------|---------------------| | LDA | 91.24% | 0.26% | 0.00% | 8.49% | | LDT1 | 99.63% | 0.03% | 0.00% | 0.34% | | LDT2 | 99.35% | 0.35% | 0.00% | 0.30% | | MDV | 97.93% | 1.66% | 0.00% | 0.41% | | LHD1 | 66.21% | 33.79% | 0.00% | 0.00% | | LHD2 | 35.74% | 64.26% | 0.00% | 0.00% | | MHD | 13.67% | 85.59% | 0.73% | 0.00% < | | HHD | 0.01% | 95.48% | 4.51% | 0.00% < | | OBUS | 26.81% | 72.77% | 0.42% | 0.00% < | | UBUS | 8.18% | 83.35% | 8.13% | 0.34% | | MCY | 100.00% | 0.00% | 0.00% | 0.00% | | SBUS | 32.11% | 65.50% | 2.38% | 0.00% | | MH | 72.57% | 27.43% | 0.00% | 0.00% | | Company of the content c .00% << Motor coach, all other buses, and OBUS (https://www.arb.ca.gov/msei/downloads/emfac2014/emfac2014-vol3-technical-documentation-052015.pdf) | EXISTING | CONDITIONS | |-----------------|------------| | | | | Vehicle type | | Gasoline | | | Diesel | | | CNG | | | Electricity | | |---------------|-----------|----------|---------|--------|--------|---------|-----|------|---------|---------|-------------|---------| | veriicie type | VMT | mpg | Gallons | VMT | mpg | Gallons | VMT | mpg | Gallons | VMT | m/kWh | kWh | | LDA | 2,844,398 | 28.61 | 99,408 | 8,228 | 42.72 | 193 | 0 | 0.00 | 0 | 264,725 | 2.66 | 99,490 | | LDT1 | 300,238 | 24.23 | 12,389 | 83 | 24.44 | 3 | 0 | 0.00 | 0 | 1,028 | 2.61 | 393 | | LDT2 | 1,039,220 | 22.85 | 45,471 | 3,644 | 31.41 | 116 | 0 | 0.00 | 0 | 3,139 |
3.01 | 1,041 | | MDV | 93,212 | 18.83 | 4,951 | 1,583 | 24.16 | 66 | 0 | 0.00 | 0 | 391 | 2.96 | 132 | | LHD1 | 16,165 | 9.10 | 1,777 | 8,250 | 15.69 | 526 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | | LHD2 | 2,068 | 8.19 | 253 | 3,719 | 12.90 | 288 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | | MHD | 1,340 | 4.57 | 293 | 8,388 | 8.35 | 1,005 | 72 | 7.02 | 10 | 0 | 0.00 | 0 | | HHD | 1 | 3.30 | 0 | 7,252 | 5.67 | 1,279 | 343 | 4.94 | 69 | 0 | 0.00 | 0 | | OBUS | 0 | 4.66 | 0 | 0 | 7.97 | 0 | 0 | 7.39 | 0 | 0 | 0.00 | 0 | | UBUS | 0 | 8.81 | 0 | 0 | 9.23 | 0 | 0 | 6.04 | 0 | 0 | 0.57 | 0 | | MCY | 151,812 | 41.45 | 3,662 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | | SBUS | 0 | 9.74 | 0 | 0 | 8.10 | 0 | 0 | 5.41 | 0 | 0 | 0.00 | 0 | | MH | 0 | 4.41 | 0 | 0 | 9.40 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | | | 4,448,453 | | 168,203 | 41,148 | | 3,475 | 415 | | 80 | 269,284 | | 101,057 | ## Operation - Vehicle Fuel Usage | | Lan | d Use | | | | |--------------|--------------------|--------------------|----------------|----------------|------------| | Vehicle type | Fleet percent | VMT | Fleet percent | VMT | | | | | | General Office | General Office | | | | Convenience Market | Convenience Market | Building | Building | Total | | LDA | 65.90% | 413,127 | 65.90% | 6,209,302 | 6,622,430 | | LDT1 | 6.41% | 40,163 | 6.41% | 603,650 | 643,813 | | LDT2 | 21.53% | 134,995 | 21.53% | 2,028,968 | 2,163,963 | | MDV | 2.00% | 12,538 | 2.00% | 188,449 | 200,988 | | LHD1 | 0.51% | 3,205 | 0.51% | 48,168 | 51,372 | | LHD2 | 0.13% | 804 | 0.13% | 12,089 | 12,893 | | MHD | 0.20% | 1,251 | 0.20% | 18,798 | 20,049 | | HHD | 0.16% | 1,009 | 0.16% | 15,170 | 16,179 | | OBUS | 0.00% | 0 | 0.00% | 0 | 0 | | UBUS | 0.00% | 0 | 0.00% | 0 | 0 | | MCY | 3.16% | 19,819 | 3.16% | 297,882 | 317,701 | | SBUS | 0.00% | 0 | 0.00% | 0 | 0 | | МН | 0.00% | 0 | 0.00% | 0 | 0 | | | 100.00% | 626,911 | 100.00% | 9,422,467 | 10,049,388 | #### PROPOSED CONDITIONS | Vehicle type | Gas percent | Diesel percent | CNG percent | Electricity percent | |--------------|-------------|----------------|-------------|---------------------| | LDA | 88.63% | 0.20% | 0.00% | 11.17% | | LDT1 | 99.41% | 0.02% | 0.00% | 0.57% | | _DT2 | 98.63% | 0.36% | 0.00% | 1.01% | | MDV | 96.95% | 1.52% | 0.00% | 1.52% | | .HD1 | 64.19% | 35.36% | 0.00% | 0.45% | | LHD2 | 33.10% | 66.44% | 0.00% | 0.45% | | MHD | 14.00% | 84.84% | 0.84% | 0.32% | | HHD | 0.01% | 94.45% | 5.29% | 0.26% | | OBUS | 24.17% | 75.18% | 0.57% | 0.11% | | UBUS | 8.18% | 83.15% | 8.27% | 0.40% | | MCY | 100.00% | 0.00% | 0.00% | 0.00% | | SBUS | 34.89% | 62.36% | 2.49% | 0.26% | | MH | 69.86% | 30.14% | 0.00% | 0.00% | ### 4.2 Trip Summary Information | | Aver | rage Daily Trip Ra | ite | Unmitigated | Mitigated | |--------------------------------|--|--------------------|--------|-------------|------------| | Land Use | Weekday Saturday 326.99 0.00 | | Sunday | Annual VMT | Annual VMT | | Convenience Market (24 hour) | 326.99 | 0.00 | 0.00 | 626,911 | 626,911 | | Enclosed Parking with Elevator | 0.00 | 0.00 | 0.00 | | | | General Office Building | 3,620.66 | 0.00 | 0.00 | 9,422,467 | 9,422,467 | | Other Non-Asphalt Surfaces | 0.00 | 0.00 | 0.00 | | | | Parking Lot | 0.00 | 0.00 | 0.00 | | | | Total | 3,947.65 | 0.00 | 0.00 | 10,049,378 | 10,049,378 | #### 4.4 Fleet Mix | Land Use | LDA | LDT1 | LDT2 | MDV | LHD1 | LHD2 | MHD | HHD | OBUS | UBUS | MCY | SBUS | MH | |--------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Convenience Market (24 hour) | 0.658989 | 0.064065 | 0.215333 | 0.020000 | 0.005112 | 0.001283 | 0.001995 | 0.001610 | 0.000000 | 0.000000 | 0.031614 | 0.000000 | 0.000000 | | Enclosed Parking with Elevator | 0.572464 | 0.055653 | 0.187060 | 0.115672 | 0.020329 | 0.005102 | 0.007934 | 0.006404 | 0.000900 | 0.000380 | 0.024412 | 0.000914 | 0.002776 | | General Office Building | 0.658989 | 0.064065 | 0.215333 | 0.020000 | 0.005112 | 0.001283 | 0.001995 | 0.001610 | 0.000000 | 0.000000 | 0.031614 | 0.000000 | 0.000000 | | Other Non-Asphalt Surfaces | 0.572464 | 0.055653 | 0.187060 | 0.115672 | 0.020329 | 0.005102 | 0.007934 | 0.006404 | 0.000900 | 0.000380 | 0.024412 | 0.000914 | 0.002776 | | Parking Lot | 0.572464 | 0.055653 | 0.187060 | 0.115672 | 0.020329 | 0.005102 | 0.007934 | 0.006404 | 0.000900 | 0.000380 | 0.024412 | 0.000914 | 0.002776 | <> Equal to T7 (https://www.arb.ca.gov/msei/downloads/emfac2014/emfac2014-vol3-technical-documentation-052015.pdf) < Motor coach, all other buses, and OBUS (https://www.arb.ca.gov/msei/downloads/emfac2014/emfac2014-vol3-technical-documentation-052015.pdf) # PROPOSED CONDITIONS | Vehicle type | | Gasoline | | | Diesel | | | CNG | | | Electricity | • | |---------------|-----------|----------|---------|--------|--------|---------|-------|------|---------|---------|-------------|---------| | vernicle type | VMT | mpg | Gallons | VMT | mpg | Gallons | VMT | mpg | Gallons | VMT | m/kWh | kWh | | LDA | 5,869,152 | 29.99 | 195,675 | 13,351 | 43.63 | 306 | 0 | 0.00 | 0 | 739,927 | 2.67 | 277,285 | | LDT1 | 640,028 | 25.24 | 25,358 | 129 | 24.45 | 5 | 0 | 0.00 | 0 | 3,656 | 2.70 | 1,357 | | LDT2 | 2,134,346 | 24.18 | 88,258 | 7,812 | 32.63 | 239 | 0 | 0.00 | 0 | 21,805 | 2.89 | 7,547 | | MDV | 194,866 | 19.93 | 9,780 | 3,061 | 24.82 | 123 | 0 | 0.00 | 0 | 3,060 | 2.78 | 1,099 | | LHD1 | 32,975 | 9.72 | 3,392 | 18,164 | 16.00 | 1,135 | 0 | 0.00 | 0 | 233 | 1.53 | 153 | | LHD2 | 4,268 | 8.65 | 493 | 8,567 | 13.32 | 643 | 0 | 0.00 | 0 | 58 | 1.55 | 38 | | MHD | 2,806 | 4.79 | 586 | 17,009 | 8.45 | 2,012 | 169 | 7.16 | 24 | 65 | 0.90 | 72 | | HHD | 2 | 3.93 | 0 | 15,281 | 5.88 | 2,599 | 855 | 5.09 | 168 | 42 | 0.55 | 77 | | OBUS | 0 | 4.82 | 0 | 0 | 8.10 | 0 | 0 | 7.68 | 0 | 0 | 0.00 | 0 | | UBUS | 0 | 9.28 | 0 | 0 | 9.22 | 0 | 0 | 6.04 | 0 | 0 | 0.57 | 0 | | MCY | 317,701 | 42.14 | 7,539 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | | SBUS | 0 | 9.92 | 0 | 0 | 8.18 | 0 | 0 | 5.51 | 0 | 0 | 0.95 | 0 | | MH | 0 | 4.42 | 0 | 0 | 9.39 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | | | 9,196,144 | | 331,082 | 83,373 | | 7,063 | 1,024 | | 192 | 768,847 | | 287,626 | ## **Operation-Related Vehicle Fuel/Energy Usage** #### PROJECT LAND USE COMMUTE | Vehicle Type | Gas | ; | Dies | el | CN | IG | Electricity | | | |-----------------------------|-----------|---------|--------|---------|-------|---------|-------------|---------|--| | venicle Type | VMT | Gallons | VMT | Gallons | VMT | Gallons | VMT | kWh | | | Existing Passenger Vehicles | 4,448,453 | 168,203 | 41,148 | 3,475 | 415 | 80 | 269,284 | 101,057 | | | Proposed Passenger Vehicles | 9,196,144 | 331,082 | 83,373 | 7,063 | 1,024 | 192 | 768,847 | 287,626 | | | Net Change | 4,747,691 | 162,879 | 42,225 | 3,589 | 609 | 112 | 499,563 | 186,569 | | | Vehicle type GAS | | | | | DSL | | | NG | | ELEC | | | | |------------------|------------|----------------|--------------|------------------|---------------|--------------|---------|-------------|--------------|-----------|-----------------|-----------|--| | venicie type | VMT/day | Gallons/day | Miles/gallon | VMT/day | Gallons/day | Miles/gallon | VMT/day | Gallons/day | Miles/gallon | VMT/day | kWh/day | Miles/kWh | | | All other buses | 0 | 0 | 0.00 | 49,405 | <i>5,77</i> 8 | 8.55 | 355 | 48 | <i>7</i> .39 | 0 | 0 | 0.00 | | | LDA | 22,621,029 | 790,575 | 28.61 | 65,439 | 1,532 | 42.72 | 0 | 0 | 0.00 | 2,105,313 | <i>7</i> 91,230 | 2.66 | | | LDT1 | 1,810,612 | <i>74,</i> 711 | 24.23 | 503 | 21 | 24.44 | 0 | 0 | 0.00 | 6,199 | 2,372 | 2.61 | | | LDT2 | 9,665,133 | 422,896 | 22.85 | 33,893 | 1,079 | 31.41 | 0 | 0 | 0.00 | 29,197 | 9,684 | 3.01 | | | LHD1 | 672,783 | 73,958 | 9.10 | 343,383 | 21,881 | 15.69 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | | | LHD2 | 87,553 | 10,693 | 8.19 | 1 <i>57,</i> 443 | 12,203 | 12.90 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | | | MCY | 160,382 | 3,869 | 41.45 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | | | MDV | 5,065,073 | 269,019 | 18.83 | 86,018 | 3,560 | 24.16 | 0 | 0 | 0.00 | 21,269 | <i>7</i> ,186 | 2.96 | | | MH | 23,630 | 5,358 | 4.41 | 8,934 | 950 | 9.40 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | | | Motor coach | 0 | 0 | 0.00 | 11,679 | 2,121 | 5.51 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | | | OBUS | 22,503 | 4,830 | 4.66 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | | | PTO | 0 | 0 | 0.00 | 24,993 | 5,248 | 4.76 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | | | SBUS | 7,565 | 777 | 9.74 | 1 <i>5</i> ,431 | 1,904 | 8.10 | 561 | 104 | 5.41 | 0 | 0 | 0.00 | | | T6 | 67,829 | 14,832 | 4.57 | 424,633 | 50,857 | 8.35 | 3,645 | 519 | 7.02 | 0 | 0 | 0.00 | | | T7 | 108 | 33 | 3.30 | 949,282 | 167,379 | 5.67 | 44,859 | 9,074 | 4.94 | 0 | 0 | 0.00 | | | UBUS | 4,770 | 541 | 8.81 | 48,603 | 5,267 | 9.23 | 4,738 | 784 | 6.04 | 199 | 347 | 0.57 | | | Total | 40,208,971 | 1,672,093 | 24.05 | 2,219,639 | 279,780 | 7.93 | 54,158 | 10,529 | 5.14 | 2,162,177 | 810,819 | 2.67 | | Source: EMFAC2021 (v1.0.1) Emissions Inventory Region Type: Sub-Area Region: Santa Clara (SF) Calendar Year: 2021 Season: Annual Vehicle Classification: EMFAC202x Categories Units: miles/day for CVMT and EVMT, trips/day for Trips, kWh/day for Energy Consumption, tons/day for Emissions, 1000 gallons/day for Fuel Consumption | Dogion | Calandar Vaar Vahiala Catagony | Madal Vaar | Cnood | Fuel | Donulation | Total VAT | CVAAT | E\/\AT | Trins | Fuel Consumptio F | norgy Consumnt | |--------------------------------------|---|-------------------------|------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------------------|----------------------------|----------------------------------|----------------------------| | Region
Santa Clara (SF) | Calendar Year Vehicle Category 2021 All Other Buses | Model Year
Aggregate | Speed
Aggregate |
Fuel
Diesel | Population 753.1575293 | Total VMT
49405.18401 | CVMT
49405.18401 | EVMT
0 | Trips
6703.102011 | Fuel Consumptio E
5.777878175 | nergy Consumpt | | Santa Clara (SF) | 2021 All Other Buses | Aggregate | Aggregate | Natural Gas | 5.469370639 | 354.9736968 | 354.9736968 | 0 | 48.67739869 | 0.048056971 | 0 | | Santa Clara (SF) | 2021 LDA | Aggregate | Aggregate | Gasoline | 606787.9769 | 22328684.33 | 22328684.33 | 0 | 2819030.851 | 780.6858842 | 0 | | Santa Clara (SF) | 2021 LDA | Aggregate | Aggregate | Diesel | 2097.284571 | 65438.92679 | 65438.92679 | 0 | 9106.700913 | 1.531676911 | 0 | | Santa Clara (SF) | 2021 LDA | Aggregate | Aggregate | Electricity | 45687.59288 | 1848394.432 | 0 | 1848394.432 | 228454.0271 | 0 | 713632.807 | | Santa Clara (SF) | 2021 LDA | Aggregate | Aggregate | Plug-in Hybrid | 12325.74943 | 549262.6478 | 292344.2183 | 256918.4295 | 50966.97387 | 9.889487832 | 77597.02311 | | Santa Clara (SF) | 2021 LDT1 | Aggregate | Aggregate | Gasoline | 56250.20079 | 1810348.739 | 1810348.739 | 0 | 251042.1447 | 74.70242986 | 0 | | Santa Clara (SF) | 2021 LDT1 | Aggregate | Aggregate | Diesel | 32.08332827 | 503.068528 | 503.068528 | 0 | 96.1477587 | 0.020586637 | 0 | | Santa Clara (SF) | 2021 LDT1 | Aggregate | Aggregate | Electricity | 176.8773976 | 5945.758431 | 0 | 5945.758431 | 835.4181192 | 0 | 2295.553484 | | Santa Clara (SF) | 2021 LDT1 | Aggregate | Aggregate | Plug-in Hybrid | 10.8247161 | 516.8070657 | 263.2287822 | 253.5782836 | 44.76020107 | 0.008934833 | 76.58819948 | | Santa Clara (SF) | 2021 LDT2 | Aggregate | Aggregate | Gasoline | 269286.0936 | 9644865.293 | 9644865.293 | 0 | 1261290.796 | 422.2047138 | 0 | | Santa Clara (SF) | 2021 LDT2 | Aggregate | Aggregate | Diesel | 883.6520453 | 33892.88704 | 33892.88704 | 0 | 4258.527289 | 1.07901186 | 0 | | Santa Clara (SF) | 2021 LDT2 | Aggregate | Aggregate | Electricity | 295.5133619 | 10300.33172 | 0 | 10300.33172 | 1512.362029 | 0 | 3976.778176 | | Santa Clara (SF) | 2021 LDT2 | Aggregate | Aggregate | Plug-in Hybrid | 845.8397775 | 39165.02709 | 20268.10602 | 18896.92107 | 3497.54748 | 0.690805468 | 5707.433382 | | Santa Clara (SF) | 2021 LHD1 | Aggregate | Aggregate | Gasoline | 18933.42146 | 672783.0793 | 672783.0793 | 0 | 282079.7689 | 73.9582791 | 0 | | Santa Clara (SF) | 2021 LHD1 | Aggregate | Aggregate | Diesel | 9139.777162 | 343382.9252 | 343382.9252 | 0 | 114966.8989 | 21.88118037 | 0 | | Santa Clara (SF) | 2021 LHD2 | Aggregate | Aggregate | Gasoline | 2465.999662 | 87553.13797 | 87553.13797 | 0 | 36739.72062 | 10.69316918 | 0 | | Santa Clara (SF) | 2021 LHD2 | Aggregate | Aggregate | Diesel | 4074.911372 | 157442.8322 | 157442.8322 | 0 | 51257.25882 | 12.20264652 | 0 | | Santa Clara (SF) | 2021 MCY | Aggregate | Aggregate | Gasoline | 27304.17111 | 160382.2212 | 160382.2212 | 0 | 54608.34222 | 3.869155128 | 0 | | Santa Clara (SF) | 2021 MDV | Aggregate | Aggregate | Gasoline | 147596.411 | 5051242.336 | 5051242.336 | 0 | 682293.6698 | 268.5401362 | 0 | | Santa Clara (SF) | 2021 MDV | Aggregate | Aggregate | Diesel | 2291.713788 | 86017.73007 | 86017.73007 | 0 | 11013.96254 | 3.56015193 | 2504 500454 | | Santa Clara (SF) | 2021 MDV | Aggregate | Aggregate | Electricity | 256.6989907 | 9069.305494 | 0
13830.97191 | 9069.305494 | 1316.884036
2519.814322 | 0
0.478586587 | 3501.500451
3684.588022 | | Santa Clara (SF)
Santa Clara (SF) | 2021 MDV
2021 MH | Aggregate | Aggregate | Plug-in Hybrid
Gasoline | 609.3867768
2769.699029 | 26030.39053
23630.01423 | 23630.01423 | 12199.41861
0 | 277.0806908 | 5.358089555 | 0 | | Santa Clara (SF) | 2021 MH
2021 MH | Aggregate | Aggregate | Diesel | 922.1828121 | 8933.6317 | 8933.6317 | 0 | 92.21828121 | 0.950306588 | 0 | | Santa Clara (SF) | 2021 Motor Coach | Aggregate | Aggregate | Diesel | 81.53049559 | 11679.1 | 11679.1 | 0 | 1873.570789 | 2.120919284 | 0 | | Santa Clara (SF) | 2021 Motor Coach | Aggregate | Aggregate
Aggregate | Gasoline | 483.6838018 | 22502.67818 | 22502.67818 | 0 | 9677.545507 | 4.829767036 | 0 | | Santa Clara (SF) | 2021 OBO3
2021 PTO | Aggregate | | Diesel | 465.0656018 | 24993.17659 | 24993.17659 | 0 | 9077.343307 | 5.248193576 | 0 | | Santa Clara (SF) | 2021 FTO
2021 SBUS | Aggregate
Aggregate | Aggregate
Aggregate | Gasoline | 153.6366592 | 7565.400387 | 7565.400387 | 0 | 614.546637 | 0.777123714 | 0 | | Santa Clara (SF) | 2021 SBUS | Aggregate | Aggregate | Diesel | 657.673104 | 15431.13438 | | 0 | 9523.106546 | 1.904488696 | 0 | | Santa Clara (SF) | 2021 SBUS | Aggregate | Aggregate | Natural Gas | 21.69727028 | 560.930124 | 560.930124 | 0 | 314.1764736 | 0.10359294 | 0 | | Santa Clara (SF) | 2021 T6 CAIRP Class 4 | Aggregate | Aggregate | Diesel | 3.191002305 | 212.8721668 | 212.8721668 | 0 | 73.32923298 | 0.024297722 | 0 | | Santa Clara (SF) | 2021 T6 CAIRP Class 5 | Aggregate | Aggregate | Diesel | 4.310174367 | 292.0223334 | 292.0223334 | 0 | 99.04780695 | 0.033186661 | 0 | | Santa Clara (SF) | 2021 To CAIN Class 5 | Aggregate | Aggregate | Diesel | 12.45959208 | 763.062712 | 763.062712 | 0 | 286.3214259 | 0.086247965 | 0 | | Santa Clara (SF) | 2021 T6 CAIRP Class 7 | Aggregate | Aggregate | Diesel | 22.93216118 | 4786.315022 | 4786.315022 | 0 | 526.9810638 | 0.502883669 | 0 | | Santa Clara (SF) | 2021 To CAIM Class 7 2021 To Instate Delivery Class 4 | Aggregate | Aggregate | Diesel | 612.8301517 | 20829.51569 | 20829.51569 | 0 | 8745.086265 | 2.567432606 | 0 | | Santa Clara (SF) | 2021 To Instate Delivery Class 4 | Aggregate | Aggregate | Natural Gas | 1.830674252 | 63.44725924 | 63.44725924 | 0 | 26.12372157 | 0.009899292 | 0 | | Santa Clara (SF) | 2021 To Instate Delivery Class 5 | Aggregate | Aggregate | Diesel | 675.9474262 | 24019.11183 | 24019.11183 | 0 | 9645.769772 | 2.977356034 | 0 | | Santa Clara (SF) | 2021 To Instate Delivery Class 5 | Aggregate | Aggregate | Natural Gas | 2.756833047 | 88.24103156 | 88.24103156 | 0 | 39.34000758 | 0.013771781 | 0 | | Santa Clara (SF) | 2021 T6 Instate Delivery Class 6 | Aggregate | Aggregate | Diesel | 1326.288643 | 45819.37235 | 45819.37235 | 0 | 18926.13894 | 5.662933295 | 0 | | Santa Clara (SF) | 2021 T6 Instate Delivery Class 6 | Aggregate | Aggregate | Natural Gas | 5.671909136 | 178.9246539 | | 0 | 80.93814338 | 0.027907575 | 0 | | Santa Clara (SF) | 2021 T6 Instate Delivery Class 7 | Aggregate | Aggregate | Diesel | 177.0745972 | 9667.778262 | 9667.778262 | 0 | 2526.854502 | 1.181915766 | 0 | | Santa Clara (SF) | 2021 To Instate Delivery Class 7 | Aggregate | Aggregate | Natural Gas | 2.079798146 | 115.789164 | 115.789164 | 0 | 29.67871955 | 0.017000265 | 0 | | Santa Clara (SF) | 2021 To Instate Other Class 4 | Aggregate | Aggregate | Diesel | 1153.641255 | 44696.31364 | 44696.31364 | 0 | 13336.09291 | 5.3051215 | 0 | | Santa Clara (SF) | 2021 To Instate Other Class 4 | Aggregate | Aggregate | Natural Gas | 2.999170231 | 128.8153801 | 128.8153801 | 0 | 34.67040788 | 0.017548595 | 0 | | Santa Clara (SF) | 2021 To Instate Other Class 5 | Aggregate | Aggregate | Diesel | 2099.734608 | 92823.44359 | 92823.44359 | 0 | 24272.93207 | 11.01065155 | 0 | | Santa Clara (SF) | 2021 To Instate Other Class 5 | Aggregate | Aggregate | Natural Gas | 6.797922762 | 278.3236265 | 278.3236265 | 0 | 78.58398713 | 0.037898623 | 0 | | Santa Clara (SF) | 2021 T6 Instate Other Class 6 | Aggregate | Aggregate | Diesel | 2089.072098 | 87626.8249 | 87626.8249 | 0 | 24149.67345 | 10.28171777 | 0 | | Santa Clara (SF) | 2021 T6 Instate Other Class 6 | Aggregate | Aggregate | Natural Gas | 7.569347646 | 304.7325574 | 304.7325574 | 0 | 87.50165879 | 0.041603751 | 0 | | Santa Clara (SF) | 2021 T6 Instate Other Class 7 | Aggregate | Aggregate | Diesel | 760.0843419 | 37161.59994 | 37161.59994 | 0 | 8786.574992 | 4.324156076 | 0 | | Santa Clara (SF) | 2021 T6 Instate Other Class 7 | Aggregate | Aggregate | Natural Gas | 12.7679093 | 724.0727401 | 724.0727401 | 0 | 147.5970315 | 0.093315473 | 0 | | Santa Clara (SF) | 2021 T6 Instate Tractor Class 6 | Aggregate | Aggregate | Diesel | 9.003860786 | 413.3960528 | 413.3960528 | 0 | 104.0846307 | 0.048106618 | 0 | | Santa Clara (SF) | 2021 T6 Instate Tractor Class 6 | Aggregate | Aggregate | Natural Gas | 0.00822374 | 0.545394258 | 0.545394258 | 0 | 0.095066433 | 7.10783E-05 | 0 | | Santa Clara (SF) | 2021 T6 Instate Tractor Class 7 | Aggregate | Aggregate | Diesel | 236.9637473 | 14889.04709 | 14889.04709 | 0 | 2739.300919 | 1.655480794 | 0 | | Santa Clara (SF) | 2021 T6 Instate Tractor Class 7 | Aggregate | Aggregate | Natural Gas | 2.756433892 | 193.6099982 | 193.6099982 | 0 | 31.86437579 | 0.024445495 | 0 | | Santa Clara (SF) | 2021 T6 OOS Class 4 | Aggregate | Aggregate | Diesel | 1.778086599 | 117.8152097 | 117.8152097 | 0 | 40.86043004 | 0.013443158 | 0 | | Santa Clara (SF) | 2021 T6 OOS Class 5 | Aggregate | Aggregate | Diesel | 2.393321106 | 161.6212817 | 161.6212817 | 0 | 54.99851901 | 0.018366402 | 0 | | Santa Clara (SF) | 2021 T6 OOS Class 6 | Aggregate | Aggregate | Diesel | 6.935725289 | 422.3210332 | 422.3210332 | 0 | 159.3829671 | 0.047731996 | 0 | | Santa Clara (SF) | 2021 T6 OOS Class 7 | Aggregate | Aggregate | Diesel | 12.32729318 | 3070.799063 | 3070.799063 | 0 | 283.2811972 | 0.321736515 | 0 | | Santa Clara (SF) | 2021 T6 Public Class 4 | Aggregate | Aggregate | Diesel | 143.7498453 | 4747.57382 | 4747.57382 | 0 | 737.4367066 | 0.635908823 | 0 | | Santa Clara (SF) | 2021 T6 Public Class 4 | Aggregate | Aggregate | Natural Gas | 5.360182228 | 229.9653441 | 229.9653441 | 0 | 27.49773483 | 0.036009087 | 0 | | Santa Clara (SF) | 2021 T6 Public Class 5 | Aggregate | Aggregate | Diesel | 214.1930194 | 8160.979498 | 8160.979498 | 0 | 1098.81019 | 1.060764155 | 0 | | Santa Clara (SF) | 2021 T6 Public Class 5 | Aggregate | Aggregate | Natural Gas | 11.9992102 | 509.6634785 | 509.6634785 | 0 | 61.55594832 | 0.077058852 | 0 | | Santa Clara (SF) | 2021 T6 Public Class 6 | Aggregate | Aggregate |
Diesel | 134.102726 | 4453.114651 | 4453.114651 | 0 | 687.9469845 | 0.60375566 | 0 | | Santa Clara (SF) | 2021 T6 Public Class 6 | Aggregate | Aggregate | Natural Gas | 4.301227559 | 183.6421442 | | 0 | 22.06529738 | 0.027852201 | 0 | | Santa Clara (SF) | 2021 T6 Public Class 7 | Aggregate | Aggregate | Diesel | 313.2921679 | 13581.62819 | | 0 | 1607.188821 | 1.808098164 | 0 | | Santa Clara (SF) | 2021 TG Public Class 7 | Aggregate | Aggregate | Natural Gas | 9.366051128 | 558.3149312 | 558.3149312 | 0 | 48.04784229 | 0.083180183 | 0 | | Santa Clara (SF) | 2021 TG Utility Class 5 | Aggregate | Aggregate | Diesel | 99.8421442 | 4080.449273 | 4080.449273 | 0 | 1277.979446 | 0.47330999 | 0 | | Santa Clara (SF) | 2021 T6 Utility Class 5 | Aggregate | Aggregate | Natural Gas | 1.338996223 | 54.31770076
771.8002691 | 54.31770076
771.8002691 | 0 | 17.13915166
246.1276808 | 0.007528796
0.089934857 | 0 | | Santa Clara (SF) | 2021 T6 Utility Class 6 | Aggregate | Aggregate | Diesel | 19.22872506
0.236629894 | | | | | | 0 | | Santa Clara (SF) | 2021 T6 Utility Class 6
2021 T6 Utility Class 7 | Aggregate | Aggregate | Natural Gas
Diesel | 21.81231847 | 9.586990271
1064.624707 | 9.586990271
1064.624707 | 0 | 3.028862647
279.1976764 | 0.001313654
0.122748127 | 0 | | Santa Clara (SF)
Santa Clara (SF) | 2021 T6 Utility Class 7 2021 T6 Utility Class 7 | Aggregate | Aggregate | Natural Gas | 0.493812058 | 22.5445299 | 22.5445299 | 0 | 6.320794347 | 0.122748127 | 0 | | Santa Clara (SF) | 2021 T6 Othity Class 7 2021 T6TS | Aggregate
Aggregate | Aggregate
Aggregate | Gasoline | 1442.735201 | 67829.4691 | 67829.4691 | 0 | 28866.2459 | 14.83176809 | 0 | | Santa Clara (SF) | 2021 TOTS
2021 T7 CAIRP Class 8 | Aggregate
Aggregate | Aggregate | Diesel | 960.9184699 | 199974.4842 | 199974.4842 | 0 | 22081.90644 | 33.72757296 | 0 | | Santa Clara (SF) | 2021 17 CAIRP Class 8 | Aggregate | Aggregate | Natural Gas | 1.717438777 | 379.9869222 | 379.9869222 | 0 | 39.46674308 | 0.067879723 | 0 | | Santa Clara (SF) | 2021 T7 CAINT Class 8 | Aggregate | Aggregate | Diesel | 878.8053948 | 237882.7441 | 237882.7441 | 0 | 20194.94797 | 40.28997061 | n | | Santa Clara (SF) | 2021 T7 NOOS Class 8 | Aggregate | Aggregate | Diesel | 361.1500246 | 86438.74259 | 86438.74259 | 0 | 8299.227565 | 14.66875617 | n | | Santa Clara (SF) | 2021 T7 Other Port Class 8 | Aggregate | Aggregate | Diesel | 103.885508 | 17544.32334 | 17544.32334 | 0 | 1699.566912 | 3.028295891 | 0 | | Santa Clara (SF) | 2021 T7 POAK Class 8 | Aggregate | Aggregate | Diesel | 653.5390099 | 63384.10999 | 63384.10999 | 0 | 10691.8982 | 11.19477942 | 0 | | Santa Clara (SF) | 2021 T7 POAK Class 8 | Aggregate | Aggregate | Natural Gas | 1.335804021 | 129.4575643 | 129.4575643 | 0 | 21.85375378 | 0.027241111 | 0 | | Santa Clara (SF) | 2021 T7 Public Class 8 | Aggregate | Aggregate | Diesel | 664.7820953 | 28624.69901 | 28624.69901 | 0 | 3410.332149 | 5.631034306 | 0 | | Santa Clara (SF) | 2021 T7 Public Class 8 | Aggregate | Aggregate | Natural Gas | 2.2761641 | 115.1922149 | | 0 | 11.67672183 | 0.025932599 | 0 | | . , | | - | - | | | | | | | | | | Santa Clara (SF) | 2021 T7 Single Concrete/Transit Mi | ix Cl Aggregate | Aggregate | Diesel | 407.3324501 | 28422.88674 | 28422.88674 | 0 | 3837.07168 | 4.932688584 | 0 | |------------------|------------------------------------|-----------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------| | Santa Clara (SF) | 2021 T7 Single Concrete/Transit Mi | ix Cl Aggregate | Aggregate | Natural Gas | 24.00395211 | 1825.541497 | 1825.541497 | 0 | 226.1172289 | 0.325803229 | 0 | | Santa Clara (SF) | 2021 T7 Single Dump Class 8 | Aggregate | Aggregate | Diesel | 640.1766996 | 40608.21374 | 40608.21374 | 0 | 6030.46451 | 7.020367498 | 0 | | Santa Clara (SF) | 2021 T7 Single Dump Class 8 | Aggregate | Aggregate | Natural Gas | 38.42709938 | 2671.479405 | 2671.479405 | 0 | 361.9832762 | 0.494188348 | 0 | | Santa Clara (SF) | 2021 T7 Single Other Class 8 | Aggregate | Aggregate | Diesel | 834.3643452 | 49272.82146 | 49272.82146 | 0 | 7859.712131 | 8.507855526 | 0 | | Santa Clara (SF) | 2021 T7 Single Other Class 8 | Aggregate | Aggregate | Natural Gas | 47.31385162 | 3069.690178 | 3069.690178 | 0 | 445.6964823 | 0.564593486 | 0 | | Santa Clara (SF) | 2021 T7 SWCV Class 8 | Aggregate | Aggregate | Diesel | 351.7052735 | 22814.48213 | 22814.48213 | 0 | 1617.844258 | 9.382079701 | 0 | | Santa Clara (SF) | 2021 T7 SWCV Class 8 | Aggregate | Aggregate | Natural Gas | 299.1089674 | 19341.06305 | 19341.06305 | 0 | 1375.90125 | 4.5029636 | 0 | | Santa Clara (SF) | 2021 T7 Tractor Class 8 | Aggregate | Aggregate | Diesel | 2021.265662 | 171050.0568 | 171050.0568 | 0 | 29368.99007 | 28.41810602 | 0 | | Santa Clara (SF) | 2021 T7 Tractor Class 8 | Aggregate | Aggregate | Natural Gas | 190.3025413 | 17326.90504 | 17326.90504 | 0 | 2765.095926 | 3.065010317 | 0 | | Santa Clara (SF) | 2021 T7 Utility Class 8 | Aggregate | Aggregate | Diesel | 67.72773785 | 3264.863138 | 3264.863138 | 0 | 866.9150444 | 0.577662395 | 0 | | Santa Clara (SF) | 2021 T7IS | Aggregate | Aggregate | Gasoline | 4.911670528 | 108.3320922 | 108.3320922 | 0 | 98.27270392 | 0.032870405 | 0 | | Santa Clara (SF) | 2021 UBUS | Aggregate | Aggregate | Gasoline | 45.67500002 | 4769.829538 | 4769.829538 | 0 | 182.7000001 | 0.541359028 | 0 | | Santa Clara (SF) | 2021 UBUS | Aggregate | Aggregate | Diesel | 434.6268787 | 48602.55774 | 48602.55774 | 0 | 1738.507515 | 5.266914309 | 0 | | Santa Clara (SF) | 2021 UBUS | Aggregate | Aggregate | Electricity | 5.046756939 | 199.0027319 | 0 | 199.0027319 | 20.18702775 | 0 | 346.910342 | | Santa Clara (SF) | 2021 UBUS | Aggregate | Aggregate | Natural Gas | 41.43636456 | 4737.889242 | 4737.889242 | 0 | 165.7454582 | 0.784118952 | 0 | | | | | | | | | | | | | | | Vehicle type | | GAS | | | DSL | | | NG | | ELEC | | | | |-----------------|--------------------------|-----------------|--------------|-----------------|-------------|--------------|---------|----------------|--------------|-------------------------|-------------|-----------|--| | venicle type | VMT/day | Gallons/day | Miles/gallon | VMT/day | Gallons/day | Miles/gallon | VMT/day | Gallons/day | Miles/gallon | VMT/day | kWh/day | Miles/kWh | | | All other buses | 0 | 0 | 0.00 | 49,867 | 5,767 | 8.65 | 410 | 54 | <i>7</i> .58 | 0 | 0 | 0.00 | | | LDA | 22,726,901 | <i>77</i> 0,216 | 29.51 | 56,221 | 1,299 | 43.28 | 0 | 0 | 0.00 | 2,612,147 | 979,593 | 2.67 | | | LDT1 | 1,745,424 | 70,152 | 24.88 | 392 | 16 | 24.43 | 0 | 0 | 0.00 | 8 , 1 <i>7</i> 2 | 3,062 | 2.67 | | | LDT2 | 10,178,109 | 428,910 | 23.73 | 36,937 | 1,148 | 32.17 | 0 | 0 | 0.00 | 79,060 | 27,151 | 2.91 | | | LHD1 | <i>7</i> 11 , 085 | 74,668 | 9.52 | 384,085 | 24,160 | 15.90 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | | | LHD2 | 90,793 | 10 , 677 | 8.50 | 176,769 | 13,401 | 13.19 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | | | MCY | 164,895 | 3,931 | 41.95 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | | | MDV | 5,378,872 | 275,184 | 19.55 | 86,834 | 3,534 | 24.57 | 0 | 0 | 0.00 | 61,185 | 21,848 | 2.80 | | | MH | 22,547 | 5,107 | 4.42 | 9,345 | 995 | 9.39 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | | | Motor coach | 0 | 0 | 0.00 | 11 <i>,77</i> 9 | 2,151 | 5.48 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | | | OBUS | 20,830 | 4,374 | 4.76 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | | | PTO | 0 | 0 | 0.00 | 25,406 | 5,188 | 4.90 | 0 | 0 | 0.00 | 12 | 25 | 0.48 | | | SBUS | 8,309 | 842 | 9.86 | 15,393 | 1,888 | 8.15 | 596 | 109 | 5.48 | 4 | 4 | 0.95 | | | T6 | 70,786 | 14,992 | 4.72 | 431,550 | 51,225 | 8.42 | 4,048 | 567 | 7.14 | 102 | 109 | 0.94 | | | T7 | 114 | 31 | 3.68 | 965,883 | 166,461 | 5.80 | 53,296 | 10,51 <i>7</i> | 5.07 | 400 | <i>7</i> 30 | 0.55 | | | UBUS | 4,798 | <i>517</i> | 9.27 | 48,830 | 5,294 | 9.22 | 4,830 | 799 | 6.04 | 199 | 347 | 0.57 | | | Total | 41,123,463 | 1,659,602 | 24.78 | 2,299,290 | 282,527 | 8.14 | 63,179 | 12,046 | 5.24 | 2,761,280 | 1,032,869 | 2.67 | | Source: EMFAC2021 (v1.0.1) Emissions Inventory Region Type: Sub-Area Region: Santa Clara (SF) Calendar Year: 2023 Season: Annual Vehicle Classification: EMFAC202x Categories Units: miles/day for CVMT and EVMT, trips/day for Trips, kWh/day for Energy Consumption, tons/day for Emissions, 1000 gallons/day for Fuel Consumption | Region | Calendar Year Vehicle Category | Model Year | Speed | Fuel | Population | Total VMT | CVMT | EVMT | Trips | Fuel Consumptio E | nergy Consumpt | |--------------------------------------|--|------------------------|------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------------------|----------------------------|----------------------------|------------------| | Santa Clara (SF) | 2023 All Other Buses | Aggregate | Aggregate | Diesel | 787.7498085 | 49867.13684 | 49867.13684 | 0 | 7010.973296 | 5.767368866 | 0 | | Santa Clara (SF)
Santa Clara (SF) | 2023 All Other Buses
2023 LDA | Aggregate | Aggregate | Natural Gas
Gasoline | 6.145600435
601938.3153 | 409.546615
22370251.09 | 409.546615
22370251.09 | 0 | 54.69584387
2795479.204 | 0.054019102
758.1523908 | 0 | | Santa Clara (SF) | 2023 LDA
2023 LDA | Aggregate
Aggregate | Aggregate
Aggregate | Diesel | 1871.124679 | 56220.79718 | 56220.79718 | 0 | 8000.531418 | 1.29892798 | 0 | | Santa Clara (SF) | 2023 LDA | Aggregate | Aggregate | Electricity | 53751.14791 | 2268185.318 | 0 | 2268185.318 | 265250.078 | 0 | 875706.7364 | | Santa Clara (SF) | 2023 LDA | Aggregate | Aggregate | Plug-in Hybrid | 15805.32023 | 700610.9132 | 356649.6534 | 343961.2598 | 65354.99917 | 12.06393978 | 103886.5521 | | Santa Clara (SF) | 2023 LDT1 | Aggregate | Aggregate | Gasoline | 53782.25287 | 1744480.187 | 1744480.187 | 0 |
239737.9214 | 70.12001518 | 0 | | Santa Clara (SF)
Santa Clara (SF) | 2023 LDT1
2023 LDT1 | Aggregate
Aggregate | Aggregate
Aggregate | Diesel
Electricity | 26.04713722
194.8940713 | 391.8698325
7068.184366 | 391.8698325
0 | 0
7068.184366 | 75.17736541
916.4831754 | 0.016037369
0 | 0
2728.902534 | | Santa Clara (SF) | 2023 LDT1 | Aggregate | Aggregate | Plug-in Hybrid | 43.27677362 | 2048.369176 | 944.157857 | 1104.211319 | 178.9494589 | 0.03210507 | 333.5047292 | | Santa Clara (SF) | 2023 LDT2 | Aggregate | Aggregate | Gasoline | 280180.4214 | 10140966.51 | 10140966.51 | 0 | 1311795.544 | 427.6416304 | 0 | | Santa Clara (SF) | 2023 LDT2 | Aggregate | Aggregate | Diesel | 978.4966958 | 36936.87393 | 36936.87393 | 0 | | 1.148123535 | 0 | | Santa Clara (SF) | 2023 LDT2 | Aggregate | Aggregate | Electricity | 1105.878915 | 38931.70292 | 0 | | 5663.050709 | 0 | 15030.85053 | | Santa Clara (SF) | 2023 LDT2
2023 LHD1 | Aggregate | Aggregate | Plug-in Hybrid | 1696.549844 | 77270.65796
711085.4725 | 37142.67878 | 40127.97918 | 7015.233604
285767.7523 | 1.268124945
74.66781372 | 12119.84572
0 | | Santa Clara (SF)
Santa Clara (SF) | 2023 LHD1
2023 LHD1 | Aggregate
Aggregate | Aggregate
Aggregate | Gasoline
Diesel | 19180.96188
9807.464999 | 384084.7884 | 711085.4725
384084.7884 | 0 | 123365.5719 | 24.16048678 | 0 | | Santa Clara (SF) | 2023 LHD2 | Aggregate | Aggregate | Gasoline | 2494.382223 | 90793.03842 | 90793.03842 | 0 | 37162.5785 | 10.67729528 | 0 | | Santa Clara (SF) | 2023 LHD2 | Aggregate | Aggregate | Diesel | 4479.531561 | 176769.2012 | 176769.2012 | 0 | 56346.87178 | 13.40074061 | 0 | | Santa Clara (SF) | 2023 MCY | Aggregate | Aggregate | Gasoline | 27894.49523 | 164894.5081 | 164894.5081 | 0 | 55788.99047 | 3.930936692 | 0 | | Santa Clara (SF) | 2023 MDV | Aggregate | Aggregate | Gasoline | 153799.1108 | 5358084.151 | 5358084.151 | 0 | 712433.9369 | 274.4637038 | 0 | | Santa Clara (SF)
Santa Clara (SF) | 2023 MDV
2023 MDV | Aggregate
Aggregate | Aggregate
Aggregate | Diesel
Electricity | 2374.917965
1130.115411 | 86834.44186
40073.70084 | 86834.44186
0 | 0
40073.70084 | 11267.05043
5799.833494 | 3.53404257
0 | 0
15471.75599 | | Santa Clara (SF) | 2023 MDV
2023 MDV | Aggregate | Aggregate | Plug-in Hybrid | 986.0895201 | 41899.13712 | 20787.34912 | 21111.78799 | 4077.480166 | 0.720324533 | 6376.389206 | | Santa Clara (SF) | 2023 MH | Aggregate | Aggregate | Gasoline | 2522.744687 | 22546.87041 | 22546.87041 | 0 | 252.3753785 | 5.106865714 | 0 | | Santa Clara (SF) | 2023 MH | Aggregate | Aggregate | Diesel | 959.1578086 | 9344.849437 | 9344.849437 | 0 | 95.91578086 | 0.995112486 | 0 | | Santa Clara (SF) | 2023 Motor Coach | Aggregate | Aggregate | Diesel | 82.67107969 | 11778.52162 | 11778.52162 | 0 | 1899.781411 | 2.150975826 | 0 | | Santa Clara (SF) | 2023 OBUS | Aggregate | Aggregate | Gasoline | 458.8974004 | 20830.07544 | 20830.07544 | 0 | 9181.619188 | 4.374109066 | 0 | | Santa Clara (SF)
Santa Clara (SF) | 2023 PTO
2023 PTO | Aggregate
Aggregate | Aggregate
Aggregate | Diesel
Electricity | 0 | 25406.07084
11.88456368 | 25406.07084
0 | 0
11.88456368 | 0 | 5.187764905
0 | 24.61909671 | | Santa Clara (SF) | 2023 SBUS | Aggregate | Aggregate | Gasoline | 166.986694 | 8309.307836 | 8309.307836 | 0 | 667.946776 | 0.842317687 | 0 | | Santa Clara (SF) | 2023 SBUS | Aggregate | Aggregate | Diesel | 667.1184919 | 15392.68347 | 15392.68347 | 0 | 9659.875763 | 1.88782318 | 0 | | Santa Clara (SF) | 2023 SBUS | Aggregate | Aggregate | Electricity | 0.302373247 | 3.510494287 | 0 | 3.510494287 | 4.378364621 | 0 | 3.69814983 | | Santa Clara (SF) | 2023 SBUS | Aggregate | Aggregate | Natural Gas | 23.50761997 | 595.8705457 | 595.8705457 | 0 | | 0.108660666 | 0 | | Santa Clara (SF) | 2023 T6 CAIRP Class 4 | Aggregate | Aggregate | Diesel | 3.27664237 | 216.5646971 | 216.5646971 | 0 | | 0.024491717 | 0 | | Santa Clara (SF)
Santa Clara (SF) | 2023 T6 CAIRP Class 4
2023 T6 CAIRP Class 5 | Aggregate | Aggregate | Electricity
Diesel | 0.003916745
4.399091842 | 0.142403946
297.1175597 | 0
297.1175597 | 0.142403946
0 | | 0
0.033555023 | 0.154691061 | | Santa Clara (SF) | 2023 To CAIRP Class 5 | Aggregate
Aggregate | Aggregate
Aggregate | Electricity | 0.004404624 | 0.165613928 | 297.1173397 | | 0.101218265 | 0.033333023 | 0.179903681 | | Santa Clara (SF) | 2023 T6 CAIRP Class 6 | Aggregate | Aggregate | Diesel | 13.84237926 | 775.9106329 | 775.9106329 | 0 | | 0.086418551 | 0 | | Santa Clara (SF) | 2023 T6 CAIRP Class 6 | Aggregate | Aggregate | Electricity | 0.030915016 | 0.898805074 | 0 | 0.898805074 | 0.710427058 | 0 | 0.976357143 | | Santa Clara (SF) | 2023 T6 CAIRP Class 7 | Aggregate | Aggregate | Diesel | 23.91619133 | 4869.891794 | 4869.891794 | 0 | | 0.509195141 | 0 | | Santa Clara (SF) | 2023 T6 CAIRP Class 7 | Aggregate | Aggregate | Electricity | 0.0256923 | 2.649641922 | 0 | | 0.59040905 | 0 | 2.878262364 | | Santa Clara (SF)
Santa Clara (SF) | 2023 T6 Instate Delivery Class 4 | Aggregate | Aggregate | Diesel | 627.4953331
0.36598452 | 21194.8178
6.703723252 | 21194.8178 | 0
6.703723252 | 8954.358403
5.222599101 | 2.586051212
0 | 0
7.161447301 | | Santa Clara (SF) | 2023 T6 Instate Delivery Class 4
2023 T6 Instate Delivery Class 4 | Aggregate
Aggregate | Aggregate
Aggregate | Electricity
Natural Gas | 1.809059061 | 67.83229102 | 0
67.83229102 | 0.703723232 | | 0.010183471 | 7.101447301
N | | Santa Clara (SF) | 2023 To Instate Delivery Class 5 | Aggregate | Aggregate | Diesel | 705.901652 | 24475.07202 | 24475.07202 | 0 | | 2.995511501 | 0 | | Santa Clara (SF) | 2023 T6 Instate Delivery Class 5 | Aggregate | Aggregate | Electricity | 0.356927115 | 6.512580538 | 0 | | 5.093349934 | 0 | 6.957253539 | | Santa Clara (SF) | 2023 T6 Instate Delivery Class 5 | Aggregate | Aggregate | Natural Gas | 1.602172761 | 60.06699147 | 60.06699147 | 0 | 22.8630053 | 0.008773071 | 0 | | Santa Clara (SF) | 2023 T6 Instate Delivery Class 6 | Aggregate | Aggregate | Diesel | 1366.158021 | 46700.99001 | 46700.99001 | 0 | | 5.700650365 | 0 | | Santa Clara (SF) | 2023 T6 Instate Delivery Class 6 | Aggregate | Aggregate | Electricity | 0.978692649
2.916219062 | 17.87469436
108.1007368 | 0
108.1007368 | 17.87469436 | | 0
0.015713212 | 19.09516203 | | Santa Clara (SF)
Santa Clara (SF) | 2023 T6 Instate Delivery Class 6
2023 T6 Instate Delivery Class 7 | Aggregate
Aggregate | Aggregate
Aggregate | Natural Gas
Diesel | 177.4021507 | 9755.82205 | 9755.82205 | 0 | | 1.167433756 | 0 | | Santa Clara (SF) | 2023 To instate Delivery Class 7 | Aggregate | Aggregate | Electricity | 0.038040266 | 0.818592732 | 0 | | 0.542834589 | 0 | 0.87448549 | | Santa Clara (SF) | 2023 T6 Instate Delivery Class 7 | Aggregate | Aggregate | Natural Gas | 3.628580607 | 203.179689 | 203.179689 | 0 | 51.77984527 | 0.029616174 | 0 | | Santa Clara (SF) | 2023 T6 Instate Other Class 4 | Aggregate | Aggregate | Diesel | 1110.728396 | 45522.58969 | 45522.58969 | 0 | | 5.367891098 | 0 | | Santa Clara (SF) | 2023 TG Instate Other Class 4 | Aggregate | Aggregate | Electricity | 0.111101184 | 2.308976173 | 0 | 2.308976173 | 1.284329688 | 0 | 2.447701971 | | Santa Clara (SF)
Santa Clara (SF) | 2023 T6 Instate Other Class 4
2023 T6 Instate Other Class 5 | Aggregate | Aggregate
Aggregate | Natural Gas
Diesel | 2.325008826
2154.06213 | 107.7639423
94555.62503 | 107.7639423
94555.62503 | 0 | | 0.014520043
11.14747034 | 0 | | Santa Clara (SF) | 2023 To Instate Other Class 5 | Aggregate
Aggregate | Aggregate | Electricity | 0.989647919 | 20.58264926 | 0 | | | 0 | 21.81927719 | | Santa Clara (SF) | 2023 T6 Instate Other Class 5 | Aggregate | Aggregate | Natural Gas | 4.594202822 | 202.8063304 | 202.8063304 | 0 | | 0.026453593 | 0 | | Santa Clara (SF) | 2023 T6 Instate Other Class 6 | Aggregate | Aggregate | Diesel | 2098.165215 | 89307.26622 | 89307.26622 | 0 | 24254.78989 | 10.43791702 | 0 | | Santa Clara (SF) | 2023 T6 Instate Other Class 6 | Aggregate | Aggregate | Electricity | 1.347868768 | 28.17793138 | 0 | 28.17793138 | 15.58136296 | 0 | 29.87089212 | | Santa Clara (SF) | 2023 T6 Instate Other Class 6 | Aggregate | Aggregate | Natural Gas | 4.148606277 | 180.2177392
37567.50132 | 180.2177392
37567.50132 | 0 | 47.95788857
8950.156198 | 0.023661747
4.340788217 | 0 | | Santa Clara (SF)
Santa Clara (SF) | 2023 T6 Instate Other Class 7
2023 T6 Instate Other Class 7 | Aggregate
Aggregate | Aggregate
Aggregate | Diesel
Electricity | 774.2349652
0.270807434 | 8.50081278 | 0 | 0
8.50081278 | | 4.340788217 | 9.011550849 | | Santa Clara (SF) | 2023 To instate Other Class 7 | Aggregate | Aggregate | Natural Gas | 18.90639883 | 992.1884528 | 992.1884528 | 0.30001270 | 218.5579704 | 0.128063464 | 0 | | Santa Clara (SF) | 2023 T6 Instate Tractor Class 6 | Aggregate | Aggregate | Diesel | 8.639745232 | 419.9542091 | 419.9542091 | 0 | 99.87545489 | 0.048377505 | 0 | | Santa Clara (SF) | 2023 T6 Instate Tractor Class 6 | Aggregate | Aggregate | Electricity | 0.006054795 | 0.178395526 | 0 | | 0.069993432 | 0 | 0.189113723 | | Santa Clara (SF) | 2023 T6 Instate Tractor Class 6 | Aggregate | Aggregate | Natural Gas | 0.01883776 | 1.266079639 | 1.266079639 | 0 | 0.217764506 | 0.000158319 | 0 | | Santa Clara (SF)
Santa Clara (SF) | 2023 T6 Instate Tractor Class 7 2023 T6 Instate Tractor Class 7 | Aggregate | Aggregate | Diesel
Electricity | 242.7709829
0.065792281 | 15021.29184
2.435640077 | 15021.29184
0 | 0
2.435640077 | 2806.432563
0.760558763 | 1.654636241
0 | 0
2.581975979 | | Santa Clara (SF) | 2023 To Instate Tractor Class 7 | Aggregate
Aggregate | Aggregate
Aggregate | Natural Gas | 4.995163126 | 330.6466639 | 330.6466639 | 2.433040077 | | 0.041739058 | 2.381973979 | |
Santa Clara (SF) | 2023 T6 OOS Class 4 | Aggregate | Aggregate | Diesel | 1.830878571 | 119.937674 | 119.937674 | 0 | 42.07358955 | 0.013554927 | 0 | | Santa Clara (SF) | 2023 T6 OOS Class 5 | Aggregate | Aggregate | Diesel | 2.447585774 | 164.5329212 | 164.5329212 | 0 | 56.24552108 | 0.018575897 | 0 | | Santa Clara (SF) | 2023 T6 OOS Class 6 | Aggregate | Aggregate | Diesel | 7.726848604 | 429.9292303 | 429.9292303 | 0 | 177.5629809 | 0.047841154 | 0 | | Santa Clara (SF) | 2023 T6 OOS Class 7 | Aggregate | Aggregate | Diesel | 12.56357918 | 3126.120117 | 3126.120117 | 0 | 288.7110496 | 0.325106036 | 0 | | Santa Clara (SF)
Santa Clara (SF) | 2023 T6 Public Class 4
2023 T6 Public Class 4 | Aggregate
Aggregate | Aggregate
Aggregate | Diesel
Electricity | 140.3730228
0.003788101 | 4755.755873
0.068675509 | 4755.755873
0 | 0.068675509 | 720.1136072
0.019432956 | 0.623832732
0 | 0
0.081098947 | | Santa Clara (SF) | 2023 To Public Class 4 | Aggregate | Aggregate | Natural Gas | 6.454176233 | 273.383003 | 273.383003 | 0.008073309 | | 0.042266091 | 0 | | Santa Clara (SF) | 2023 T6 Public Class 5 | Aggregate | Aggregate | Diesel | 219.493286 | 8209.379387 | 8209.379387 | 0 | 1126.000557 | 1.057449763 | 0 | | Santa Clara (SF) | 2023 T6 Public Class 5 | Aggregate | Aggregate | Electricity | 0.007565133 | 0.137152711 | 0 | 0.137152711 | 0.038809134 | 0 | 0.161963713 | | Santa Clara (SF) | 2023 TG Public Class 5 | Aggregate | Aggregate | Natural Gas | 13.22127145 | 551.1303779 | 551.1303779 | 0 | | 0.083121756 | 0 | | Santa Clara (SF)
Santa Clara (SF) | 2023 T6 Public Class 6
2023 T6 Public Class 6 | Aggregate
Aggregate | Aggregate
Aggregate | Diesel
Electricity | 130.7316917
0.041715719 | 4459.505024
0.757231603 | 4459.505024
0 | 0.757231603 | 670.6535786
0.214001636 | 0.590869921
0 | 0
0.894215223 | | Janua Giara (Ji) | 2020 . 0 . 0 . 0 . 0 . 0 | 00, 00000 | DD, CDUIC | | 0.0 .1, 10, 10 | 3., 3, 231003 | J | 3.737231003 | 3.21.001030 | · · | J.55 (215225 | | Santa Clara (SF) | 2023 T6 Public Class 6 | Aggregate | Aggregate | Natural Gas | 5.321600906 | 224.625502 | 224.625502 | 0 | 27.29981265 | 0.033766489 | 0 | |------------------|-------------------------------------|--------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | Santa Clara (SF) | 2023 T6 Public Class 7 | Aggregate | Aggregate | Diesel | 305.0640365 | 13628.39037 | 13628.39037 | 0 | 1564.978507 | 1.769756232 | 0 | | Santa Clara (SF) | 2023 T6 Public Class 7 | Aggregate | Aggregate | Electricity | 0.065466326 | 1.876820077 | 0 | 1.876820077 | 0.335842253 | 0 | 2.216337875 | | Santa Clara (SF) | 2023 T6 Public Class 7 | Aggregate | Aggregate | Natural Gas | 11.71803607 | 656.4528919 | 656.4528919 | 0 | 60.11352502 | 0.096732362 | 0 | | Santa Clara (SF) | 2023 T6 Utility Class 5 | Aggregate | Aggregate | Diesel | 101.2524935 | 4121.286864 | 4121.286864 | 0 | 1296.031917 | 0.468113463 | 0 | | Santa Clara (SF) | 2023 T6 Utility Class 5 | Aggregate | Aggregate | Natural Gas | 1.427742328 | 56.40026347 | 56.40026347 | 0 | 18.2751018 | 0.007747007 | 0 | | Santa Clara (SF) | 2023 T6 Utility Class 6 | Aggregate | Aggregate | Diesel | 19.26028007 | 778.3047964 | 778.3047964 | 0 | 246.5315849 | 0.088087194 | 0 | | Santa Clara (SF) | 2023 T6 Utility Class 6 | Aggregate | Aggregate | Natural Gas | 0.282829146 | 11.19350302 | 11.19350302 | 0 | 3.620213065 | 0.001526655 | 0 | | Santa Clara (SF) | 2023 T6 Utility Class 7 | Aggregate | Aggregate | Diesel | 21.81733058 | 1076.823332 | 1076.823332 | 0 | 279.2618315 | 0.121381779 | 0 | | Santa Clara (SF) | 2023 T6 Utility Class 7 | Aggregate | Aggregate | Electricity | 0.035454452 | 1.011842165 | 0 | 1.011842165 | 0.453816985 | 0 | 1.133327363 | | Santa Clara (SF) | 2023 T6 Utility Class 7 | Aggregate | Aggregate | Natural Gas | 0.47109173 | 20.61921379 | 20.61921379 | 0 | 6.029974142 | 0.002802551 | 0 | | Santa Clara (SF) | 2023 T6TS | Aggregate | Aggregate | Gasoline | 1418.702832 | 70785.85764 | 70785.85764 | 0 | 28385.40626 | 14.99216178 | 0 | | Santa Clara (SF) | 2023 T7 CAIRP Class 8 | Aggregate | Aggregate | Diesel | 1006.264259 | 204654.1798 | 204654.1798 | 0 | 23123.95267 | 33.91272703 | 0 | | Santa Clara (SF) | 2023 T7 CAIRP Class 8 | Aggregate | Aggregate | Electricity | 2.191624685 | 228.629324 | 0 | 228.629324 | 50.36353527 | 0 | 417.4602445 | | Santa Clara (SF) | 2023 T7 CAIRP Class 8 | Aggregate | Aggregate | Natural Gas | 2.18323623 | 454.417362 | 454.417362 | 0 | 50.17076857 | 0.08086137 | 0 | | Santa Clara (SF) | 2023 T7 NNOOS Class 8 | Aggregate | Aggregate | Diesel | 906.2530019 | 243798.8163 | 243798.8163 | 0 | 20825.69398 | 40.03653941 | 0 | | Santa Clara (SF) | 2023 T7 NOOS Class 8 | Aggregate | Aggregate | Diesel | 379.4320339 | 88588.44809 | 88588.44809 | 0 | 8719.348139 | 14.71130852 | 0 | | Santa Clara (SF) | 2023 T7 Other Port Class 8 | Aggregate | Aggregate | Diesel | 101.3433552 | 19017.96884 | 19017.96884 | 0 | 1657.977291 | 3.208235074 | 0 | | Santa Clara (SF) | 2023 T7 Other Port Class 8 | Aggregate | Aggregate | Electricity | 0.04403981 | 4.845770497 | 0 | 4.845770497 | 0.720491296 | 0 | 8.819143543 | | Santa Clara (SF) | 2023 T7 POAK Class 8 | Aggregate | Aggregate | Diesel | 663.9991296 | 66785.41963 | 66785.41963 | 0 | 10863.02576 | 11.46899232 | 0 | | Santa Clara (SF) | 2023 T7 POAK Class 8 | Aggregate | Aggregate | Electricity | 0.405368352 | 17.11902281 | 0 | 17.11902281 | 6.631826243 | 0 | 31.15606065 | | Santa Clara (SF) | 2023 T7 POAK Class 8 | Aggregate | Aggregate | Natural Gas | 0.276126077 | 26.82738 | 26.82738 | 0 | 4.517422617 | 0.004774917 | 0 | | Santa Clara (SF) | 2023 T7 Public Class 8 | Aggregate | Aggregate | Diesel | 668.8774141 | 28897.03584 | 28897.03584 | 0 | 3431.341134 | 5.573678775 | 0 | | Santa Clara (SF) | 2023 T7 Public Class 8 | Aggregate | Aggregate | Electricity | 0.280411926 | 8.048595439 | 0 | 8.048595439 | 1.438513179 | 0 | 15.79603306 | | Santa Clara (SF) | 2023 T7 Public Class 8 | Aggregate | Aggregate | Natural Gas | 2.685262845 | 133.1357043 | 133.1357043 | 0 | 13.77539839 | 0.029193227 | 0 | | Santa Clara (SF) | 2023 T7 Single Concrete/Transit Mix | Cl Aggregate | Aggregate | Diesel | 400.578244 | 28685.46454 | 28685.46454 | 0 | 3773.447059 | 4.911340595 | 0 | | Santa Clara (SF) | 2023 T7 Single Concrete/Transit Mix | Cl Aggregate | Aggregate | Electricity | 0.687105987 | 26.20855553 | 0 | 26.20855553 | 6.472538399 | 0 | 47.7822374 | | Santa Clara (SF) | 2023 T7 Single Concrete/Transit Mix | Cl Aggregate | Aggregate | Natural Gas | 25.74231275 | 1881.302524 | 1881.302524 | 0 | 242.4925862 | 0.330097562 | 0 | | Santa Clara (SF) | 2023 T7 Single Dump Class 8 | Aggregate | Aggregate | Diesel | 659.7426707 | 41015.02264 | 41015.02264 | 0 | 6214.775958 | 7.103907708 | 0 | | Santa Clara (SF) | 2023 T7 Single Dump Class 8 | Aggregate | Aggregate | Natural Gas | 41.67996919 | 2757.651654 | 2757.651654 | 0 | 392.6253097 | 0.507810698 | 0 | | Santa Clara (SF) | 2023 T7 Single Other Class 8 | Aggregate | Aggregate | Diesel | 902.636725 | 50408.84902 | 50408.84902 | 0 | 8502.837949 | 8.609841957 | 0 | | Santa Clara (SF) | 2023 T7 Single Other Class 8 | Aggregate | Aggregate | Electricity | 1.058697412 | 33.64448269 | 0 | 33.64448269 | 9.972929617 | 0 | 61.33907905 | | Santa Clara (SF) | 2023 T7 Single Other Class 8 | Aggregate | Aggregate | Natural Gas | 54.42547465 | 3201.760637 | 3201.760637 | 0 | 512.6879712 | 0.578370881 | 0 | | Santa Clara (SF) | 2023 T7 SWCV Class 8 | Aggregate | Aggregate | Diesel | 314.2352098 | 20392.91624 | 20392.91624 | 0 | 1445.481965 | 8.326207053 | 0 | | Santa Clara (SF) | 2023 T7 SWCV Class 8 | Aggregate | Aggregate | Electricity | 0.193254273 | 5.225674486 | 0 | 5.225674486 | 0.888969656 | 0 | 9.722632351 | | Santa Clara (SF) | 2023 T7 SWCV Class 8 | Aggregate | Aggregate | Natural Gas | 343.2858777 | 22194.99079 | 22194.99079 | 0 | 1579.115038 | 4.954695056 | 0 | | Santa Clara (SF) | 2023 T7 Tractor Class 8 | Aggregate | Aggregate | Diesel | 2160.227312 | 170340.6719 | 170340.6719 | 0 | 31388.10285 | 28.02806259 | 0 | | Santa Clara (SF) | 2023 T7 Tractor Class 8 | Aggregate | Aggregate | Electricity | 1.819731701 | 75.28742821 | 0 | 75.28742821 | 26.44070162 | 0 | 137.0765584 | | Santa Clara (SF) | 2023 T7 Tractor Class 8 | Aggregate | Aggregate | Natural Gas | 283.4583069 | 22645.88085 | 22645.88085 | 0 | 4118.649199 | 4.031580489 | 0 | | Santa Clara (SF) | 2023 T7 Utility Class 8 | Aggregate | Aggregate | Diesel | 71.46925856 | 3298.141477 | 3298.141477 | 0 | 914.8065096 | 0.570242142 | 0 | | Santa Clara (SF) | 2023 T7 Utility Class 8 | Aggregate | Aggregate | Electricity | 0.021476041 | 0.611944939 | 0 | 0.611944939 | 0.274893321 | 0 | 1.152168881 | | Santa Clara (SF) | 2023 T7IS | Aggregate | Aggregate | Gasoline | 3.454008773 | 114.3092811 | 114.3092811 | 0 | 69.10780752 | 0.031050824 | 0 | | Santa Clara (SF) | 2023 UBUS | Aggregate | Aggregate | Gasoline | 45.94708812 | 4798.243635 | 4798.243635 | 0 | 183.7883525 | 0.51741281 | 0 | | Santa Clara (SF) | 2023 UBUS | Aggregate | Aggregate | Diesel | 436.6680996 | 48829.71129 | 48829.71129 | 0 | 1746.672398 | 5.293673869 | 0 | | Santa Clara (SF) | 2023 UBUS | Aggregate | Aggregate | Electricity | 5.046756939 | 199.0027319 | 0 | 199.0027319 | 20.18702775 | 0 | 346.910342 | | Santa Clara (SF) | 2023 UBUS | Aggregate | Aggregate | Natural Gas | 42.26113832 | 4829.672688 | 4829.672688 | 0 | 169.0445533 | 0.799417876 | 0 | | | | | | | | | | | | | | | Walitala tama | | GAS | | | DSL | | | NG | | | ELEC | | |-----------------|------------|-------------|--------------|-----------|-------------|--------------|-----------------|-------------|--------------|-----------|-----------|-----------| | Vehicle type | VMT/day | Gallons/day | Miles/gallon | VMT/day | Gallons/day | Miles/gallon | VMT/day | Gallons/day | Miles/gallon | VMT/day |
kWh/day | Miles/kWh | | All other buses | 0 | 0 | 0.00 | 50,130 | 5,754 | 8.71 | 469 | 61 | 7.68 | 0 | 0 | 0.00 | | LDA | 22,671,912 | 755,873 | 29.99 | 51,573 | 1,182 | 43.63 | 0 | 0 | 0.00 | 2,858,258 | 1,071,122 | 2.67 | | LDT1 | 1,708,278 | 67,682 | 25.24 | 344 | 14 | 24.45 | 0 | 0 | 0.00 | 9,759 | 3,621 | 2.70 | | LDT2 | 10,367,135 | 428,695 | 24.18 | 37,944 | 1,163 | 32.63 | 0 | 0 | 0.00 | 105,914 | 36,657 | 2.89 | | LHD1 | 722,529 | 74,319 | 9.72 | 398,004 | 24,876 | 16.00 | 0 | 0 | 0.00 | 5,111 | 3,345 | 1.53 | | LHD2 | 91,453 | 10,569 | 8.65 | 183,558 | 13,776 | 13.32 | 0 | 0 | 0.00 | 1,253 | 808 | 1.55 | | MCY | 166,022 | 3,940 | 42.14 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | | MDV | 5,493,355 | 275,693 | 19.93 | 86,293 | 3,476 | 24.82 | 0 | 0 | 0.00 | 86,263 | 30,985 | 2.78 | | MH | 22,012 | 4,984 | 4.42 | 9,498 | 1,012 | 9.39 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | | Motor coach | 0 | 0 | 0.00 | 11,819 | 2,149 | 5.50 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | | OBUS | 19,894 | 4,131 | 4.82 | 0 | 0 | 0.00 | 0 | 0 | 0.00 | 93 | 102 | 0.90 | | PTO | 0 | 0 | 0.00 | 25,538 | 5,159 | 4.95 | 0 | 0 | 0.00 | 128 | 265 | 0.48 | | SBUS | 8,585 | 866 | 9.92 | 15,345 | 1,876 | 8.18 | 612 | 111 | 5.51 | 64 | 68 | 0.95 | | T6 | 71,600 | 14,960 | 4.79 | 434,044 | 51,336 | 8.45 | 4,304 | 601 | <i>7</i> .16 | 1,660 | 1,841 | 0.90 | | T7 | 115 | 29 | 3.93 | 975,558 | 165,951 | 5.88 | 54 , 591 | 10,722 | 5.09 | 2,666 | 4,887 | 0.55 | | UBUS | 4,812 | 519 | 9.28 | 48,918 | 5,304 | 9.22 | 4,865 | 805 | 6.04 | 235 | 410 | 0.57 | | Total | 41,347,705 | 1,642,259 | 25.18 | 2,328,566 | 283,029 | 8.23 | 64,842 | 12,301 | 5.27 | 3,071,404 | 1,154,111 | 2.66 | Source: EMFAC2021 (v1.0.1) Emissions Inventory Region Type: Sub-Area Region: Santa Clara (SF) Calendar Year: 2024 Season: Annual Vehicle Classification: EMFAC202x Categories Units: miles/day for CVMT and EVMT, trips/day for Trips, kWh/day for Energy Consumption, tons/day for Emissions, 1000 gallons/day for Fuel Consumption | Dogion C | alandar Vaar Vahiala Catagani | Madal Vaar | Coood | Fuel | Domilation To | atal VAAT | S) / A 4 T | EVA AT | Trino | Fuel Compumentie | Facus Consumentian | |--------------------------------------|--|-------------------------|------------------------|----------------------------|----------------------------|----------------------------|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------| | Region Ca
Santa Clara (SF) | alendar Year Vehicle Category 2024 All Other Buses | Model Year
Aggregate | Speed
Aggregate | Fuel
Diesel | Population To 808.4286685 | otal VMT (
50130.33539 | 50130.33539 | EVMT 0 | - | 5.753841967 | Energy Consumption | | Santa Clara (SF) | 2024 All Other Buses | Aggregate | Aggregate | Natural Gas | 7.057369964 | 469.3876372 | 469.3876372 | 0 | | 0.061129651 | 0 | | Santa Clara (SF) | 2024 LDA | Aggregate | Aggregate | Gasoline | 600108.1665 | 22290343.74 | 22290343.74 | 0 | | 742.9542167 | 0 | | Santa Clara (SF) | 2024 LDA | Aggregate | Aggregate | Diesel | 1750.023523 | 51573.47594 | 51573.47594 | 0 | | 1.182172407 | 0 | | Santa Clara (SF) | 2024 LDA | Aggregate | Aggregate | Electricity | 57627.40336 | 2472767.413 | 0 | 2472767.413 | 282732.9828 | 0 | 954692.31 | | Santa Clara (SF) | 2024 LDA | Aggregate | Aggregate | Plug-in Hybrid | 17457.09878 | 767059.2064 | 381568.6693 | 385490.5371 | | 12.91853974 | 116429.6317 | | Santa Clara (SF) | 2024 LDT1 | Aggregate | Aggregate | Gasoline | 52693.36611 | 1706864.169 | 1706864.169 | 0 | | 67.63364027 | 0 | | Santa Clara (SF) | 2024 LDT1 | Aggregate | Aggregate | Diesel | 23.46232522 | 343.9307557 | 343.9307557 | 0 | | 0.014069193 | 0 | | Santa Clara (SF)
Santa Clara (SF) | 2024 LDT1
2024 LDT1 | Aggregate | Aggregate | Electricity | 211.0028132
67.64577844 | 8008.645616
3164.460326 | 1414.302062 | 8008.645616
1750.158264 | | 0.048157412 | 3091.998197
528.5999589 | | Santa Clara (SF) | 2024 LDT2 | Aggregate
Aggregate | Aggregate
Aggregate | Plug-in Hybrid
Gasoline | 285585.4354 | 10322758.41 | 10322758.41 | 1/30.138204 | | 427.1777266 | 526.5999569
N | | Santa Clara (SF) | 2024 LDT2 | Aggregate | Aggregate | Diesel | 1015.452853 | 37944.25501 | 37944.25501 | 0 | | 1.162718893 | 0 | | Santa Clara (SF) | 2024 LDT2 | Aggregate | Aggregate | Electricity | 1597.566708 | 55532.59168 | 0 | 55532.59168 | | 0 | 21440.16374 | | Santa Clara (SF) | 2024 LDT2 | Aggregate | Aggregate | Plug-in Hybrid | 2116.579549 | 94757.7077 | 44376.61329 | 50381.09441 | | 1.517647285 | 15216.59211 | | Santa Clara (SF) | 2024 LHD1 | Aggregate | Aggregate | Gasoline | 19314.14241 | 722529.3133 | 722529.3133 | 0 | | 74.31877246 | 0 | | Santa Clara (SF) | 2024 LHD1 | Aggregate | Aggregate | Diesel | 10107.73681 | 398004.1011 | 398004.1011 | 0 | | 24.8758044 | 0 | | Santa Clara (SF) | 2024 LHD1 | Aggregate | Aggregate | Electricity | 70.82835563 | 5110.544281 | 0 | 5110.544281 | | 0 | 3345.3755 | | Santa Clara (SF) | 2024 LHD2 | Aggregate | Aggregate | Gasoline | 2506.905697 | 91452.57471 | 91452.57471 | 0 | 37349.15959 | 10.56883592 | 0 | | Santa Clara (SF) | 2024 LHD2 | Aggregate | Aggregate | Diesel | 4663.455482 | 183558.3761 | 183558.3761 | 0 | 58660.40334 | 13.77648219 | 0 | | Santa Clara (SF) | 2024 LHD2 | Aggregate | Aggregate | Electricity | 18.33259331 | 1253.286273 | 0 | 1253.286273 | 242.6680052 | 0 | 808.0021761 | | Santa Clara (SF) | 2024 MCY | Aggregate | Aggregate | Gasoline | 28171.50953 | 166022.3441 | 166022.3441 | 0 | 56343.01906 | 3.939891772 | 0 | | Santa Clara (SF) | 2024 MDV | Aggregate | Aggregate | Gasoline | 156642.427 | 5468053.925 | 5468053.925 | 0 | 726101.0934 | 274.8145048 | 0 | | Santa Clara (SF) | 2024 MDV | Aggregate | Aggregate | Diesel | 2400.614538 | 86292.68513 | 86292.68513 | 0 | | 3.47644065 | 0 | | Santa Clara (SF) | 2024 MDV | Aggregate | Aggregate | Electricity | 1678.684452 | 58660.62986 | 0 | 58660.62986 | | 0 | 22647.84465 | | Santa Clara (SF) | 2024 MDV | Aggregate | Aggregate | Plug-in Hybrid | 1250.857088 | 52904.03132 | 25301.52107 | 27602.51025 | | 0.878127631 | 8336.780782 | | Santa Clara (SF) | 2024 MH | Aggregate | Aggregate | Gasoline | 2420.569841 | 22012.30271 | 22012.30271 | 0 | | 4.983865157 | 0 | | Santa Clara (SF) | 2024 MH | Aggregate | Aggregate | Diesel | 977.3606104 | 9498.302477 | 9498.302477 | 0 | | 1.01191714 | 0 | | Santa Clara (SF) | 2024 Motor Coach | Aggregate | Aggregate | Diesel | 84.7088877 | 11818.71536 | 11818.71536 | 0 | | 2.149164979 | 0 | | Santa Clara (SF) | 2024 OBUS
2024 OBUS | Aggregate | Aggregate | Gasoline | 443.1467338 | 19894.31417 | 19894.31417 | 02 50104822 | | 4.131308494
0 | 102 4770091 | | Santa Clara (SF)
Santa Clara (SF) | 2024 OBOS
2024 PTO | Aggregate | Aggregate | Electricity
Diesel | 1.087481377
0 | 92.50104822
25537.63759 | 25537.63759 | 92.50104822
0 | | 5.159458023 | 102.4770081 | | Santa Clara (SF) | 2024 PTO
2024 PTO | Aggregate | Aggregate | Electricity | 0 | 128.0724498 | 23337.03739 | 128.0724498 | _ | 0.159458025 | 265.3044834 | | Santa Clara (SF) | 2024 FTO
2024 SBUS | Aggregate
Aggregate | Aggregate
Aggregate | Gasoline | 172.6947868 | 8584.865553 | 8584.865553 | 128.0724438 | | 0.865530502 | 203.3044634 | | Santa Clara (SF) | 2024 SBUS | Aggregate | Aggregate | Diesel | 670.5958444 | 15345.26177 | 15345.26177 | 0 | | 1.876081188 | 0 | | Santa Clara (SF) | 2024 SBUS | Aggregate | Aggregate | Electricity | 2.064666287 | 64.35501341 | 15545.20177 | 64.35501341 | | 0 | 67.79514863 | | Santa Clara (SF) | 2024 SBUS | Aggregate | Aggregate | Natural Gas | 24.39950467 | 612.0940704 | 612.0940704 | 04.55501541 | | 0.111007992 | 07.73314003 | | Santa Clara (SF) | 2024 T6 CAIRP Class 4 | Aggregate | Aggregate | Diesel | 3.328145584 | 217.4041975 | 217.4041975 | 0 | 76.48078551 | 0.02438361 | 0 | | Santa Clara (SF) | 2024 T6 CAIRP Class 4 | Aggregate | Aggregate | Electricity | 0.017014511 | 1.246201009 | 0 | 1.246201009 | | 0.02+30301 | 1.353727623 | | Santa Clara (SF) | 2024 T6 CAIRP Class 5 | Aggregate | Aggregate | Diesel | 4.442495396 | 298.458622 | 298.458622 | 0 | | 0.033466402 | 0 | | Santa Clara (SF) | 2024 T6 CAIRP Class 5 | Aggregate | Aggregate | Electricity | 0.019456265 | 1.490406271 | 0 | 1.490406271 | | 0 | 1.619003776 | | Santa Clara (SF) | 2024 T6 CAIRP Class 6 | Aggregate | Aggregate | Diesel | 14.48042474 | 777.4252367 | 777.4252367 | 0 | | 0.085852905 | 0 | | Santa Clara (SF) | 2024 T6 CAIRP Class 6 | Aggregate | Aggregate | Electricity | 0.115434367 | 6.350155761 | 0 | 6.350155761 | 2.652681759 | 0 | 6.898069577 | | Santa Clara (SF) | 2024 T6 CAIRP Class 7 | Aggregate | Aggregate | Diesel | 24.43022825 | 4898.412741 | 4898.412741 | 0 | | 0.505914038 | 0 | | Santa Clara (SF) | 2024 T6 CAIRP Class 7 | Aggregate | Aggregate | Electricity | 0.093570193 | 17.82268187 | 0 | 17.82268187 | | 0 | 19.36048567 | | Santa Clara (SF) | 2024 T6 Instate Delivery Class 4 | Aggregate | Aggregate | Diesel | 634.4377986 | 21302.87024 | 21302.87024 | 0 | 9053.427386 | 2.586568046 | 0 | | Santa Clara (SF) | 2024 T6 Instate Delivery Class 4 | Aggregate | Aggregate | Electricity | 1.874927136 | 73.99764353 | 0 | 73.99764353 | 26.75521023 | 0 | 79.05013448 | | Santa Clara (SF) | 2024 T6 Instate Delivery Class 4 | Aggregate | Aggregate | Natural Gas | 2.195385962 | 83.21655869 | 83.21655869 | 0 | 31.32815768 | 0.01234443 | 0 | | Santa Clara (SF) | 2024 T6 Instate Delivery Class 5 | Aggregate | Aggregate | Diesel | 718.8192389 | 24623.62838 | 24623.62838 | 0 | 10257.55054 | 3.003350515 | 0 | | Santa Clara (SF) | 2024 T6 Instate Delivery Class 5 | Aggregate | Aggregate | Electricity | 1.648008405 | 64.12022158 | 0 | 64.12022158 | 23.51707994 | 0 | 68.49829126 | | Santa Clara (SF) | 2024 T6 Instate Delivery Class 5 | Aggregate | Aggregate | Natural Gas | 1.947737833 | 73.97759496 |
73.97759496 | 0 | 27.79421888 | 0.010730061 | 0 | | Santa Clara (SF) | 2024 T6 Instate Delivery Class 6 | Aggregate | Aggregate | Diesel | 1385.299821 | 46980.44671 | 46980.44671 | 0 | 19768.22845 | 5.712124819 | 0 | | Santa Clara (SF) | 2024 T6 Instate Delivery Class 6 | Aggregate | Aggregate | Electricity | 3.385248639 | 128.5564251 | 0 | 128.5564251 | | 0 | 137.3341394 | | Santa Clara (SF) | 2024 T6 Instate Delivery Class 6 | Aggregate | Aggregate | Natural Gas | 3.631895172 | 137.8780495 | 137.8780495 | 0 | | 0.019894948 | 0 | | Santa Clara (SF) | 2024 T6 Instate Delivery Class 7 | Aggregate | Aggregate | Diesel | 179.1996389 | 9846.451639 | 9846.451639 | 0 | 2557.178846 | 1.177598494 | 0 | | Santa Clara (SF) | 2024 T6 Instate Delivery Class 7 | Aggregate | Aggregate | Natural Gas | 3.602323031 | 202.6823025 | 202.6823025 | 0 | 02002000 | 0.029532356 | 0 | | Santa Clara (SF) | 2024 T6 Instate Other Class 4 | Aggregate | Aggregate | Diesel | 1110.945399 | 45768.82709 | 45768.82709 | 0 | | 5.382815782 | 0 | | Santa Clara (SF) | 2024 T6 Instate Other Class 4 | Aggregate | Aggregate | Electricity | 3.108095442
2.853241183 | 140.6851052
132.3563639 | 132.3563639 | 140.6851052 | | 0.017596039 | 149.1376192 | | Santa Clara (SF)
Santa Clara (SF) | 2024 T6 Instate Other Class 4
2024 T6 Instate Other Class 5 | Aggregate | Aggregate | Natural Gas
Diesel | 2184.026866 | 95221.49311 | 95221.49311 | 0 | | 0.017586928
11.20353279 | 0 | | Santa Clara (SF) | 2024 To instate Other Class 5 | Aggregate | Aggregate | | 3.525688637 | 161.6745604 | 93221.49311 | 161.6745604 | | 11.20353279 | 171.3881437 | | Santa Clara (SF) | 2024 To Instate Other Class 5 | Aggregate
Aggregate | Aggregate
Aggregate | Electricity
Natural Gas | 5.434173406 | 245.7668725 | 245.7668725 | 101.0745004 | | 0.031691189 | 1/1.300143/
N | | Santa Clara (SF) | 2024 To Instate Other Class 6 | Aggregate | Aggregate | Diesel | 2116.183918 | 89853.22047 | 89853.22047 | 0 | | 10.47500015 | 0 | | Santa Clara (SF) | 2024 T6 Instate Other Class 6 | Aggregate | Aggregate | Electricity | 5.209690621 | 231.5269381 | 0 | 231.5269381 | | 0 | 245.4373281 | | Santa Clara (SF) | 2024 T6 Instate Other Class 6 | Aggregate | Aggregate | Natural Gas | 5.207174141 | 233.6364843 | 233.6364843 | 0 | | 0.030188569 | 0 | | Santa Clara (SF) | 2024 T6 Instate Other Class 7 | Aggregate | Aggregate | Diesel | 799.6658086 | 37841.60696 | 37841.60696 | 0 | | 4.359717031 | 0 | | Santa Clara (SF) | 2024 T6 Instate Other Class 7 | Aggregate | Aggregate | Electricity | 1.339815522 | 92.05562011 | 0 | 92.05562011 | 15.48826743 | 0 | 97.58642179 | | Santa Clara (SF) | 2024 T6 Instate Other Class 7 | Aggregate | Aggregate | Natural Gas | 19.23696007 | 980.3840703 | 980.3840703 | 0 | 222.3792584 | 0.126683652 | 0 | | Santa Clara (SF) | 2024 T6 Instate Tractor Class 6 | Aggregate | Aggregate | Diesel | 8.556321888 | 421.1964875 | 421.1964875 | 0 | 98.91108103 | 0.048188789 | 0 | | Santa Clara (SF) | 2024 T6 Instate Tractor Class 6 | Aggregate | Aggregate | Electricity | 0.034609066 | 2.210091761 | 0 | 2.210091761 | 0.400080799 | 0 | 2.342876475 | | Santa Clara (SF) | 2024 T6 Instate Tractor Class 6 | Aggregate | Aggregate | Natural Gas | 0.026178722 | 1.770952085 | 1.770952085 | 0 | 0.00202020 | 0.000218812 | 0 | | Santa Clara (SF) | 2024 T6 Instate Tractor Class 7 | Aggregate | Aggregate | Diesel | 248.9877268 | 15154.88118 | 15154.88118 | 0 | | 1.664762017 | 0 | | Santa Clara (SF) | 2024 T6 Instate Tractor Class 7 | Aggregate | Aggregate | Electricity | 0.093356738 | 7.25809171 | 0 | 7.25809171 | | 0 | 7.694165746 | | Santa Clara (SF) | 2024 T6 Instate Tractor Class 7 | Aggregate | Aggregate | Natural Gas | 5.067853091 | 329.9235596 | 329.9235596 | 0 | | 0.041658362 | 0 | | Santa Clara (SF) | 2024 T6 OOS Class 4 | Aggregate | Aggregate | Diesel | 1.868040823 | 121.0132021 | 121.0132021 | 0 | | 0.013507047 | 0 | | Santa Clara (SF) | 2024 T6 OOS Class 5 | Aggregate | Aggregate | Diesel | 2.481882082 | 166.0083523 | 166.0083523 | 0 | 07.000000 | 0.018539317 | 0 | | Santa Clara (SF) | 2024 T6 OOS Class 6 | Aggregate | Aggregate | Diesel | 8.128898212 | 433.7845741 | 433.7845741 | 0 | | 0.047588773 | 0 | | Santa Clara (SF)
Santa Clara (SF) | 2024 T6 OOS Class 7
2024 T6 Public Class 4 | Aggregate | Aggregate | Diesel | 12.75969097
138.3085514 | 3154.15326
4742.735974 | 3154.15326
4742.735974 | 0 | 293.2176986
709.5228687 | 0.323369844
0.616185918 | U | | Santa Clara (SF) Santa Clara (SF) | 2024 16 Public Class 4 2024 T6 Public Class 4 | Aggregate | Aggregate | Diesel
Electricity | 0.638800924 | 4742.735974
27.68091726 | 7/42./339/4
n | 27.68091726 | | 0.616185918 | 32.68841061 | | Santa Clara (SF) | 2024 T6 Public Class 4 | Aggregate
Aggregate | Aggregate
Aggregate | Natural Gas | 6.928309451 | 27.08091726 | 291.1045084 | 27.08091720 | | 0.044829904 | J2.00041001
N | | Santa Clara (SF) | 2024 T6 Public Class 4 2024 T6 Public Class 5 | Aggregate | Aggregate | Diesel | 221.5489458 | 8210.34963 | 8210.34963 | 0 | | 1.052656748 | 0 | | Santa Clara (SF) | 2024 T6 Public Class 5 | Aggregate | Aggregate | Electricity | 0.843905972 | 36.46950986 | 0_10.5 - 503 | 36.46950986 | | 1.032030748 | 43.06686452 | | Santa Clara (SF) | 2024 T6 Public Class 5 | Aggregate | Aggregate | Natural Gas | 13.82896159 | 570.1170055 | 570.1170055 | 0 | | 0.08591589 | 0 | | Santa Clara (SF) | 2024 T6 Public Class 6 | Aggregate | Aggregate | Diesel | 128.8250087 | 4447.105972 | 4447.105972 | 0 | | 0.582858165 | 0 | | Santa Clara (SF) | 2024 T6 Public Class 6 | Aggregate | Aggregate | Electricity | 0.6191835 | 25.70413868 | 0 | 25.70413868 | | 0 | 30.35403169 | | Santa Clara (SF) | 2024 T6 Public Class 6 | Aggregate | Aggregate | Natural Gas | 5.780531989 | 242.1791583 | 242.1791583 | 0 | | 0.036311142 | 0 | | Santa Clara (SF) | 2024 T6 Public Class 7 | Aggregate | Aggregate | Diesel | 301.4444364 | 13590.05173 | 13590.05173 | 0 | 1546.409959 | 1.744512156 | 0 | | Santa Clara (SF) | 2024 T6 Public Class 7 | Aggregate | Aggregate | Electricity | 1.380752514 | 91.7636359 | 0 | 91.7636359 | 7.083260394 | 0 | 108.3637288 | | Santa Clara (SF) | 2024 T6 Public Class 7 | Aggregate | Aggregate | Natural Gas | 12.81129542 | 696.7002652 | 696.7002652 | 0 | | 0.102376386 | 0 | | Santa Clara (SF) | 2024 T6 Utility Class 5 | Aggregate | Aggregate | Diesel | 101.3496958 | 4117.843186 | 4117.843186 | 0 | 1297.276106 | 0.465650551 | 0 | | | | | | | | | | | | | | | Santa Clara (SF) | 2024 T6 Utility Class 5 | Aggregate | Λαατραατρ | Electricity | 0.781021381 | 33.978473 | 0 | 33.978473 | 9.997073675 | 0 | 38.05804358 | |------------------|---------------------------------------|-----------|------------------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|--------------------------| | Santa Clara (SF) | 2024 T6 Utility Class 5 | Aggregate | Aggregate
Aggregate | Natural Gas | 1.344532413 | 52.70809581 | 52.70809581 | 0 | 17.21001488 | 0.007200102 | 38.0360 4 336 | | Santa Clara (SF) | 2024 T6 Utility Class 5 | Aggregate | Aggregate | Diesel | 19.23599189 | 777.7357488 | 777.7357488 | 0 | 246.2206962 | 0.087639958 | 0 | | Santa Clara (SF) | 2024 T6 Utility Class 6 | Aggregate | Aggregate | Electricity | 0.145737857 | 6.340351169 | 0 | 6.340351169 | 1.865444565 | 0.007033330 | 7.101595211 | | Santa Clara (SF) | 2024 T6 Utility Class 6 | Aggregate | Aggregate | Natural Gas | 0.266674953 | 10.49491273 | 10.49491273 | 0.540551105 | 3.4134394 | 0.001424527 | 7.101333211
N | | Santa Clara (SF) | 2024 T6 Utility Class 7 | | | Diesel | 21.77302834 | 1076.488565 | 1076.488565 | 0 | 278.6947628 | 0.120617494 | 0 | | Santa Clara (SF) | 2024 To Utility Class 7 | Aggregate | Aggregate | Electricity | 0.174265519 | 10.33920585 | 1070.488303 | 10.33920585 | 2.230598641 | 0.120017494 | 11.58056593 | | Santa Clara (SF) | 2024 To Utility Class 7 | Aggregate | Aggregate | Natural Gas | 0.431256952 | 18.68444543 | 18.68444543 | 10.33920383 | 5.520088984 | 0.002528524 | 11.36030393 | | Santa Clara (SF) | 2024 T6 Othity Class 7 | Aggregate | Aggregate | Gasoline | 1414.551675 | 71600.35148 | 71600.35148 | 0 | 28302.34992 | 14.95972983 | 0 | | · · | 2024 T6TS | Aggregate | Aggregate | | 5.86743085 | 499.0830329 | 71000.55148 | 499.0830329 | 117.3955565 | 14.95972965 | 582.1504206 | | Santa Clara (SF) | | Aggregate | Aggregate | Electricity | | | _ | | | _ | 362.1304200 | | Santa Clara (SF) | 2024 T7 CAIRP Class 8 | Aggregate | Aggregate | Diesel | 1023.529883 | 206293.0271 | 206293.0271 | 1107 205 000 | 23520.71671 | 33.7732886 | 2022.0044 | | Santa Clara (SF) | 2024 T7 CAIRP Class 8 | Aggregate | Aggregate | Electricity | 6.238437827 | 1107.385686 | 0 | 1107.385686 | 143.3593013 | 0.004101057 | 2022.0044 | | Santa Clara (SF) | 2024 T7 CAIRP Class 8 | Aggregate | Aggregate | Natural Gas | 2.329348177 | 474.4702335 | 474.4702335 | 0 | 53.52842111 | 0.084191057 | 0 | | Santa Clara (SF) | 2024 T7 NNOOS Class 8 | Aggregate | Aggregate | Diesel | 921.2314611 | 246811.7997 | 246811.7997 | 0 | 21169.89898 | 39.70465453 | 0 | | Santa Clara (SF) | 2024 T7 NOOS Class 8 | Aggregate | Aggregate | Diesel | 388.1022222 | 89683.26687 | 89683.26687 | 0 | 8918.589066 | 14.66744398 | 0 | | Santa Clara (SF) | 2024 T7 Other Port Class 8 | Aggregate | Aggregate | Diesel | 107.2245115 | 19735.48995 | 19735.48995 | 0 | 1754.193008 | 3.320312421 | 72.25040726 | | Santa Clara (SF) | 2024 T7 Other Port Class 8 | Aggregate | Aggregate | Electricity | 0.186127947 | 39.70313629 | 0 | 39.70313629 | 3.045053206 | 0 | 72.25840726 | | Santa Clara (SF) | 2024 T7 POAK Class 8 | Aggregate | Aggregate | Diesel | 689.4275811 | 68391.97782 | 68391.97782 | 0 | 11279.03523 | 11.72171204 | 0 | | Santa Clara (SF) | 2024 T7 POAK Class 8 | Aggregate | Aggregate | Electricity | 1.59968582 | 126.5767064 | 0 | 126.5767064 | 26.17086002 | 0 | 230.3654586 | | Santa
Clara (SF) | 2024 T7 POAK Class 8 | Aggregate | Aggregate | Natural Gas | 0.342244758 | 33.07113049 | 33.07113049 | 0 | 5.599124245 | 0.005825247 | 0 | | Santa Clara (SF) | 2024 T7 Public Class 8 | Aggregate | Aggregate | Diesel | 670.4398094 | 28942.50982 | 28942.50982 | 0 | 3439.356222 | 5.533060238 | 0 | | Santa Clara (SF) | 2024 T7 Public Class 8 | Aggregate | Aggregate | Electricity | 2.254791911 | 141.5795849 | 0 | 141.5795849 | 11.56708251 | 0 | 277.8616244 | | Santa Clara (SF) | 2024 T7 Public Class 8 | Aggregate | Aggregate | Natural Gas | 2.870352085 | 140.7081652 | 140.7081652 | 0 | 14.7249062 | 0.03057411 | 0 | | Santa Clara (SF) | 2024 T7 Single Concrete/Transit Mix C | | Aggregate | Diesel | 408.1790286 | 28702.03899 | 28702.03899 | 0 | 3845.04645 | 4.867218796 | 0 | | Santa Clara (SF) | 2024 T7 Single Concrete/Transit Mix C | | Aggregate | Electricity | 3.614491914 | 256.0499498 | 0 | 256.0499498 | 34.04851383 | 0 | 466.8185347 | | Santa Clara (SF) | 2024 T7 Single Concrete/Transit Mix C | Aggregate | Aggregate | Natural Gas | 26.26248282 | 1875.457005 | 1875.457005 | 0 | 247.3925881 | 0.326087263 | 0 | | Santa Clara (SF) | 2024 T7 Single Dump Class 8 | Aggregate | Aggregate | Diesel | 679.562021 | 41217.69999 | 41217.69999 | 0 | 6401.474238 | 7.139089704 | 0 | | Santa Clara (SF) | 2024 T7 Single Dump Class 8 | Aggregate | Aggregate | Electricity | 1.343535761 | 101.2579346 | 0 | 101.2579346 | 12.65610687 | 0 | 184.608826 | | Santa Clara (SF) | 2024 T7 Single Dump Class 8 | Aggregate | Aggregate | Natural Gas | 43.50263608 | 2797.926328 | 2797.926328 | 0 | 409.7948319 | 0.514578791 | 0 | | Santa Clara (SF) | 2024 T7 Single Other Class 8 | Aggregate | Aggregate | Diesel | 944.6411268 | 50775.23976 | 50775.23976 | 0 | 8898.519415 | 8.637741776 | 0 | | Santa Clara (SF) | 2024 T7 Single Other Class 8 | Aggregate | Aggregate | Electricity | 4.593637967 | 287.6905724 | 0 | 287.6905724 | 43.27206965 | 0 | 524.5042678 | | Santa Clara (SF) | 2024 T7 Single Other Class 8 | Aggregate | Aggregate | Natural Gas | 57.62813317 | 3244.285374 | 3244.285374 | 0 | 542.8570144 | 0.5836213 | 0 | | Santa Clara (SF) | 2024 T7 SWCV Class 8 | Aggregate | Aggregate | Diesel | 293.9981196 | 19080.16688 | 19080.16688 | 0 | 1352.39135 | 7.76723316 | 0 | | Santa Clara (SF) | 2024 T7 SWCV Class 8 | Aggregate | Aggregate | Electricity | 1.871813884 | 112.2231148 | 0 | 112.2231148 | 8.610343864 | 0 | 208.7967953 | | Santa Clara (SF) | 2024 T7 SWCV Class 8 | Aggregate | Aggregate | Natural Gas | 366.0903861 | 23674.41365 | 23674.41365 | 0 | 1684.015776 | 5.182716586 | 0 | | Santa Clara (SF) | 2024 T7 Tractor Class 8 | Aggregate | Aggregate | Diesel | 2287.042579 | 172614.4353 | 172614.4353 | 0 | 33230.72867 | 28.24875256 | 0 | | Santa Clara (SF) | 2024 T7 Tractor Class 8 | Aggregate | Aggregate | Electricity | 6.467549417 | 482.4176479 | 0 | 482.4176479 | 93.97349303 | 0 | 878.3425391 | | Santa Clara (SF) | 2024 T7 Tractor Class 8 | Aggregate | Aggregate | Natural Gas | 295.3753806 | 22350.93859 | 22350.93859 | 0 | 4291.80428 | 3.994610798 | 0 | | Santa Clara (SF) | 2024 T7 Utility Class 8 | Aggregate | Aggregate | Diesel | 73.3151002 | 3310.166935 | 3310.166935 | 0 | 938.4332825 | 0.570166581 | 0 | | Santa Clara (SF) | 2024 T7 Utility Class 8 | Aggregate | Aggregate | Electricity | 0.154802559 | 9.781757825 | 0 | 9.781757825 | 1.981472761 | 0 | 18.41707684 | | Santa Clara (SF) | 2024 T7IS | Aggregate | Aggregate | Gasoline | 2.588707958 | 115.1525769 | 115.1525769 | 0 | 51.79486882 | 0.029295453 | 0 | | Santa Clara (SF) | 2024 T7IS | Aggregate | Aggregate | Electricity | 0.005511144 | 1.522048574 | 0 | 1.522048574 | 0.110266975 | 0 | 3.058303763 | | Santa Clara (SF) | 2024 UBUS | Aggregate | Aggregate | Gasoline | 46.08313217 | 4812.450683 | 4812.450683 | 0 | 184.3325287 | 0.518830212 | 0 | | Santa Clara (SF) | 2024 UBUS | Aggregate | Aggregate | Diesel | 437.474468 | 48917.60551 | 48917.60551 | 0 | 1749.897872 | 5.304044181 | 0 | | Santa Clara (SF) | 2024 UBUS | Aggregate | Aggregate | Electricity | 5.347565451 | 235.0625504 | 0 | 235.0625504 | 21.3902618 | 0 | 409.7714086 | | Santa Clara (SF) | 2024 UBUS | Aggregate | Aggregate | Natural Gas | 42.58695876 | 4865.187143 | 4865.187143 | 0 | 170.347835 | 0.805345778 | 0 | | • • | | - | • | | | | | | | | |